#include "Collation.h" #include "frameworks/base/cmds/statsd/src/atoms.pb.h" #include <set> #include <vector> #include <getopt.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include "android-base/strings.h" using namespace google::protobuf; using namespace std; namespace android { namespace stats_log_api_gen { int maxPushedAtomId = 2; const string DEFAULT_MODULE_NAME = "DEFAULT"; const string DEFAULT_CPP_NAMESPACE = "android,util"; const string DEFAULT_CPP_HEADER_IMPORT = "statslog.h"; const string DEFAULT_JAVA_PACKAGE = "android.util"; const string DEFAULT_JAVA_CLASS = "StatsLogInternal"; const int JAVA_MODULE_REQUIRES_FLOAT = 0x01; const int JAVA_MODULE_REQUIRES_ATTRIBUTION = 0x02; using android::os::statsd::Atom; /** * Turn lower and camel case into upper case with underscores. */ static string make_constant_name(const string& str) { string result; const int N = str.size(); bool underscore_next = false; for (int i=0; i<N; i++) { char c = str[i]; if (c >= 'A' && c <= 'Z') { if (underscore_next) { result += '_'; underscore_next = false; } } else if (c >= 'a' && c <= 'z') { c = 'A' + c - 'a'; underscore_next = true; } else if (c == '_') { underscore_next = false; } result += c; } return result; } static const char* cpp_type_name(java_type_t type) { switch (type) { case JAVA_TYPE_BOOLEAN: return "bool"; case JAVA_TYPE_INT: case JAVA_TYPE_ENUM: return "int32_t"; case JAVA_TYPE_LONG: return "int64_t"; case JAVA_TYPE_FLOAT: return "float"; case JAVA_TYPE_DOUBLE: return "double"; case JAVA_TYPE_STRING: return "char const*"; case JAVA_TYPE_BYTE_ARRAY: return "const BytesField&"; default: return "UNKNOWN"; } } static const char* java_type_name(java_type_t type) { switch (type) { case JAVA_TYPE_BOOLEAN: return "boolean"; case JAVA_TYPE_INT: case JAVA_TYPE_ENUM: return "int"; case JAVA_TYPE_LONG: return "long"; case JAVA_TYPE_FLOAT: return "float"; case JAVA_TYPE_DOUBLE: return "double"; case JAVA_TYPE_STRING: return "java.lang.String"; case JAVA_TYPE_BYTE_ARRAY: return "byte[]"; default: return "UNKNOWN"; } } static bool atom_needed_for_module(const AtomDecl& atomDecl, const string& moduleName) { if (moduleName == DEFAULT_MODULE_NAME) { return true; } return atomDecl.hasModule && (moduleName == atomDecl.moduleName); } static bool signature_needed_for_module(const set<string>& modules, const string& moduleName) { if (moduleName == DEFAULT_MODULE_NAME) { return true; } return modules.find(moduleName) != modules.end(); } static void write_atoms_info_cpp(FILE *out, const Atoms &atoms) { std::set<string> kTruncatingAtomNames = {"mobile_radio_power_state_changed", "audio_state_changed", "call_state_changed", "phone_signal_strength_changed", "mobile_bytes_transfer_by_fg_bg", "mobile_bytes_transfer"}; fprintf(out, "const std::set<int> " "AtomsInfo::kTruncatingTimestampAtomBlackList = {\n"); for (set<string>::const_iterator blacklistedAtom = kTruncatingAtomNames.begin(); blacklistedAtom != kTruncatingAtomNames.end(); blacklistedAtom++) { fprintf(out, " %s,\n", make_constant_name(*blacklistedAtom).c_str()); } fprintf(out, "};\n"); fprintf(out, "\n"); fprintf(out, "const std::set<int> AtomsInfo::kAtomsWithAttributionChain = {\n"); for (set<AtomDecl>::const_iterator atom = atoms.decls.begin(); atom != atoms.decls.end(); atom++) { for (vector<AtomField>::const_iterator field = atom->fields.begin(); field != atom->fields.end(); field++) { if (field->javaType == JAVA_TYPE_ATTRIBUTION_CHAIN) { string constant = make_constant_name(atom->name); fprintf(out, " %s,\n", constant.c_str()); break; } } } fprintf(out, "};\n"); fprintf(out, "\n"); fprintf(out, "const std::set<int> AtomsInfo::kWhitelistedAtoms = {\n"); for (set<AtomDecl>::const_iterator atom = atoms.decls.begin(); atom != atoms.decls.end(); atom++) { if (atom->whitelisted) { string constant = make_constant_name(atom->name); fprintf(out, " %s,\n", constant.c_str()); } } fprintf(out, "};\n"); fprintf(out, "\n"); fprintf(out, "static std::map<int, int> getAtomUidField() {\n"); fprintf(out, " std::map<int, int> uidField;\n"); for (set<AtomDecl>::const_iterator atom = atoms.decls.begin(); atom != atoms.decls.end(); atom++) { if (atom->uidField == 0) { continue; } fprintf(out, "\n // Adding uid field for atom " "(%d)%s\n", atom->code, atom->name.c_str()); fprintf(out, " uidField[static_cast<int>(%s)] = %d;\n", make_constant_name(atom->name).c_str(), atom->uidField); } fprintf(out, " return uidField;\n"); fprintf(out, "};\n"); fprintf(out, "const std::map<int, int> AtomsInfo::kAtomsWithUidField = " "getAtomUidField();\n"); fprintf(out, "static std::map<int, StateAtomFieldOptions> " "getStateAtomFieldOptions() {\n"); fprintf(out, " std::map<int, StateAtomFieldOptions> options;\n"); fprintf(out, " StateAtomFieldOptions opt;\n"); for (set<AtomDecl>::const_iterator atom = atoms.decls.begin(); atom != atoms.decls.end(); atom++) { if (atom->primaryFields.size() == 0 && atom->exclusiveField == 0) { continue; } fprintf(out, "\n // Adding primary and exclusive fields for atom " "(%d)%s\n", atom->code, atom->name.c_str()); fprintf(out, " opt.primaryFields.clear();\n"); for (const auto& field : atom->primaryFields) { fprintf(out, " opt.primaryFields.push_back(%d);\n", field); } fprintf(out, " opt.exclusiveField = %d;\n", atom->exclusiveField); fprintf(out, " options[static_cast<int>(%s)] = opt;\n", make_constant_name(atom->name).c_str()); } fprintf(out, " return options;\n"); fprintf(out, "}\n"); fprintf(out, "const std::map<int, StateAtomFieldOptions> " "AtomsInfo::kStateAtomsFieldOptions = " "getStateAtomFieldOptions();\n"); fprintf(out, "static std::map<int, std::vector<int>> " "getBinaryFieldAtoms() {\n"); fprintf(out, " std::map<int, std::vector<int>> options;\n"); for (set<AtomDecl>::const_iterator atom = atoms.decls.begin(); atom != atoms.decls.end(); atom++) { if (atom->binaryFields.size() == 0) { continue; } fprintf(out, "\n // Adding binary fields for atom " "(%d)%s\n", atom->code, atom->name.c_str()); for (const auto& field : atom->binaryFields) { fprintf(out, " options[static_cast<int>(%s)].push_back(%d);\n", make_constant_name(atom->name).c_str(), field); } } fprintf(out, " return options;\n"); fprintf(out, "}\n"); fprintf(out, "const std::map<int, std::vector<int>> " "AtomsInfo::kBytesFieldAtoms = " "getBinaryFieldAtoms();\n"); } // Writes namespaces for the cpp and header files, returning the number of namespaces written. void write_namespace(FILE* out, const string& cppNamespaces) { vector<string> cppNamespaceVec = android::base::Split(cppNamespaces, ","); for (string cppNamespace : cppNamespaceVec) { fprintf(out, "namespace %s {\n", cppNamespace.c_str()); } } // Writes namespace closing brackets for cpp and header files. void write_closing_namespace(FILE* out, const string& cppNamespaces) { vector<string> cppNamespaceVec = android::base::Split(cppNamespaces, ","); for (auto it = cppNamespaceVec.rbegin(); it != cppNamespaceVec.rend(); ++it) { fprintf(out, "} // namespace %s\n", it->c_str()); } } static int write_stats_log_cpp(FILE *out, const Atoms &atoms, const AtomDecl &attributionDecl, const string& moduleName, const string& cppNamespace, const string& importHeader) { // Print prelude fprintf(out, "// This file is autogenerated\n"); fprintf(out, "\n"); fprintf(out, "#include <mutex>\n"); fprintf(out, "#include <chrono>\n"); fprintf(out, "#include <thread>\n"); fprintf(out, "#ifdef __ANDROID__\n"); fprintf(out, "#include <cutils/properties.h>\n"); fprintf(out, "#endif\n"); fprintf(out, "#include <stats_event_list.h>\n"); fprintf(out, "#include <log/log.h>\n"); fprintf(out, "#include <%s>\n", importHeader.c_str()); fprintf(out, "#include <utils/SystemClock.h>\n"); fprintf(out, "\n"); write_namespace(out, cppNamespace); fprintf(out, "// the single event tag id for all stats logs\n"); fprintf(out, "const static int kStatsEventTag = 1937006964;\n"); fprintf(out, "#ifdef __ANDROID__\n"); fprintf(out, "const static bool kStatsdEnabled = property_get_bool(\"ro.statsd.enable\", true);\n"); fprintf(out, "#else\n"); fprintf(out, "const static bool kStatsdEnabled = false;\n"); fprintf(out, "#endif\n"); // AtomsInfo is only used by statsd internally and is not needed for other modules. if (moduleName == DEFAULT_MODULE_NAME) { write_atoms_info_cpp(out, atoms); } fprintf(out, "int64_t lastRetryTimestampNs = -1;\n"); fprintf(out, "const int64_t kMinRetryIntervalNs = NS_PER_SEC * 60 * 20; // 20 minutes\n"); fprintf(out, "static std::mutex mLogdRetryMutex;\n"); // Print write methods fprintf(out, "\n"); for (auto signature_to_modules_it = atoms.signatures_to_modules.begin(); signature_to_modules_it != atoms.signatures_to_modules.end(); signature_to_modules_it++) { if (!signature_needed_for_module(signature_to_modules_it->second, moduleName)) { continue; } vector<java_type_t> signature = signature_to_modules_it->first; int argIndex; fprintf(out, "int\n"); fprintf(out, "try_stats_write(int32_t code"); argIndex = 1; for (vector<java_type_t>::const_iterator arg = signature.begin(); arg != signature.end(); arg++) { if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) { for (auto chainField : attributionDecl.fields) { if (chainField.javaType == JAVA_TYPE_STRING) { fprintf(out, ", const std::vector<%s>& %s", cpp_type_name(chainField.javaType), chainField.name.c_str()); } else { fprintf(out, ", const %s* %s, size_t %s_length", cpp_type_name(chainField.javaType), chainField.name.c_str(), chainField.name.c_str()); } } } else if (*arg == JAVA_TYPE_KEY_VALUE_PAIR) { fprintf(out, ", const std::map<int, int32_t>& arg%d_1, " "const std::map<int, int64_t>& arg%d_2, " "const std::map<int, char const*>& arg%d_3, " "const std::map<int, float>& arg%d_4", argIndex, argIndex, argIndex, argIndex); } else { fprintf(out, ", %s arg%d", cpp_type_name(*arg), argIndex); } argIndex++; } fprintf(out, ")\n"); fprintf(out, "{\n"); argIndex = 1; fprintf(out, " if (kStatsdEnabled) {\n"); fprintf(out, " stats_event_list event(kStatsEventTag);\n"); fprintf(out, " event << android::elapsedRealtimeNano();\n\n"); fprintf(out, " event << code;\n\n"); for (vector<java_type_t>::const_iterator arg = signature.begin(); arg != signature.end(); arg++) { if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) { for (const auto &chainField : attributionDecl.fields) { if (chainField.javaType == JAVA_TYPE_STRING) { fprintf(out, " if (%s_length != %s.size()) {\n", attributionDecl.fields.front().name.c_str(), chainField.name.c_str()); fprintf(out, " return -EINVAL;\n"); fprintf(out, " }\n"); } } fprintf(out, "\n event.begin();\n"); fprintf(out, " for (size_t i = 0; i < %s_length; ++i) {\n", attributionDecl.fields.front().name.c_str()); fprintf(out, " event.begin();\n"); for (const auto &chainField : attributionDecl.fields) { if (chainField.javaType == JAVA_TYPE_STRING) { fprintf(out, " if (%s[i] != NULL) {\n", chainField.name.c_str()); fprintf(out, " event << %s[i];\n", chainField.name.c_str()); fprintf(out, " } else {\n"); fprintf(out, " event << \"\";\n"); fprintf(out, " }\n"); } else { fprintf(out, " event << %s[i];\n", chainField.name.c_str()); } } fprintf(out, " event.end();\n"); fprintf(out, " }\n"); fprintf(out, " event.end();\n\n"); } else if (*arg == JAVA_TYPE_KEY_VALUE_PAIR) { fprintf(out, " event.begin();\n\n"); fprintf(out, " for (const auto& it : arg%d_1) {\n", argIndex); fprintf(out, " event.begin();\n"); fprintf(out, " event << it.first;\n"); fprintf(out, " event << it.second;\n"); fprintf(out, " event.end();\n"); fprintf(out, " }\n"); fprintf(out, " for (const auto& it : arg%d_2) {\n", argIndex); fprintf(out, " event.begin();\n"); fprintf(out, " event << it.first;\n"); fprintf(out, " event << it.second;\n"); fprintf(out, " event.end();\n"); fprintf(out, " }\n"); fprintf(out, " for (const auto& it : arg%d_3) {\n", argIndex); fprintf(out, " event.begin();\n"); fprintf(out, " event << it.first;\n"); fprintf(out, " event << it.second;\n"); fprintf(out, " event.end();\n"); fprintf(out, " }\n"); fprintf(out, " for (const auto& it : arg%d_4) {\n", argIndex); fprintf(out, " event.begin();\n"); fprintf(out, " event << it.first;\n"); fprintf(out, " event << it.second;\n"); fprintf(out, " event.end();\n"); fprintf(out, " }\n"); fprintf(out, " event.end();\n\n"); } else if (*arg == JAVA_TYPE_BYTE_ARRAY) { fprintf(out, " event.AppendCharArray(arg%d.arg, " "arg%d.arg_length);\n", argIndex, argIndex); } else { if (*arg == JAVA_TYPE_STRING) { fprintf(out, " if (arg%d == NULL) {\n", argIndex); fprintf(out, " arg%d = \"\";\n", argIndex); fprintf(out, " }\n"); } fprintf(out, " event << arg%d;\n", argIndex); } argIndex++; } fprintf(out, " return event.write(LOG_ID_STATS);\n"); fprintf(out, " } else {\n"); fprintf(out, " return 1;\n"); fprintf(out, " }\n"); fprintf(out, "}\n"); fprintf(out, "\n"); } for (auto signature_to_modules_it = atoms.signatures_to_modules.begin(); signature_to_modules_it != atoms.signatures_to_modules.end(); signature_to_modules_it++) { if (!signature_needed_for_module(signature_to_modules_it->second, moduleName)) { continue; } vector<java_type_t> signature = signature_to_modules_it->first; int argIndex; fprintf(out, "int\n"); fprintf(out, "stats_write(int32_t code"); argIndex = 1; for (vector<java_type_t>::const_iterator arg = signature.begin(); arg != signature.end(); arg++) { if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) { for (auto chainField : attributionDecl.fields) { if (chainField.javaType == JAVA_TYPE_STRING) { fprintf(out, ", const std::vector<%s>& %s", cpp_type_name(chainField.javaType), chainField.name.c_str()); } else { fprintf(out, ", const %s* %s, size_t %s_length", cpp_type_name(chainField.javaType), chainField.name.c_str(), chainField.name.c_str()); } } } else if (*arg == JAVA_TYPE_KEY_VALUE_PAIR) { fprintf(out, ", const std::map<int, int32_t>& arg%d_1, " "const std::map<int, int64_t>& arg%d_2, " "const std::map<int, char const*>& arg%d_3, " "const std::map<int, float>& arg%d_4", argIndex, argIndex, argIndex, argIndex); } else { fprintf(out, ", %s arg%d", cpp_type_name(*arg), argIndex); } argIndex++; } fprintf(out, ")\n"); fprintf(out, "{\n"); fprintf(out, " int ret = 0;\n"); fprintf(out, " for(int retry = 0; retry < 2; ++retry) {\n"); fprintf(out, " ret = try_stats_write(code"); argIndex = 1; for (vector<java_type_t>::const_iterator arg = signature.begin(); arg != signature.end(); arg++) { if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) { for (auto chainField : attributionDecl.fields) { if (chainField.javaType == JAVA_TYPE_STRING) { fprintf(out, ", %s", chainField.name.c_str()); } else { fprintf(out, ", %s, %s_length", chainField.name.c_str(), chainField.name.c_str()); } } } else if (*arg == JAVA_TYPE_KEY_VALUE_PAIR) { fprintf(out, ", arg%d_1, arg%d_2, arg%d_3, arg%d_4", argIndex, argIndex, argIndex, argIndex); } else { fprintf(out, ", arg%d", argIndex); } argIndex++; } fprintf(out, ");\n"); fprintf(out, " if (ret >= 0) { break; }\n"); fprintf(out, " {\n"); fprintf(out, " std::lock_guard<std::mutex> lock(mLogdRetryMutex);\n"); fprintf(out, " if ((android::elapsedRealtimeNano() - lastRetryTimestampNs) <= " "kMinRetryIntervalNs) break;\n"); fprintf(out, " lastRetryTimestampNs = android::elapsedRealtimeNano();\n"); fprintf(out, " }\n"); fprintf(out, " std::this_thread::sleep_for(std::chrono::milliseconds(10));\n"); fprintf(out, " }\n"); fprintf(out, " if (ret < 0) {\n"); fprintf(out, " note_log_drop(ret, code);\n"); fprintf(out, " }\n"); fprintf(out, " return ret;\n"); fprintf(out, "}\n"); fprintf(out, "\n"); } for (auto signature_it = atoms.non_chained_signatures_to_modules.begin(); signature_it != atoms.non_chained_signatures_to_modules.end(); signature_it++) { if (!signature_needed_for_module(signature_it->second, moduleName)) { continue; } vector<java_type_t> signature = signature_it->first; int argIndex; fprintf(out, "int\n"); fprintf(out, "try_stats_write_non_chained(int32_t code"); argIndex = 1; for (vector<java_type_t>::const_iterator arg = signature.begin(); arg != signature.end(); arg++) { fprintf(out, ", %s arg%d", cpp_type_name(*arg), argIndex); argIndex++; } fprintf(out, ")\n"); fprintf(out, "{\n"); argIndex = 1; fprintf(out, " if (kStatsdEnabled) {\n"); fprintf(out, " stats_event_list event(kStatsEventTag);\n"); fprintf(out, " event << android::elapsedRealtimeNano();\n\n"); fprintf(out, " event << code;\n\n"); for (vector<java_type_t>::const_iterator arg = signature.begin(); arg != signature.end(); arg++) { if (argIndex == 1) { fprintf(out, " event.begin();\n\n"); fprintf(out, " event.begin();\n"); } if (*arg == JAVA_TYPE_STRING) { fprintf(out, " if (arg%d == NULL) {\n", argIndex); fprintf(out, " arg%d = \"\";\n", argIndex); fprintf(out, " }\n"); } if (*arg == JAVA_TYPE_BYTE_ARRAY) { fprintf(out, " event.AppendCharArray(arg%d.arg, " "arg%d.arg_length);", argIndex, argIndex); } else { fprintf(out, " event << arg%d;\n", argIndex); } if (argIndex == 2) { fprintf(out, " event.end();\n\n"); fprintf(out, " event.end();\n\n"); } argIndex++; } fprintf(out, " return event.write(LOG_ID_STATS);\n"); fprintf(out, " } else {\n"); fprintf(out, " return 1;\n"); fprintf(out, " }\n"); fprintf(out, "}\n"); fprintf(out, "\n"); } for (auto signature_it = atoms.non_chained_signatures_to_modules.begin(); signature_it != atoms.non_chained_signatures_to_modules.end(); signature_it++) { if (!signature_needed_for_module(signature_it->second, moduleName)) { continue; } vector<java_type_t> signature = signature_it->first; int argIndex; fprintf(out, "int\n"); fprintf(out, "stats_write_non_chained(int32_t code"); argIndex = 1; for (vector<java_type_t>::const_iterator arg = signature.begin(); arg != signature.end(); arg++) { fprintf(out, ", %s arg%d", cpp_type_name(*arg), argIndex); argIndex++; } fprintf(out, ")\n"); fprintf(out, "{\n"); fprintf(out, " int ret = 0;\n"); fprintf(out, " for(int retry = 0; retry < 2; ++retry) {\n"); fprintf(out, " ret = try_stats_write_non_chained(code"); argIndex = 1; for (vector<java_type_t>::const_iterator arg = signature.begin(); arg != signature.end(); arg++) { fprintf(out, ", arg%d", argIndex); argIndex++; } fprintf(out, ");\n"); fprintf(out, " if (ret >= 0) { break; }\n"); fprintf(out, " {\n"); fprintf(out, " std::lock_guard<std::mutex> lock(mLogdRetryMutex);\n"); fprintf(out, " if ((android::elapsedRealtimeNano() - lastRetryTimestampNs) <= " "kMinRetryIntervalNs) break;\n"); fprintf(out, " lastRetryTimestampNs = android::elapsedRealtimeNano();\n"); fprintf(out, " }\n"); fprintf(out, " std::this_thread::sleep_for(std::chrono::milliseconds(10));\n"); fprintf(out, " }\n"); fprintf(out, " if (ret < 0) {\n"); fprintf(out, " note_log_drop(ret, code);\n"); fprintf(out, " }\n"); fprintf(out, " return ret;\n\n"); fprintf(out, "}\n"); fprintf(out, "\n"); } // Print footer fprintf(out, "\n"); write_closing_namespace(out, cppNamespace); return 0; } void build_non_chained_decl_map(const Atoms& atoms, std::map<int, set<AtomDecl>::const_iterator>* decl_map){ for (set<AtomDecl>::const_iterator atom = atoms.non_chained_decls.begin(); atom != atoms.non_chained_decls.end(); atom++) { decl_map->insert(std::make_pair(atom->code, atom)); } } static void write_cpp_usage( FILE* out, const string& method_name, const string& atom_code_name, const AtomDecl& atom, const AtomDecl &attributionDecl) { fprintf(out, " * Usage: %s(StatsLog.%s", method_name.c_str(), atom_code_name.c_str()); for (vector<AtomField>::const_iterator field = atom.fields.begin(); field != atom.fields.end(); field++) { if (field->javaType == JAVA_TYPE_ATTRIBUTION_CHAIN) { for (auto chainField : attributionDecl.fields) { if (chainField.javaType == JAVA_TYPE_STRING) { fprintf(out, ", const std::vector<%s>& %s", cpp_type_name(chainField.javaType), chainField.name.c_str()); } else { fprintf(out, ", const %s* %s, size_t %s_length", cpp_type_name(chainField.javaType), chainField.name.c_str(), chainField.name.c_str()); } } } else if (field->javaType == JAVA_TYPE_KEY_VALUE_PAIR) { fprintf(out, ", const std::map<int, int32_t>& %s_int" ", const std::map<int, int64_t>& %s_long" ", const std::map<int, char const*>& %s_str" ", const std::map<int, float>& %s_float", field->name.c_str(), field->name.c_str(), field->name.c_str(), field->name.c_str()); } else { fprintf(out, ", %s %s", cpp_type_name(field->javaType), field->name.c_str()); } } fprintf(out, ");\n"); } static void write_cpp_method_header( FILE* out, const string& method_name, const map<vector<java_type_t>, set<string>>& signatures_to_modules, const AtomDecl &attributionDecl, const string& moduleName) { for (auto signature_to_modules_it = signatures_to_modules.begin(); signature_to_modules_it != signatures_to_modules.end(); signature_to_modules_it++) { // Skip if this signature is not needed for the module. if (!signature_needed_for_module(signature_to_modules_it->second, moduleName)) { continue; } vector<java_type_t> signature = signature_to_modules_it->first; fprintf(out, "int %s(int32_t code", method_name.c_str()); int argIndex = 1; for (vector<java_type_t>::const_iterator arg = signature.begin(); arg != signature.end(); arg++) { if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) { for (auto chainField : attributionDecl.fields) { if (chainField.javaType == JAVA_TYPE_STRING) { fprintf(out, ", const std::vector<%s>& %s", cpp_type_name(chainField.javaType), chainField.name.c_str()); } else { fprintf(out, ", const %s* %s, size_t %s_length", cpp_type_name(chainField.javaType), chainField.name.c_str(), chainField.name.c_str()); } } } else if (*arg == JAVA_TYPE_KEY_VALUE_PAIR) { fprintf(out, ", const std::map<int, int32_t>& arg%d_1, " "const std::map<int, int64_t>& arg%d_2, " "const std::map<int, char const*>& arg%d_3, " "const std::map<int, float>& arg%d_4", argIndex, argIndex, argIndex, argIndex); } else { fprintf(out, ", %s arg%d", cpp_type_name(*arg), argIndex); } argIndex++; } fprintf(out, ");\n"); } } static int write_stats_log_header(FILE* out, const Atoms& atoms, const AtomDecl &attributionDecl, const string& moduleName, const string& cppNamespace) { // Print prelude fprintf(out, "// This file is autogenerated\n"); fprintf(out, "\n"); fprintf(out, "#pragma once\n"); fprintf(out, "\n"); fprintf(out, "#include <stdint.h>\n"); fprintf(out, "#include <vector>\n"); fprintf(out, "#include <map>\n"); fprintf(out, "#include <set>\n"); fprintf(out, "\n"); write_namespace(out, cppNamespace); fprintf(out, "\n"); fprintf(out, "/*\n"); fprintf(out, " * API For logging statistics events.\n"); fprintf(out, " */\n"); fprintf(out, "\n"); fprintf(out, "/**\n"); fprintf(out, " * Constants for atom codes.\n"); fprintf(out, " */\n"); fprintf(out, "enum {\n"); std::map<int, set<AtomDecl>::const_iterator> atom_code_to_non_chained_decl_map; build_non_chained_decl_map(atoms, &atom_code_to_non_chained_decl_map); size_t i = 0; // Print atom constants for (set<AtomDecl>::const_iterator atom = atoms.decls.begin(); atom != atoms.decls.end(); atom++) { // Skip if the atom is not needed for the module. if (!atom_needed_for_module(*atom, moduleName)) { continue; } string constant = make_constant_name(atom->name); fprintf(out, "\n"); fprintf(out, " /**\n"); fprintf(out, " * %s %s\n", atom->message.c_str(), atom->name.c_str()); write_cpp_usage(out, "stats_write", constant, *atom, attributionDecl); auto non_chained_decl = atom_code_to_non_chained_decl_map.find(atom->code); if (non_chained_decl != atom_code_to_non_chained_decl_map.end()) { write_cpp_usage(out, "stats_write_non_chained", constant, *non_chained_decl->second, attributionDecl); } fprintf(out, " */\n"); char const* const comma = (i == atoms.decls.size() - 1) ? "" : ","; fprintf(out, " %s = %d%s\n", constant.c_str(), atom->code, comma); if (atom->code < PULL_ATOM_START_ID && atom->code > maxPushedAtomId) { maxPushedAtomId = atom->code; } i++; } fprintf(out, "\n"); fprintf(out, "};\n"); fprintf(out, "\n"); // Print constants for the enum values. fprintf(out, "//\n"); fprintf(out, "// Constants for enum values\n"); fprintf(out, "//\n\n"); for (set<AtomDecl>::const_iterator atom = atoms.decls.begin(); atom != atoms.decls.end(); atom++) { // Skip if the atom is not needed for the module. if (!atom_needed_for_module(*atom, moduleName)) { continue; } for (vector<AtomField>::const_iterator field = atom->fields.begin(); field != atom->fields.end(); field++) { if (field->javaType == JAVA_TYPE_ENUM) { fprintf(out, "// Values for %s.%s\n", atom->message.c_str(), field->name.c_str()); for (map<int, string>::const_iterator value = field->enumValues.begin(); value != field->enumValues.end(); value++) { fprintf(out, "const int32_t %s__%s__%s = %d;\n", make_constant_name(atom->message).c_str(), make_constant_name(field->name).c_str(), make_constant_name(value->second).c_str(), value->first); } fprintf(out, "\n"); } } } fprintf(out, "struct BytesField {\n"); fprintf(out, " BytesField(char const* array, size_t len) : arg(array), " "arg_length(len) {}\n"); fprintf(out, " char const* arg;\n"); fprintf(out, " size_t arg_length;\n"); fprintf(out, "};\n"); fprintf(out, "\n"); // This metadata is only used by statsd, which uses the default libstatslog. if (moduleName == DEFAULT_MODULE_NAME) { fprintf(out, "struct StateAtomFieldOptions {\n"); fprintf(out, " std::vector<int> primaryFields;\n"); fprintf(out, " int exclusiveField;\n"); fprintf(out, "};\n"); fprintf(out, "\n"); fprintf(out, "struct AtomsInfo {\n"); fprintf(out, " const static std::set<int> " "kTruncatingTimestampAtomBlackList;\n"); fprintf(out, " const static std::map<int, int> kAtomsWithUidField;\n"); fprintf(out, " const static std::set<int> kAtomsWithAttributionChain;\n"); fprintf(out, " const static std::map<int, StateAtomFieldOptions> " "kStateAtomsFieldOptions;\n"); fprintf(out, " const static std::map<int, std::vector<int>> " "kBytesFieldAtoms;"); fprintf(out, " const static std::set<int> kWhitelistedAtoms;\n"); fprintf(out, "};\n"); fprintf(out, "const static int kMaxPushedAtomId = %d;\n\n", maxPushedAtomId); } // Print write methods fprintf(out, "//\n"); fprintf(out, "// Write methods\n"); fprintf(out, "//\n"); write_cpp_method_header(out, "stats_write", atoms.signatures_to_modules, attributionDecl, moduleName); fprintf(out, "//\n"); fprintf(out, "// Write flattened methods\n"); fprintf(out, "//\n"); write_cpp_method_header(out, "stats_write_non_chained", atoms.non_chained_signatures_to_modules, attributionDecl, moduleName); fprintf(out, "\n"); write_closing_namespace(out, cppNamespace); return 0; } static void write_java_usage(FILE* out, const string& method_name, const string& atom_code_name, const AtomDecl& atom) { fprintf(out, " * Usage: StatsLog.%s(StatsLog.%s", method_name.c_str(), atom_code_name.c_str()); for (vector<AtomField>::const_iterator field = atom.fields.begin(); field != atom.fields.end(); field++) { if (field->javaType == JAVA_TYPE_ATTRIBUTION_CHAIN) { fprintf(out, ", android.os.WorkSource workSource"); } else if (field->javaType == JAVA_TYPE_KEY_VALUE_PAIR) { fprintf(out, ", SparseArray<Object> value_map"); } else if (field->javaType == JAVA_TYPE_BYTE_ARRAY) { fprintf(out, ", byte[] %s", field->name.c_str()); } else { fprintf(out, ", %s %s", java_type_name(field->javaType), field->name.c_str()); } } fprintf(out, ");<br>\n"); } static void write_java_method( FILE* out, const string& method_name, const map<vector<java_type_t>, set<string>>& signatures_to_modules, const AtomDecl &attributionDecl) { for (auto signature_to_modules_it = signatures_to_modules.begin(); signature_to_modules_it != signatures_to_modules.end(); signature_to_modules_it++) { vector<java_type_t> signature = signature_to_modules_it->first; fprintf(out, " /** @hide */\n"); fprintf(out, " public static native int %s(int code", method_name.c_str()); int argIndex = 1; for (vector<java_type_t>::const_iterator arg = signature.begin(); arg != signature.end(); arg++) { if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) { for (auto chainField : attributionDecl.fields) { fprintf(out, ", %s[] %s", java_type_name(chainField.javaType), chainField.name.c_str()); } } else if (*arg == JAVA_TYPE_KEY_VALUE_PAIR) { fprintf(out, ", SparseArray<Object> value_map"); } else { fprintf(out, ", %s arg%d", java_type_name(*arg), argIndex); } argIndex++; } fprintf(out, ");\n"); } } static void write_java_helpers_for_module( FILE * out, const AtomDecl &attributionDecl, const int requiredHelpers) { fprintf(out, " private static void copyInt(byte[] buff, int pos, int val) {\n"); fprintf(out, " buff[pos] = (byte) (val);\n"); fprintf(out, " buff[pos + 1] = (byte) (val >> 8);\n"); fprintf(out, " buff[pos + 2] = (byte) (val >> 16);\n"); fprintf(out, " buff[pos + 3] = (byte) (val >> 24);\n"); fprintf(out, " return;\n"); fprintf(out, " }\n"); fprintf(out, "\n"); fprintf(out, " private static void copyLong(byte[] buff, int pos, long val) {\n"); fprintf(out, " buff[pos] = (byte) (val);\n"); fprintf(out, " buff[pos + 1] = (byte) (val >> 8);\n"); fprintf(out, " buff[pos + 2] = (byte) (val >> 16);\n"); fprintf(out, " buff[pos + 3] = (byte) (val >> 24);\n"); fprintf(out, " buff[pos + 4] = (byte) (val >> 32);\n"); fprintf(out, " buff[pos + 5] = (byte) (val >> 40);\n"); fprintf(out, " buff[pos + 6] = (byte) (val >> 48);\n"); fprintf(out, " buff[pos + 7] = (byte) (val >> 56);\n"); fprintf(out, " return;\n"); fprintf(out, " }\n"); fprintf(out, "\n"); if (requiredHelpers & JAVA_MODULE_REQUIRES_FLOAT) { fprintf(out, " private static void copyFloat(byte[] buff, int pos, float val) {\n"); fprintf(out, " copyInt(buff, pos, Float.floatToIntBits(val));\n"); fprintf(out, " return;\n"); fprintf(out, " }\n"); fprintf(out, "\n"); } if (requiredHelpers & JAVA_MODULE_REQUIRES_ATTRIBUTION) { fprintf(out, " private static void writeAttributionChain(byte[] buff, int pos"); for (auto chainField : attributionDecl.fields) { fprintf(out, ", %s[] %s", java_type_name(chainField.javaType), chainField.name.c_str()); } fprintf(out, ") {\n"); const char* uidName = attributionDecl.fields.front().name.c_str(); const char* tagName = attributionDecl.fields.back().name.c_str(); // Write the first list begin. fprintf(out, " buff[pos] = LIST_TYPE;\n"); fprintf(out, " buff[pos + 1] = (byte) (%s.length);\n", tagName); fprintf(out, " pos += LIST_TYPE_OVERHEAD;\n"); // Iterate through the attribution chain and write the nodes. fprintf(out, " for (int i = 0; i < %s.length; i++) {\n", tagName); // Write the list begin. fprintf(out, " buff[pos] = LIST_TYPE;\n"); fprintf(out, " buff[pos + 1] = %lu;\n", attributionDecl.fields.size()); fprintf(out, " pos += LIST_TYPE_OVERHEAD;\n"); // Write the uid. fprintf(out, " buff[pos] = INT_TYPE;\n"); fprintf(out, " copyInt(buff, pos + 1, %s[i]);\n", uidName); fprintf(out, " pos += INT_TYPE_SIZE;\n"); // Write the tag. fprintf(out, " String %sStr = (%s[i] == null) ? \"\" : %s[i];\n", tagName, tagName, tagName); fprintf(out, " byte[] %sByte = %sStr.getBytes(UTF_8);\n", tagName, tagName); fprintf(out, " buff[pos] = STRING_TYPE;\n"); fprintf(out, " copyInt(buff, pos + 1, %sByte.length);\n", tagName); fprintf(out, " System.arraycopy(" "%sByte, 0, buff, pos + STRING_TYPE_OVERHEAD, %sByte.length);\n", tagName, tagName); fprintf(out, " pos += STRING_TYPE_OVERHEAD + %sByte.length;\n", tagName); fprintf(out, " }\n"); fprintf(out, " }\n"); fprintf(out, "\n"); } } static int write_java_non_chained_method_for_module( FILE* out, const map<vector<java_type_t>, set<string>>& signatures_to_modules, const string& moduleName ) { for (auto signature_to_modules_it = signatures_to_modules.begin(); signature_to_modules_it != signatures_to_modules.end(); signature_to_modules_it++) { // Skip if this signature is not needed for the module. if (!signature_needed_for_module(signature_to_modules_it->second, moduleName)) { continue; } // Print method signature. vector<java_type_t> signature = signature_to_modules_it->first; fprintf(out, " public static void write_non_chained(int code"); int argIndex = 1; for (vector<java_type_t>::const_iterator arg = signature.begin(); arg != signature.end(); arg++) { if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) { // Non chained signatures should not have attribution chains. return 1; } else if (*arg == JAVA_TYPE_KEY_VALUE_PAIR) { // Module logging does not yet support key value pair. return 1; } else { fprintf(out, ", %s arg%d", java_type_name(*arg), argIndex); } argIndex++; } fprintf(out, ") {\n"); fprintf(out, " write(code"); argIndex = 1; for (vector<java_type_t>::const_iterator arg = signature.begin(); arg != signature.end(); arg++) { // First two args are uid and tag of attribution chain. if (argIndex == 1) { fprintf(out, ", new int[] {arg%d}", argIndex); } else if (argIndex == 2) { fprintf(out, ", new java.lang.String[] {arg%d}", argIndex); } else { fprintf(out, ", arg%d", argIndex); } argIndex++; } fprintf(out, ");\n"); fprintf(out, " }\n"); fprintf(out, "\n"); } return 0; } static int write_java_method_for_module( FILE* out, const map<vector<java_type_t>, set<string>>& signatures_to_modules, const AtomDecl &attributionDecl, const string& moduleName, int* requiredHelpers ) { for (auto signature_to_modules_it = signatures_to_modules.begin(); signature_to_modules_it != signatures_to_modules.end(); signature_to_modules_it++) { // Skip if this signature is not needed for the module. if (!signature_needed_for_module(signature_to_modules_it->second, moduleName)) { continue; } // Print method signature. vector<java_type_t> signature = signature_to_modules_it->first; fprintf(out, " public static void write(int code"); int argIndex = 1; for (vector<java_type_t>::const_iterator arg = signature.begin(); arg != signature.end(); arg++) { if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) { for (auto chainField : attributionDecl.fields) { fprintf(out, ", %s[] %s", java_type_name(chainField.javaType), chainField.name.c_str()); } } else if (*arg == JAVA_TYPE_KEY_VALUE_PAIR) { // Module logging does not yet support key value pair. return 1; } else { fprintf(out, ", %s arg%d", java_type_name(*arg), argIndex); } argIndex++; } fprintf(out, ") {\n"); // Calculate the size of the buffer. fprintf(out, " // Initial overhead of the list, timestamp, and atom tag.\n"); fprintf(out, " int needed = LIST_TYPE_OVERHEAD + LONG_TYPE_SIZE + INT_TYPE_SIZE;\n"); argIndex = 1; for (vector<java_type_t>::const_iterator arg = signature.begin(); arg != signature.end(); arg++) { switch (*arg) { case JAVA_TYPE_BOOLEAN: case JAVA_TYPE_INT: case JAVA_TYPE_FLOAT: case JAVA_TYPE_ENUM: fprintf(out, " needed += INT_TYPE_SIZE;\n"); break; case JAVA_TYPE_LONG: // Longs take 9 bytes, 1 for the type and 8 for the value. fprintf(out, " needed += LONG_TYPE_SIZE;\n"); break; case JAVA_TYPE_STRING: // Strings take 5 metadata bytes + length of byte encoded string. fprintf(out, " if (arg%d == null) {\n", argIndex); fprintf(out, " arg%d = \"\";\n", argIndex); fprintf(out, " }\n"); fprintf(out, " byte[] arg%dBytes= arg%d.getBytes(UTF_8);\n", argIndex, argIndex); fprintf(out, " needed += STRING_TYPE_OVERHEAD + arg%dBytes.length;\n", argIndex); break; case JAVA_TYPE_BYTE_ARRAY: // Byte arrays take 5 metadata bytes + length of byte array. fprintf(out, " if (arg%d == null) {\n", argIndex); fprintf(out, " arg%d = new byte[0];\n", argIndex); fprintf(out, " }\n"); fprintf(out, " needed += STRING_TYPE_OVERHEAD + arg%d.length;\n", argIndex); break; case JAVA_TYPE_ATTRIBUTION_CHAIN: { const char* uidName = attributionDecl.fields.front().name.c_str(); const char* tagName = attributionDecl.fields.back().name.c_str(); // Null checks on the params. fprintf(out, " if (%s == null) {\n", uidName); fprintf(out, " %s = new %s[0];\n", uidName, java_type_name(attributionDecl.fields.front().javaType)); fprintf(out, " }\n"); fprintf(out, " if (%s == null) {\n", tagName); fprintf(out, " %s = new %s[0];\n", tagName, java_type_name(attributionDecl.fields.back().javaType)); fprintf(out, " }\n"); // First check that the lengths of the uid and tag arrays are the same. fprintf(out, " if (%s.length != %s.length) {\n", uidName, tagName); fprintf(out, " return;\n"); fprintf(out, " }\n"); fprintf(out, " int attrSize = LIST_TYPE_OVERHEAD;\n"); fprintf(out, " for (int i = 0; i < %s.length; i++) {\n", tagName); fprintf(out, " String str%d = (%s[i] == null) ? \"\" : %s[i];\n", argIndex, tagName, tagName); fprintf(out, " int str%dlen = str%d.getBytes(UTF_8).length;\n", argIndex, argIndex); fprintf(out, " attrSize += " "LIST_TYPE_OVERHEAD + INT_TYPE_SIZE + STRING_TYPE_OVERHEAD + str%dlen;\n", argIndex); fprintf(out, " }\n"); fprintf(out, " needed += attrSize;\n"); break; } default: // Unsupported types: OBJECT, DOUBLE, KEY_VALUE_PAIR. return 1; } argIndex++; } // Now we have the size that is needed. Check for overflow and return if needed. fprintf(out, " if (needed > MAX_EVENT_PAYLOAD) {\n"); fprintf(out, " return;\n"); fprintf(out, " }\n"); // Create new buffer, and associated data types. fprintf(out, " byte[] buff = new byte[needed];\n"); fprintf(out, " int pos = 0;\n"); // Initialize the buffer with list data type. fprintf(out, " buff[pos] = LIST_TYPE;\n"); fprintf(out, " buff[pos + 1] = %zu;\n", signature.size() + 2); fprintf(out, " pos += LIST_TYPE_OVERHEAD;\n"); // Write timestamp. fprintf(out, " long elapsedRealtime = SystemClock.elapsedRealtimeNanos();\n"); fprintf(out, " buff[pos] = LONG_TYPE;\n"); fprintf(out, " copyLong(buff, pos + 1, elapsedRealtime);\n"); fprintf(out, " pos += LONG_TYPE_SIZE;\n"); // Write atom code. fprintf(out, " buff[pos] = INT_TYPE;\n"); fprintf(out, " copyInt(buff, pos + 1, code);\n"); fprintf(out, " pos += INT_TYPE_SIZE;\n"); // Write the args. argIndex = 1; for (vector<java_type_t>::const_iterator arg = signature.begin(); arg != signature.end(); arg++) { switch (*arg) { case JAVA_TYPE_BOOLEAN: fprintf(out, " buff[pos] = INT_TYPE;\n"); fprintf(out, " copyInt(buff, pos + 1, arg%d? 1 : 0);\n", argIndex); fprintf(out, " pos += INT_TYPE_SIZE;\n"); break; case JAVA_TYPE_INT: case JAVA_TYPE_ENUM: fprintf(out, " buff[pos] = INT_TYPE;\n"); fprintf(out, " copyInt(buff, pos + 1, arg%d);\n", argIndex); fprintf(out, " pos += INT_TYPE_SIZE;\n"); break; case JAVA_TYPE_FLOAT: *requiredHelpers |= JAVA_MODULE_REQUIRES_FLOAT; fprintf(out, " buff[pos] = FLOAT_TYPE;\n"); fprintf(out, " copyFloat(buff, pos + 1, arg%d);\n", argIndex); fprintf(out, " pos += FLOAT_TYPE_SIZE;\n"); break; case JAVA_TYPE_LONG: fprintf(out, " buff[pos] = LONG_TYPE;\n"); fprintf(out, " copyLong(buff, pos + 1, arg%d);\n", argIndex); fprintf(out, " pos += LONG_TYPE_SIZE;\n"); break; case JAVA_TYPE_STRING: fprintf(out, " buff[pos] = STRING_TYPE;\n"); fprintf(out, " copyInt(buff, pos + 1, arg%dBytes.length);\n", argIndex); fprintf(out, " System.arraycopy(" "arg%dBytes, 0, buff, pos + STRING_TYPE_OVERHEAD, arg%dBytes.length);\n", argIndex, argIndex); fprintf(out, " pos += STRING_TYPE_OVERHEAD + arg%dBytes.length;\n", argIndex); break; case JAVA_TYPE_BYTE_ARRAY: fprintf(out, " buff[pos] = STRING_TYPE;\n"); fprintf(out, " copyInt(buff, pos + 1, arg%d.length);\n", argIndex); fprintf(out, " System.arraycopy(" "arg%d, 0, buff, pos + STRING_TYPE_OVERHEAD, arg%d.length);\n", argIndex, argIndex); fprintf(out, " pos += STRING_TYPE_OVERHEAD + arg%d.length;\n", argIndex); break; case JAVA_TYPE_ATTRIBUTION_CHAIN: { *requiredHelpers |= JAVA_MODULE_REQUIRES_ATTRIBUTION; const char* uidName = attributionDecl.fields.front().name.c_str(); const char* tagName = attributionDecl.fields.back().name.c_str(); fprintf(out, " writeAttributionChain(buff, pos, %s, %s);\n", uidName, tagName); fprintf(out, " pos += attrSize;\n"); break; } default: // Unsupported types: OBJECT, DOUBLE, KEY_VALUE_PAIR. return 1; } argIndex++; } fprintf(out, " StatsLog.writeRaw(buff, pos);\n"); fprintf(out, " }\n"); fprintf(out, "\n"); } return 0; } static void write_java_work_source_method(FILE* out, const map<vector<java_type_t>, set<string>>& signatures_to_modules, const string& moduleName) { fprintf(out, "\n // WorkSource methods.\n"); for (auto signature_to_modules_it = signatures_to_modules.begin(); signature_to_modules_it != signatures_to_modules.end(); signature_to_modules_it++) { // Skip if this signature is not needed for the module. if (!signature_needed_for_module(signature_to_modules_it->second, moduleName)) { continue; } vector<java_type_t> signature = signature_to_modules_it->first; // Determine if there is Attribution in this signature. int attributionArg = -1; int argIndexMax = 0; for (vector<java_type_t>::const_iterator arg = signature.begin(); arg != signature.end(); arg++) { argIndexMax++; if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) { if (attributionArg > -1) { fprintf(stderr, "An atom contains multiple AttributionNode fields.\n"); fprintf(stderr, "This is not supported. Aborting WorkSource method writing.\n"); fprintf(out, "\n// Invalid for WorkSource: more than one attribution chain.\n"); return; } attributionArg = argIndexMax; } } if (attributionArg < 0) { continue; } // Method header (signature) if (moduleName == DEFAULT_MODULE_NAME) { fprintf(out, " /** @hide */\n"); } fprintf(out, " public static void write(int code"); int argIndex = 1; for (vector<java_type_t>::const_iterator arg = signature.begin(); arg != signature.end(); arg++) { if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) { fprintf(out, ", WorkSource ws"); } else { fprintf(out, ", %s arg%d", java_type_name(*arg), argIndex); } argIndex++; } fprintf(out, ") {\n"); // write_non_chained() component. TODO: Remove when flat uids are no longer needed. fprintf(out, " for (int i = 0; i < ws.size(); ++i) {\n"); fprintf(out, " write_non_chained(code"); for (int argIndex = 1; argIndex <= argIndexMax; argIndex++) { if (argIndex == attributionArg) { fprintf(out, ", ws.get(i), ws.getName(i)"); } else { fprintf(out, ", arg%d", argIndex); } } fprintf(out, ");\n"); fprintf(out, " }\n"); // close for-loop // write() component. fprintf(out, " ArrayList<WorkSource.WorkChain> workChains = ws.getWorkChains();\n"); fprintf(out, " if (workChains != null) {\n"); fprintf(out, " for (WorkSource.WorkChain wc : workChains) {\n"); fprintf(out, " write(code"); for (int argIndex = 1; argIndex <= argIndexMax; argIndex++) { if (argIndex == attributionArg) { fprintf(out, ", wc.getUids(), wc.getTags()"); } else { fprintf(out, ", arg%d", argIndex); } } fprintf(out, ");\n"); fprintf(out, " }\n"); // close for-loop fprintf(out, " }\n"); // close if fprintf(out, " }\n"); // close method } } static void write_java_atom_codes(FILE* out, const Atoms& atoms, const string& moduleName) { fprintf(out, " // Constants for atom codes.\n"); std::map<int, set<AtomDecl>::const_iterator> atom_code_to_non_chained_decl_map; build_non_chained_decl_map(atoms, &atom_code_to_non_chained_decl_map); // Print constants for the atom codes. for (set<AtomDecl>::const_iterator atom = atoms.decls.begin(); atom != atoms.decls.end(); atom++) { // Skip if the atom is not needed for the module. if (!atom_needed_for_module(*atom, moduleName)) { continue; } string constant = make_constant_name(atom->name); fprintf(out, "\n"); fprintf(out, " /**\n"); fprintf(out, " * %s %s<br>\n", atom->message.c_str(), atom->name.c_str()); write_java_usage(out, "write", constant, *atom); auto non_chained_decl = atom_code_to_non_chained_decl_map.find(atom->code); if (non_chained_decl != atom_code_to_non_chained_decl_map.end()) { write_java_usage(out, "write_non_chained", constant, *non_chained_decl->second); } if (moduleName == DEFAULT_MODULE_NAME) { fprintf(out, " * @hide\n"); } fprintf(out, " */\n"); fprintf(out, " public static final int %s = %d;\n", constant.c_str(), atom->code); } fprintf(out, "\n"); } static void write_java_enum_values(FILE* out, const Atoms& atoms, const string& moduleName) { fprintf(out, " // Constants for enum values.\n\n"); for (set<AtomDecl>::const_iterator atom = atoms.decls.begin(); atom != atoms.decls.end(); atom++) { // Skip if the atom is not needed for the module. if (!atom_needed_for_module(*atom, moduleName)) { continue; } for (vector<AtomField>::const_iterator field = atom->fields.begin(); field != atom->fields.end(); field++) { if (field->javaType == JAVA_TYPE_ENUM) { fprintf(out, " // Values for %s.%s\n", atom->message.c_str(), field->name.c_str()); for (map<int, string>::const_iterator value = field->enumValues.begin(); value != field->enumValues.end(); value++) { if (moduleName == DEFAULT_MODULE_NAME) { fprintf(out, " /** @hide */\n"); } fprintf(out, " public static final int %s__%s__%s = %d;\n", make_constant_name(atom->message).c_str(), make_constant_name(field->name).c_str(), make_constant_name(value->second).c_str(), value->first); } fprintf(out, "\n"); } } } } static int write_stats_log_java(FILE* out, const Atoms& atoms, const AtomDecl &attributionDecl) { // Print prelude fprintf(out, "// This file is autogenerated\n"); fprintf(out, "\n"); fprintf(out, "package android.util;\n"); fprintf(out, "\n"); fprintf(out, "import android.os.WorkSource;\n"); fprintf(out, "import android.util.SparseArray;\n"); fprintf(out, "import java.util.ArrayList;\n"); fprintf(out, "\n"); fprintf(out, "\n"); fprintf(out, "/**\n"); fprintf(out, " * API For logging statistics events.\n"); fprintf(out, " * @hide\n"); fprintf(out, " */\n"); fprintf(out, "public class StatsLogInternal {\n"); write_java_atom_codes(out, atoms, DEFAULT_MODULE_NAME); write_java_enum_values(out, atoms, DEFAULT_MODULE_NAME); // Print write methods fprintf(out, " // Write methods\n"); write_java_method(out, "write", atoms.signatures_to_modules, attributionDecl); write_java_method(out, "write_non_chained", atoms.non_chained_signatures_to_modules, attributionDecl); write_java_work_source_method(out, atoms.signatures_to_modules, DEFAULT_MODULE_NAME); fprintf(out, "}\n"); return 0; } // TODO: Merge this with write_stats_log_java so that we can get rid of StatsLogInternal JNI. static int write_stats_log_java_for_module(FILE* out, const Atoms& atoms, const AtomDecl &attributionDecl, const string& moduleName, const string& javaClass, const string& javaPackage) { // Print prelude fprintf(out, "// This file is autogenerated\n"); fprintf(out, "\n"); fprintf(out, "package %s;\n", javaPackage.c_str()); fprintf(out, "\n"); fprintf(out, "import static java.nio.charset.StandardCharsets.UTF_8;\n"); fprintf(out, "\n"); fprintf(out, "import android.util.StatsLog;\n"); fprintf(out, "import android.os.SystemClock;\n"); fprintf(out, "\n"); fprintf(out, "import java.util.ArrayList;\n"); fprintf(out, "\n"); fprintf(out, "\n"); fprintf(out, "/**\n"); fprintf(out, " * Utility class for logging statistics events.\n"); fprintf(out, " */\n"); fprintf(out, "public class %s {\n", javaClass.c_str()); // TODO: ideally these match with the native values (and automatically change if they change). fprintf(out, " private static final int LOGGER_ENTRY_MAX_PAYLOAD = 4068;\n"); fprintf(out, " private static final int MAX_EVENT_PAYLOAD = LOGGER_ENTRY_MAX_PAYLOAD - 4;\n"); // Value types. Must match with EventLog.java and log.h. fprintf(out, " private static final byte INT_TYPE = 0;\n"); fprintf(out, " private static final byte LONG_TYPE = 1;\n"); fprintf(out, " private static final byte STRING_TYPE = 2;\n"); fprintf(out, " private static final byte LIST_TYPE = 3;\n"); fprintf(out, " private static final byte FLOAT_TYPE = 4;\n"); // Size of each value type. // Booleans, ints, floats, and enums take 5 bytes, 1 for the type and 4 for the value. fprintf(out, " private static final int INT_TYPE_SIZE = 5;\n"); fprintf(out, " private static final int FLOAT_TYPE_SIZE = 5;\n"); // Longs take 9 bytes, 1 for the type and 8 for the value. fprintf(out, " private static final int LONG_TYPE_SIZE = 9;\n"); // Strings take 5 metadata bytes: 1 byte is for the type, 4 are for the length. fprintf(out, " private static final int STRING_TYPE_OVERHEAD = 5;\n"); fprintf(out, " private static final int LIST_TYPE_OVERHEAD = 2;\n"); write_java_atom_codes(out, atoms, moduleName); write_java_enum_values(out, atoms, moduleName); int errors = 0; int requiredHelpers = 0; // Print write methods fprintf(out, " // Write methods\n"); errors += write_java_method_for_module(out, atoms.signatures_to_modules, attributionDecl, moduleName, &requiredHelpers); errors += write_java_non_chained_method_for_module(out, atoms.non_chained_signatures_to_modules, moduleName); fprintf(out, " // Helper methods for copying primitives\n"); write_java_helpers_for_module(out, attributionDecl, requiredHelpers); fprintf(out, "}\n"); return errors; } static const char* jni_type_name(java_type_t type) { switch (type) { case JAVA_TYPE_BOOLEAN: return "jboolean"; case JAVA_TYPE_INT: case JAVA_TYPE_ENUM: return "jint"; case JAVA_TYPE_LONG: return "jlong"; case JAVA_TYPE_FLOAT: return "jfloat"; case JAVA_TYPE_DOUBLE: return "jdouble"; case JAVA_TYPE_STRING: return "jstring"; case JAVA_TYPE_BYTE_ARRAY: return "jbyteArray"; default: return "UNKNOWN"; } } static const char* jni_array_type_name(java_type_t type) { switch (type) { case JAVA_TYPE_INT: return "jintArray"; case JAVA_TYPE_FLOAT: return "jfloatArray"; case JAVA_TYPE_STRING: return "jobjectArray"; default: return "UNKNOWN"; } } static string jni_function_name(const string& method_name, const vector<java_type_t>& signature) { string result("StatsLog_" + method_name); for (vector<java_type_t>::const_iterator arg = signature.begin(); arg != signature.end(); arg++) { switch (*arg) { case JAVA_TYPE_BOOLEAN: result += "_boolean"; break; case JAVA_TYPE_INT: case JAVA_TYPE_ENUM: result += "_int"; break; case JAVA_TYPE_LONG: result += "_long"; break; case JAVA_TYPE_FLOAT: result += "_float"; break; case JAVA_TYPE_DOUBLE: result += "_double"; break; case JAVA_TYPE_STRING: result += "_String"; break; case JAVA_TYPE_ATTRIBUTION_CHAIN: result += "_AttributionChain"; break; case JAVA_TYPE_KEY_VALUE_PAIR: result += "_KeyValuePairs"; break; case JAVA_TYPE_BYTE_ARRAY: result += "_bytes"; break; default: result += "_UNKNOWN"; break; } } return result; } static const char* java_type_signature(java_type_t type) { switch (type) { case JAVA_TYPE_BOOLEAN: return "Z"; case JAVA_TYPE_INT: case JAVA_TYPE_ENUM: return "I"; case JAVA_TYPE_LONG: return "J"; case JAVA_TYPE_FLOAT: return "F"; case JAVA_TYPE_DOUBLE: return "D"; case JAVA_TYPE_STRING: return "Ljava/lang/String;"; case JAVA_TYPE_BYTE_ARRAY: return "[B"; default: return "UNKNOWN"; } } static string jni_function_signature(const vector<java_type_t>& signature, const AtomDecl &attributionDecl) { string result("(I"); for (vector<java_type_t>::const_iterator arg = signature.begin(); arg != signature.end(); arg++) { if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) { for (auto chainField : attributionDecl.fields) { result += "["; result += java_type_signature(chainField.javaType); } } else if (*arg == JAVA_TYPE_KEY_VALUE_PAIR) { result += "Landroid/util/SparseArray;"; } else { result += java_type_signature(*arg); } } result += ")I"; return result; } static void write_key_value_map_jni(FILE* out) { fprintf(out, " std::map<int, int32_t> int32_t_map;\n"); fprintf(out, " std::map<int, int64_t> int64_t_map;\n"); fprintf(out, " std::map<int, float> float_map;\n"); fprintf(out, " std::map<int, char const*> string_map;\n\n"); fprintf(out, " jclass jmap_class = env->FindClass(\"android/util/SparseArray\");\n"); fprintf(out, " jmethodID jget_size_method = env->GetMethodID(jmap_class, \"size\", \"()I\");\n"); fprintf(out, " jmethodID jget_key_method = env->GetMethodID(jmap_class, \"keyAt\", \"(I)I\");\n"); fprintf(out, " jmethodID jget_value_method = env->GetMethodID(jmap_class, \"valueAt\", \"(I)Ljava/lang/Object;\");\n\n"); fprintf(out, " std::vector<std::unique_ptr<ScopedUtfChars>> scoped_ufs;\n\n"); fprintf(out, " jclass jint_class = env->FindClass(\"java/lang/Integer\");\n"); fprintf(out, " jclass jlong_class = env->FindClass(\"java/lang/Long\");\n"); fprintf(out, " jclass jfloat_class = env->FindClass(\"java/lang/Float\");\n"); fprintf(out, " jclass jstring_class = env->FindClass(\"java/lang/String\");\n"); fprintf(out, " jmethodID jget_int_method = env->GetMethodID(jint_class, \"intValue\", \"()I\");\n"); fprintf(out, " jmethodID jget_long_method = env->GetMethodID(jlong_class, \"longValue\", \"()J\");\n"); fprintf(out, " jmethodID jget_float_method = env->GetMethodID(jfloat_class, \"floatValue\", \"()F\");\n\n"); fprintf(out, " jint jsize = env->CallIntMethod(value_map, jget_size_method);\n"); fprintf(out, " for(int i = 0; i < jsize; i++) {\n"); fprintf(out, " jint key = env->CallIntMethod(value_map, jget_key_method, i);\n"); fprintf(out, " jobject jvalue_obj = env->CallObjectMethod(value_map, jget_value_method, i);\n"); fprintf(out, " if (jvalue_obj == NULL) { continue; }\n"); fprintf(out, " if (env->IsInstanceOf(jvalue_obj, jint_class)) {\n"); fprintf(out, " int32_t_map[key] = env->CallIntMethod(jvalue_obj, jget_int_method);\n"); fprintf(out, " } else if (env->IsInstanceOf(jvalue_obj, jlong_class)) {\n"); fprintf(out, " int64_t_map[key] = env->CallLongMethod(jvalue_obj, jget_long_method);\n"); fprintf(out, " } else if (env->IsInstanceOf(jvalue_obj, jfloat_class)) {\n"); fprintf(out, " float_map[key] = env->CallFloatMethod(jvalue_obj, jget_float_method);\n"); fprintf(out, " } else if (env->IsInstanceOf(jvalue_obj, jstring_class)) {\n"); fprintf(out, " std::unique_ptr<ScopedUtfChars> utf(new ScopedUtfChars(env, (jstring)jvalue_obj));\n"); fprintf(out, " if (utf->c_str() != NULL) { string_map[key] = utf->c_str(); }\n"); fprintf(out, " scoped_ufs.push_back(std::move(utf));\n"); fprintf(out, " }\n"); fprintf(out, " }\n"); } static int write_stats_log_jni(FILE* out, const string& java_method_name, const string& cpp_method_name, const map<vector<java_type_t>, set<string>>& signatures_to_modules, const AtomDecl &attributionDecl) { // Print write methods for (auto signature_to_modules_it = signatures_to_modules.begin(); signature_to_modules_it != signatures_to_modules.end(); signature_to_modules_it++) { vector<java_type_t> signature = signature_to_modules_it->first; int argIndex; fprintf(out, "static int\n"); fprintf(out, "%s(JNIEnv* env, jobject clazz UNUSED, jint code", jni_function_name(java_method_name, signature).c_str()); argIndex = 1; for (vector<java_type_t>::const_iterator arg = signature.begin(); arg != signature.end(); arg++) { if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) { for (auto chainField : attributionDecl.fields) { fprintf(out, ", %s %s", jni_array_type_name(chainField.javaType), chainField.name.c_str()); } } else if (*arg == JAVA_TYPE_KEY_VALUE_PAIR) { fprintf(out, ", jobject value_map"); } else { fprintf(out, ", %s arg%d", jni_type_name(*arg), argIndex); } argIndex++; } fprintf(out, ")\n"); fprintf(out, "{\n"); // Prepare strings argIndex = 1; bool hadStringOrChain = false; bool isKeyValuePairAtom = false; for (vector<java_type_t>::const_iterator arg = signature.begin(); arg != signature.end(); arg++) { if (*arg == JAVA_TYPE_STRING) { hadStringOrChain = true; fprintf(out, " const char* str%d;\n", argIndex); fprintf(out, " if (arg%d != NULL) {\n", argIndex); fprintf(out, " str%d = env->GetStringUTFChars(arg%d, NULL);\n", argIndex, argIndex); fprintf(out, " } else {\n"); fprintf(out, " str%d = NULL;\n", argIndex); fprintf(out, " }\n"); } else if (*arg == JAVA_TYPE_BYTE_ARRAY) { hadStringOrChain = true; fprintf(out, " jbyte* jbyte_array%d;\n", argIndex); fprintf(out, " const char* str%d;\n", argIndex); fprintf(out, " int str%d_length = 0;\n", argIndex); fprintf(out, " if (arg%d != NULL && env->GetArrayLength(arg%d) > " "0) {\n", argIndex, argIndex); fprintf(out, " jbyte_array%d = " "env->GetByteArrayElements(arg%d, NULL);\n", argIndex, argIndex); fprintf(out, " str%d_length = env->GetArrayLength(arg%d);\n", argIndex, argIndex); fprintf(out, " str%d = " "reinterpret_cast<char*>(env->GetByteArrayElements(arg%" "d, NULL));\n", argIndex, argIndex); fprintf(out, " } else {\n"); fprintf(out, " jbyte_array%d = NULL;\n", argIndex); fprintf(out, " str%d = NULL;\n", argIndex); fprintf(out, " }\n"); fprintf(out, " android::util::BytesField bytesField%d(str%d, " "str%d_length);", argIndex, argIndex, argIndex); } else if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) { hadStringOrChain = true; for (auto chainField : attributionDecl.fields) { fprintf(out, " size_t %s_length = env->GetArrayLength(%s);\n", chainField.name.c_str(), chainField.name.c_str()); if (chainField.name != attributionDecl.fields.front().name) { fprintf(out, " if (%s_length != %s_length) {\n", chainField.name.c_str(), attributionDecl.fields.front().name.c_str()); fprintf(out, " return -EINVAL;\n"); fprintf(out, " }\n"); } if (chainField.javaType == JAVA_TYPE_INT) { fprintf(out, " jint* %s_array = env->GetIntArrayElements(%s, NULL);\n", chainField.name.c_str(), chainField.name.c_str()); } else if (chainField.javaType == JAVA_TYPE_STRING) { fprintf(out, " std::vector<%s> %s_vec;\n", cpp_type_name(chainField.javaType), chainField.name.c_str()); fprintf(out, " std::vector<ScopedUtfChars*> scoped_%s_vec;\n", chainField.name.c_str()); fprintf(out, " for (size_t i = 0; i < %s_length; ++i) {\n", chainField.name.c_str()); fprintf(out, " jstring jstr = " "(jstring)env->GetObjectArrayElement(%s, i);\n", chainField.name.c_str()); fprintf(out, " if (jstr == NULL) {\n"); fprintf(out, " %s_vec.push_back(NULL);\n", chainField.name.c_str()); fprintf(out, " } else {\n"); fprintf(out, " ScopedUtfChars* scoped_%s = " "new ScopedUtfChars(env, jstr);\n", chainField.name.c_str()); fprintf(out, " %s_vec.push_back(scoped_%s->c_str());\n", chainField.name.c_str(), chainField.name.c_str()); fprintf(out, " scoped_%s_vec.push_back(scoped_%s);\n", chainField.name.c_str(), chainField.name.c_str()); fprintf(out, " }\n"); fprintf(out, " }\n"); } fprintf(out, "\n"); } } else if (*arg == JAVA_TYPE_KEY_VALUE_PAIR) { isKeyValuePairAtom = true; } argIndex++; } // Emit this to quiet the unused parameter warning if there were no strings or attribution // chains. if (!hadStringOrChain && !isKeyValuePairAtom) { fprintf(out, " (void)env;\n"); } if (isKeyValuePairAtom) { write_key_value_map_jni(out); } // stats_write call argIndex = 1; fprintf(out, "\n int ret = android::util::%s(code", cpp_method_name.c_str()); for (vector<java_type_t>::const_iterator arg = signature.begin(); arg != signature.end(); arg++) { if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) { for (auto chainField : attributionDecl.fields) { if (chainField.javaType == JAVA_TYPE_INT) { fprintf(out, ", (const %s*)%s_array, %s_length", cpp_type_name(chainField.javaType), chainField.name.c_str(), chainField.name.c_str()); } else if (chainField.javaType == JAVA_TYPE_STRING) { fprintf(out, ", %s_vec", chainField.name.c_str()); } } } else if (*arg == JAVA_TYPE_KEY_VALUE_PAIR) { fprintf(out, ", int32_t_map, int64_t_map, string_map, float_map"); } else if (*arg == JAVA_TYPE_BYTE_ARRAY) { fprintf(out, ", bytesField%d", argIndex); } else { const char* argName = (*arg == JAVA_TYPE_STRING) ? "str" : "arg"; fprintf(out, ", (%s)%s%d", cpp_type_name(*arg), argName, argIndex); } argIndex++; } fprintf(out, ");\n"); fprintf(out, "\n"); // Clean up strings argIndex = 1; for (vector<java_type_t>::const_iterator arg = signature.begin(); arg != signature.end(); arg++) { if (*arg == JAVA_TYPE_STRING) { fprintf(out, " if (str%d != NULL) {\n", argIndex); fprintf(out, " env->ReleaseStringUTFChars(arg%d, str%d);\n", argIndex, argIndex); fprintf(out, " }\n"); } else if (*arg == JAVA_TYPE_BYTE_ARRAY) { fprintf(out, " if (str%d != NULL) { \n", argIndex); fprintf(out, " env->ReleaseByteArrayElements(arg%d, " "jbyte_array%d, 0);\n", argIndex, argIndex); fprintf(out, " }\n"); } else if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) { for (auto chainField : attributionDecl.fields) { if (chainField.javaType == JAVA_TYPE_INT) { fprintf(out, " env->ReleaseIntArrayElements(%s, %s_array, 0);\n", chainField.name.c_str(), chainField.name.c_str()); } else if (chainField.javaType == JAVA_TYPE_STRING) { fprintf(out, " for (size_t i = 0; i < scoped_%s_vec.size(); ++i) {\n", chainField.name.c_str()); fprintf(out, " delete scoped_%s_vec[i];\n", chainField.name.c_str()); fprintf(out, " }\n"); } } } argIndex++; } fprintf(out, " return ret;\n"); fprintf(out, "}\n"); fprintf(out, "\n"); } return 0; } void write_jni_registration(FILE* out, const string& java_method_name, const map<vector<java_type_t>, set<string>>& signatures_to_modules, const AtomDecl &attributionDecl) { for (auto signature_to_modules_it = signatures_to_modules.begin(); signature_to_modules_it != signatures_to_modules.end(); signature_to_modules_it++) { vector<java_type_t> signature = signature_to_modules_it->first; fprintf(out, " { \"%s\", \"%s\", (void*)%s },\n", java_method_name.c_str(), jni_function_signature(signature, attributionDecl).c_str(), jni_function_name(java_method_name, signature).c_str()); } } static int write_stats_log_jni(FILE* out, const Atoms& atoms, const AtomDecl &attributionDecl) { // Print prelude fprintf(out, "// This file is autogenerated\n"); fprintf(out, "\n"); fprintf(out, "#include <statslog.h>\n"); fprintf(out, "\n"); fprintf(out, "#include <nativehelper/JNIHelp.h>\n"); fprintf(out, "#include <nativehelper/ScopedUtfChars.h>\n"); fprintf(out, "#include <utils/Vector.h>\n"); fprintf(out, "#include \"core_jni_helpers.h\"\n"); fprintf(out, "#include \"jni.h\"\n"); fprintf(out, "\n"); fprintf(out, "#define UNUSED __attribute__((__unused__))\n"); fprintf(out, "\n"); fprintf(out, "namespace android {\n"); fprintf(out, "\n"); write_stats_log_jni(out, "write", "stats_write", atoms.signatures_to_modules, attributionDecl); write_stats_log_jni(out, "write_non_chained", "stats_write_non_chained", atoms.non_chained_signatures_to_modules, attributionDecl); // Print registration function table fprintf(out, "/*\n"); fprintf(out, " * JNI registration.\n"); fprintf(out, " */\n"); fprintf(out, "static const JNINativeMethod gRegisterMethods[] = {\n"); write_jni_registration(out, "write", atoms.signatures_to_modules, attributionDecl); write_jni_registration(out, "write_non_chained", atoms.non_chained_signatures_to_modules, attributionDecl); fprintf(out, "};\n"); fprintf(out, "\n"); // Print registration function fprintf(out, "int register_android_util_StatsLogInternal(JNIEnv* env) {\n"); fprintf(out, " return RegisterMethodsOrDie(\n"); fprintf(out, " env,\n"); fprintf(out, " \"android/util/StatsLogInternal\",\n"); fprintf(out, " gRegisterMethods, NELEM(gRegisterMethods));\n"); fprintf(out, "}\n"); fprintf(out, "\n"); fprintf(out, "} // namespace android\n"); return 0; } static void print_usage() { fprintf(stderr, "usage: stats-log-api-gen OPTIONS\n"); fprintf(stderr, "\n"); fprintf(stderr, "OPTIONS\n"); fprintf(stderr, " --cpp FILENAME the header file to output\n"); fprintf(stderr, " --header FILENAME the cpp file to output\n"); fprintf(stderr, " --help this message\n"); fprintf(stderr, " --java FILENAME the java file to output\n"); fprintf(stderr, " --jni FILENAME the jni file to output\n"); fprintf(stderr, " --module NAME optional, module name to generate outputs for\n"); fprintf(stderr, " --namespace COMMA,SEP,NAMESPACE required for cpp/header with module\n"); fprintf(stderr, " comma separated namespace of the files\n"); fprintf(stderr, " --importHeader NAME required for cpp/jni to say which header to import\n"); fprintf(stderr, " --javaPackage PACKAGE the package for the java file.\n"); fprintf(stderr, " required for java with module\n"); fprintf(stderr, " --javaClass CLASS the class name of the java class.\n"); fprintf(stderr, " Optional for Java with module.\n"); fprintf(stderr, " Default is \"StatsLogInternal\"\n");} /** * Do the argument parsing and execute the tasks. */ static int run(int argc, char const*const* argv) { string cppFilename; string headerFilename; string javaFilename; string jniFilename; string moduleName = DEFAULT_MODULE_NAME; string cppNamespace = DEFAULT_CPP_NAMESPACE; string cppHeaderImport = DEFAULT_CPP_HEADER_IMPORT; string javaPackage = DEFAULT_JAVA_PACKAGE; string javaClass = DEFAULT_JAVA_CLASS; int index = 1; while (index < argc) { if (0 == strcmp("--help", argv[index])) { print_usage(); return 0; } else if (0 == strcmp("--cpp", argv[index])) { index++; if (index >= argc) { print_usage(); return 1; } cppFilename = argv[index]; } else if (0 == strcmp("--header", argv[index])) { index++; if (index >= argc) { print_usage(); return 1; } headerFilename = argv[index]; } else if (0 == strcmp("--java", argv[index])) { index++; if (index >= argc) { print_usage(); return 1; } javaFilename = argv[index]; } else if (0 == strcmp("--jni", argv[index])) { index++; if (index >= argc) { print_usage(); return 1; } jniFilename = argv[index]; } else if (0 == strcmp("--module", argv[index])) { index++; if (index >= argc) { print_usage(); return 1; } moduleName = argv[index]; } else if (0 == strcmp("--namespace", argv[index])) { index++; if (index >= argc) { print_usage(); return 1; } cppNamespace = argv[index]; } else if (0 == strcmp("--importHeader", argv[index])) { index++; if (index >= argc) { print_usage(); return 1; } cppHeaderImport = argv[index]; } else if (0 == strcmp("--javaPackage", argv[index])) { index++; if (index >= argc) { print_usage(); return 1; } javaPackage = argv[index]; } else if (0 == strcmp("--javaClass", argv[index])) { index++; if (index >= argc) { print_usage(); return 1; } javaClass = argv[index]; } index++; } if (cppFilename.size() == 0 && headerFilename.size() == 0 && javaFilename.size() == 0 && jniFilename.size() == 0) { print_usage(); return 1; } // Collate the parameters Atoms atoms; int errorCount = collate_atoms(Atom::descriptor(), &atoms); if (errorCount != 0) { return 1; } AtomDecl attributionDecl; vector<java_type_t> attributionSignature; collate_atom(android::os::statsd::AttributionNode::descriptor(), &attributionDecl, &attributionSignature); // Write the .cpp file if (cppFilename.size() != 0) { FILE* out = fopen(cppFilename.c_str(), "w"); if (out == NULL) { fprintf(stderr, "Unable to open file for write: %s\n", cppFilename.c_str()); return 1; } // If this is for a specific module, the namespace must also be provided. if (moduleName != DEFAULT_MODULE_NAME && cppNamespace == DEFAULT_CPP_NAMESPACE) { fprintf(stderr, "Must supply --namespace if supplying a specific module\n"); return 1; } // If this is for a specific module, the header file to import must also be provided. if (moduleName != DEFAULT_MODULE_NAME && cppHeaderImport == DEFAULT_CPP_HEADER_IMPORT) { fprintf(stderr, "Must supply --headerImport if supplying a specific module\n"); return 1; } errorCount = android::stats_log_api_gen::write_stats_log_cpp( out, atoms, attributionDecl, moduleName, cppNamespace, cppHeaderImport); fclose(out); } // Write the .h file if (headerFilename.size() != 0) { FILE* out = fopen(headerFilename.c_str(), "w"); if (out == NULL) { fprintf(stderr, "Unable to open file for write: %s\n", headerFilename.c_str()); return 1; } // If this is for a specific module, the namespace must also be provided. if (moduleName != DEFAULT_MODULE_NAME && cppNamespace == DEFAULT_CPP_NAMESPACE) { fprintf(stderr, "Must supply --namespace if supplying a specific module\n"); } errorCount = android::stats_log_api_gen::write_stats_log_header( out, atoms, attributionDecl, moduleName, cppNamespace); fclose(out); } // Write the .java file if (javaFilename.size() != 0) { FILE* out = fopen(javaFilename.c_str(), "w"); if (out == NULL) { fprintf(stderr, "Unable to open file for write: %s\n", javaFilename.c_str()); return 1; } // If this is for a specific module, the java package must also be provided. if (moduleName != DEFAULT_MODULE_NAME && javaPackage== DEFAULT_JAVA_PACKAGE) { fprintf(stderr, "Must supply --javaPackage if supplying a specific module\n"); return 1; } if (moduleName == DEFAULT_MODULE_NAME) { errorCount = android::stats_log_api_gen::write_stats_log_java( out, atoms, attributionDecl); } else { errorCount = android::stats_log_api_gen::write_stats_log_java_for_module( out, atoms, attributionDecl, moduleName, javaClass, javaPackage); } fclose(out); } // Write the jni file if (jniFilename.size() != 0) { FILE* out = fopen(jniFilename.c_str(), "w"); if (out == NULL) { fprintf(stderr, "Unable to open file for write: %s\n", jniFilename.c_str()); return 1; } errorCount = android::stats_log_api_gen::write_stats_log_jni( out, atoms, attributionDecl); fclose(out); } return errorCount; } } } /** * Main. */ int main(int argc, char const*const* argv) { GOOGLE_PROTOBUF_VERIFY_VERSION; return android::stats_log_api_gen::run(argc, argv); }