/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "CpuExecutor" #include "CpuExecutor.h" #include "NeuralNetworks.h" #include "OperationResolver.h" #include "Operations.h" #include "OperationsUtils.h" #include "Tracing.h" #include "Eigen/Core" // b/109953668, disable OpenMP #ifdef NNAPI_OPENMP #include <omp.h> #endif // NNAPI_OPENMP #include <android/hardware_buffer.h> #include <sys/mman.h> namespace android { namespace nn { namespace { class OperationExecutionContext : public IOperationExecutionContext { DISALLOW_IMPLICIT_CONSTRUCTORS(OperationExecutionContext); public: OperationExecutionContext(const Operation* operation, RunTimeOperandInfo* operands) : operation(operation), operands(operands) {} uint32_t getNumInputs() const override; OperandType getInputType(uint32_t index) const override; Shape getInputShape(uint32_t index) const override; const void* getInputBuffer(uint32_t index) const override; const Operand::ExtraParams getInputExtraParams(uint32_t index) const override; uint32_t getNumOutputs() const override; OperandType getOutputType(uint32_t index) const override; Shape getOutputShape(uint32_t index) const override; void* getOutputBuffer(uint32_t index) override; // Return false on failure and store the result code. // Use getResultCode() to retrieve it at the end of the operation execution. bool setOutputShape(uint32_t index, const Shape& shape) override; int getResultCode() const; bool isOmittedInput(uint32_t index) const override; bool isOmittedOutput(uint32_t index) const override; // Return false if any of inputs or outputs is omitted, i.e. has lifetime of NO_VALUE. bool checkNoOmittedOperand() const; // Return false if any of inputs has dimension 0. bool checkNoZeroSizedInput() const; private: const RunTimeOperandInfo* getInputInfo(uint32_t index) const; const RunTimeOperandInfo* getOutputInfo(uint32_t index) const; RunTimeOperandInfo* getOutputInfo(uint32_t index); const Operation* operation; RunTimeOperandInfo* operands; int result = ANEURALNETWORKS_NO_ERROR; }; const RunTimeOperandInfo* OperationExecutionContext::getInputInfo(uint32_t index) const { CHECK(index < operation->inputs.size()); return &operands[operation->inputs[index]]; } const RunTimeOperandInfo* OperationExecutionContext::getOutputInfo(uint32_t index) const { CHECK(index < operation->outputs.size()); return &operands[operation->outputs[index]]; } RunTimeOperandInfo* OperationExecutionContext::getOutputInfo(uint32_t index) { CHECK(index < operation->outputs.size()); return &operands[operation->outputs[index]]; } OperandType OperationExecutionContext::getInputType(uint32_t index) const { return getInputInfo(index)->type; } Shape OperationExecutionContext::getInputShape(uint32_t index) const { return getInputInfo(index)->shape(); } const void* OperationExecutionContext::getInputBuffer(uint32_t index) const { return getInputInfo(index)->buffer; } const Operand::ExtraParams OperationExecutionContext::getInputExtraParams(uint32_t index) const { return getInputInfo(index)->extraParams; } OperandType OperationExecutionContext::getOutputType(uint32_t index) const { return getOutputInfo(index)->type; } Shape OperationExecutionContext::getOutputShape(uint32_t index) const { return getOutputInfo(index)->shape(); } void* OperationExecutionContext::getOutputBuffer(uint32_t index) { return getOutputInfo(index)->buffer; } uint32_t OperationExecutionContext::getNumInputs() const { return operation->inputs.size(); } uint32_t OperationExecutionContext::getNumOutputs() const { return operation->outputs.size(); } int OperationExecutionContext::getResultCode() const { return result; } // TODO: Return error code directly once we've fully integrated OperationResolver with all ops. // Updates the RunTimeOperandInfo with the newly calculated shape. // Allocate the buffer if we need to. bool setInfoAndAllocateIfNeeded(RunTimeOperandInfo* info, const Shape& shape, int* result) { // For user-provided model output operands, the parameters must match the Shape // calculated from the preparation step. if (info->lifetime == OperandLifeTime::MODEL_OUTPUT) { if (info->type != shape.type) { LOG(ERROR) << "Invalid type for model output"; *result = ANEURALNETWORKS_OP_FAILED; return false; } if (info->type == OperandType::TENSOR_QUANT8_ASYMM) { if (info->scale != shape.scale) { LOG(ERROR) << "Invalid scale for model output"; *result = ANEURALNETWORKS_OP_FAILED; return false; } if (info->zeroPoint != shape.offset) { LOG(ERROR) << "Invalid zeroPoint for model output"; *result = ANEURALNETWORKS_OP_FAILED; return false; } } if (info->extraParams != shape.extraParams) { LOG(ERROR) << "Invalid extraParams for model output"; *result = ANEURALNETWORKS_OP_FAILED; return false; } } std::vector<uint32_t> combined; if (!combineDimensions(shape.dimensions, info->dimensions, &combined)) { LOG(ERROR) << "Invalid dimensions for model operand"; *result = ANEURALNETWORKS_OP_FAILED; return false; } info->dimensions = combined; info->type = shape.type; info->scale = shape.scale; info->zeroPoint = shape.offset; info->extraParams = shape.extraParams; // Allocate the buffer only if the combined dimension is fully specified if (info->lifetime == OperandLifeTime::TEMPORARY_VARIABLE && info->buffer == nullptr) { if (isExtensionOperandType(info->type)) { LOG(ERROR) << "Cannot allocate a temporary variable of an extension type"; *result = ANEURALNETWORKS_OP_FAILED; return false; } uint32_t length = nonExtensionOperandSizeOfData(info->type, info->dimensions); if (length > 0) { info->buffer = new uint8_t[length]; if (info->buffer == nullptr) { *result = ANEURALNETWORKS_OUT_OF_MEMORY; return false; } info->length = length; } } if (!info->isSufficient()) { uint32_t length = nonExtensionOperandSizeOfData(info->type, info->dimensions); LOG(ERROR) << "Insufficient size for model operand: require = " << length << ", provided = " << info->length; *result = ANEURALNETWORKS_OUTPUT_INSUFFICIENT_SIZE; return false; } *result = ANEURALNETWORKS_NO_ERROR; return true; } bool OperationExecutionContext::setOutputShape(uint32_t index, const Shape& shape) { return setInfoAndAllocateIfNeeded(getOutputInfo(index), shape, &result); } bool OperationExecutionContext::isOmittedInput(uint32_t index) const { return getInputInfo(index)->lifetime == OperandLifeTime::NO_VALUE; } bool OperationExecutionContext::isOmittedOutput(uint32_t index) const { return getOutputInfo(index)->lifetime == OperandLifeTime::NO_VALUE; } bool OperationExecutionContext::checkNoOmittedOperand() const { for (uint32_t i = 0; i < operation->inputs.size(); i++) { NN_RET_CHECK(!isOmittedInput(i)) << getOperationName(operation->type) << " input operand " << i << " is required but missing."; } for (uint32_t i = 0; i < operation->outputs.size(); i++) { NN_RET_CHECK(!isOmittedOutput(i)) << getOperationName(operation->type) << " output operand " << i << " is required but missing."; } return true; } bool OperationExecutionContext::checkNoZeroSizedInput() const { for (uint32_t i = 0; i < operation->inputs.size(); i++) { if (isOmittedInput(i)) continue; for (uint32_t j = 0; j < getInputInfo(i)->dimensions.size(); j++) { NN_RET_CHECK_NE(getInputInfo(i)->dimensions[j], 0) << getOperationName(operation->type) << " does not support zero-sized tensor, but input " << i << " dimension " << j << " is 0."; } } return true; } } // namespace // Used to keep a pointer to a memory pool. // // In the case of an "mmap_fd" pool, owns the mmap region // returned by getBuffer() -- i.e., that region goes away // when the RunTimePoolInfo is destroyed or is assigned to. class RunTimePoolInfo::RunTimePoolInfoImpl { public: RunTimePoolInfoImpl(const hidl_memory& hidlMemory, uint8_t* buffer, const sp<IMemory>& memory, const sp<GraphicBuffer>& graphicBuffer); // rule of five... ~RunTimePoolInfoImpl(); RunTimePoolInfoImpl(const RunTimePoolInfoImpl&) = delete; RunTimePoolInfoImpl(RunTimePoolInfoImpl&&) noexcept = delete; RunTimePoolInfoImpl& operator=(const RunTimePoolInfoImpl&) = delete; RunTimePoolInfoImpl& operator=(RunTimePoolInfoImpl&&) noexcept = delete; uint8_t* getBuffer() const { return mBuffer; } bool update() const; hidl_memory getHidlMemory() const { return mHidlMemory; } private: const hidl_memory mHidlMemory; // always used uint8_t* const mBuffer = nullptr; // always used const sp<IMemory> mMemory; // only used when hidlMemory.name() == "ashmem" const sp<GraphicBuffer> mGraphicBuffer; // only used when hidlMemory.name() == "hardware_buffer_blob" }; RunTimePoolInfo::RunTimePoolInfoImpl::RunTimePoolInfoImpl(const hidl_memory& hidlMemory, uint8_t* buffer, const sp<IMemory>& memory, const sp<GraphicBuffer>& graphicBuffer) : mHidlMemory(hidlMemory), mBuffer(buffer), mMemory(memory), mGraphicBuffer(graphicBuffer) {} RunTimePoolInfo::RunTimePoolInfoImpl::~RunTimePoolInfoImpl() { if (mBuffer == nullptr) { return; } const std::string memType = mHidlMemory.name(); if (memType == "ashmem") { // nothing to do } else if (memType == "mmap_fd") { const size_t size = mHidlMemory.size(); if (munmap(mBuffer, size)) { LOG(ERROR) << "RunTimePoolInfoImpl::~RunTimePoolInfo(): Can't munmap"; } } else if (memType == "hardware_buffer_blob") { mGraphicBuffer->unlock(); } else if (memType == "") { // Represents a POINTER argument; nothing to do } else { LOG(ERROR) << "RunTimePoolInfoImpl::~RunTimePoolInfoImpl(): unsupported hidl_memory type"; } } // Making sure the output data are correctly updated after execution. bool RunTimePoolInfo::RunTimePoolInfoImpl::update() const { const std::string memType = mHidlMemory.name(); if (memType == "ashmem") { mMemory->commit(); return true; } if (memType == "mmap_fd") { int prot = mHidlMemory.handle()->data[1]; if (prot & PROT_WRITE) { const size_t size = mHidlMemory.size(); return msync(mBuffer, size, MS_SYNC) == 0; } } // No-op for other types of memory. return true; } // TODO: short term, make share memory mapping and updating a utility function. // TODO: long term, implement mmap_fd as a hidl IMemory service. std::optional<RunTimePoolInfo> RunTimePoolInfo::createFromHidlMemory( const hidl_memory& hidlMemory) { uint8_t* buffer = nullptr; sp<IMemory> memory; sp<GraphicBuffer> graphicBuffer; const auto& memType = hidlMemory.name(); if (memType == "ashmem") { memory = mapMemory(hidlMemory); if (memory == nullptr) { LOG(ERROR) << "Can't map shared memory."; return std::nullopt; } memory->update(); buffer = reinterpret_cast<uint8_t*>(static_cast<void*>(memory->getPointer())); if (buffer == nullptr) { LOG(ERROR) << "Can't access shared memory."; return std::nullopt; } } else if (memType == "mmap_fd") { size_t size = hidlMemory.size(); int fd = hidlMemory.handle()->data[0]; int prot = hidlMemory.handle()->data[1]; size_t offset = getSizeFromInts(hidlMemory.handle()->data[2], hidlMemory.handle()->data[3]); buffer = static_cast<uint8_t*>(mmap(nullptr, size, prot, MAP_SHARED, fd, offset)); if (buffer == MAP_FAILED) { LOG(ERROR) << "RunTimePoolInfo::set(): Can't mmap the file descriptor."; return std::nullopt; } } else if (memType == "hardware_buffer_blob") { auto handle = hidlMemory.handle(); auto format = AHARDWAREBUFFER_FORMAT_BLOB; auto usage = AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN | AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN; const uint32_t width = hidlMemory.size(); const uint32_t height = 1; // height is always 1 for BLOB mode AHardwareBuffer. const uint32_t layers = 1; // layers is always 1 for BLOB mode AHardwareBuffer. const uint32_t stride = hidlMemory.size(); graphicBuffer = new GraphicBuffer(handle, GraphicBuffer::HandleWrapMethod::CLONE_HANDLE, width, height, format, layers, usage, stride); void* gBuffer = nullptr; int32_t outBytesPerPixel, outBytesPerStride; status_t status = graphicBuffer->lock(usage, &gBuffer, &outBytesPerPixel, &outBytesPerStride); if (status != NO_ERROR) { LOG(ERROR) << "RunTimePoolInfo Can't lock the AHardwareBuffer."; return std::nullopt; } buffer = static_cast<uint8_t*>(gBuffer); } else { LOG(ERROR) << "RunTimePoolInfo::set(): unsupported hidl_memory type"; return std::nullopt; } const auto impl = std::make_shared<const RunTimePoolInfoImpl>(hidlMemory, buffer, memory, graphicBuffer); return {RunTimePoolInfo(impl)}; } RunTimePoolInfo RunTimePoolInfo::createFromExistingBuffer(uint8_t* buffer) { const auto impl = std::make_shared<const RunTimePoolInfoImpl>(hidl_memory{}, buffer, nullptr, nullptr); return {impl}; } RunTimePoolInfo::RunTimePoolInfo(const std::shared_ptr<const RunTimePoolInfoImpl>& impl) : mImpl(impl) {} uint8_t* RunTimePoolInfo::getBuffer() const { return mImpl->getBuffer(); } bool RunTimePoolInfo::update() const { return mImpl->update(); } hidl_memory RunTimePoolInfo::getHidlMemory() const { return mImpl->getHidlMemory(); } bool setRunTimePoolInfosFromHidlMemories(std::vector<RunTimePoolInfo>* poolInfos, const hidl_vec<hidl_memory>& pools) { CHECK(poolInfos != nullptr); poolInfos->clear(); poolInfos->reserve(pools.size()); for (const auto& pool : pools) { if (std::optional<RunTimePoolInfo> poolInfo = RunTimePoolInfo::createFromHidlMemory(pool)) { poolInfos->push_back(*poolInfo); } else { LOG(ERROR) << "Could not map pools"; poolInfos->clear(); return false; } } return true; } template <typename T> inline bool convertToNhwcImpl(T* to, const T* from, const std::vector<uint32_t>& fromDim) { uint32_t spatialSize = fromDim[2] * fromDim[3]; for (uint32_t n = 0; n < fromDim[0]; n++) { for (uint32_t hw = 0; hw < spatialSize; hw++) { for (uint32_t c = 0; c < fromDim[1]; c++) { uint32_t fromIndex = n * fromDim[1] * spatialSize + c * spatialSize + hw; *to++ = from[fromIndex]; } } } return true; } template <typename T> inline bool convertFromNhwcImpl(T* to, const T* from, const std::vector<uint32_t>& fromDim) { uint32_t spatialSize = fromDim[1] * fromDim[2]; for (uint32_t n = 0; n < fromDim[0]; n++) { for (uint32_t c = 0; c < fromDim[3]; c++) { for (uint32_t hw = 0; hw < spatialSize; hw++) { uint32_t fromIndex = n * spatialSize * fromDim[3] + hw * fromDim[3] + c; *to++ = from[fromIndex]; } } } return true; } static bool convertToNhwc(RunTimeOperandInfo& to, const RunTimeOperandInfo& from, std::unique_ptr<uint8_t[]>& ptr_guard, bool data_layout) { int result; if (from.dimensions.size() != 4) { LOG(ERROR) << "Error converting a non-4-D tensor to NHWC layout"; return false; } to.lifetime = OperandLifeTime::TEMPORARY_VARIABLE; if (data_layout) { // convert dimensions Shape inShape = from.shape(); auto& fromDim = from.dimensions; inShape.dimensions = {fromDim[0], fromDim[2], fromDim[3], fromDim[1]}; // allocate buffer to.buffer = nullptr; if (!setInfoAndAllocateIfNeeded(&to, inShape, &result)) { return false; } ptr_guard.reset(to.buffer); // convert value if (from.type == OperandType::TENSOR_FLOAT32) { return convertToNhwcImpl<float>(reinterpret_cast<float*>(to.buffer), reinterpret_cast<const float*>(from.buffer), fromDim); } else if (from.type == OperandType::TENSOR_FLOAT16) { return convertToNhwcImpl<_Float16>(reinterpret_cast<_Float16*>(to.buffer), reinterpret_cast<const _Float16*>(from.buffer), fromDim); } else if (from.type == OperandType::TENSOR_QUANT8_ASYMM) { return convertToNhwcImpl<uint8_t>(reinterpret_cast<uint8_t*>(to.buffer), reinterpret_cast<const uint8_t*>(from.buffer), fromDim); } else { LOG(ERROR) << "Unsupported data type"; return false; } } else { to = from; } return true; } static bool convertFromNhwc(RunTimeOperandInfo& to, const RunTimeOperandInfo& from, bool data_layout, int* result) { if (from.dimensions.size() != 4) { LOG(ERROR) << "Error converting a non-4-D tensor from NHWC layout"; return false; } if (data_layout) { // convert dimensions Shape outShape = from.shape(); auto& fromDim = from.dimensions; outShape.dimensions = {fromDim[0], fromDim[3], fromDim[1], fromDim[2]}; // allocate buffer if (!setInfoAndAllocateIfNeeded(&to, outShape, result)) { return false; } // convert value if (from.type == OperandType::TENSOR_FLOAT32) { return convertFromNhwcImpl<float>(reinterpret_cast<float*>(to.buffer), reinterpret_cast<const float*>(from.buffer), fromDim); } else if (from.type == OperandType::TENSOR_FLOAT16) { return convertFromNhwcImpl<_Float16>(reinterpret_cast<_Float16*>(to.buffer), reinterpret_cast<const _Float16*>(from.buffer), fromDim); } else if (from.type == OperandType::TENSOR_QUANT8_ASYMM) { return convertFromNhwcImpl<uint8_t>(reinterpret_cast<uint8_t*>(to.buffer), reinterpret_cast<const uint8_t*>(from.buffer), fromDim); } else { LOG(ERROR) << "Unsupported data type"; return false; } } else { Shape outShape = from.shape(); to.buffer = from.buffer; to.length = from.length; if (!setInfoAndAllocateIfNeeded(&to, outShape, result)) { return false; } } return true; } // Ignore the .pools entry in model and request. This will have been taken care of // by the caller. int CpuExecutor::run(const Model& model, const Request& request, const std::vector<RunTimePoolInfo>& modelPoolInfos, const std::vector<RunTimePoolInfo>& requestPoolInfos) { NNTRACE_CPU(NNTRACE_PHASE_EXECUTION, "run"); VLOG(CPUEXE) << "CpuExecutor::run() with request(" << SHOW_IF_DEBUG(toString(request)) << ")"; // b/109953668, disable OpenMP #ifdef NNAPI_OPENMP ScopedOpenmpSettings openMpSettings; #endif // NNAPI_OPENMP mModel = &model; mRequest = &request; // TODO check if mRequest is needed initializeRunTimeInfo(modelPoolInfos, requestPoolInfos); // The model has serialized the operation in execution order. for (const auto& operation : model.operations) { int n = executeOperation(operation); if (n != ANEURALNETWORKS_NO_ERROR) { finish(n); return n; } } for (auto& runtimeInfo : modelPoolInfos) { runtimeInfo.update(); } for (auto& runtimeInfo : requestPoolInfos) { runtimeInfo.update(); } finish(ANEURALNETWORKS_NO_ERROR); VLOG(CPUEXE) << "Completed run normally"; return ANEURALNETWORKS_NO_ERROR; } bool CpuExecutor::initializeRunTimeInfo(const std::vector<RunTimePoolInfo>& modelPoolInfos, const std::vector<RunTimePoolInfo>& requestPoolInfos) { VLOG(CPUEXE) << "CpuExecutor::initializeRunTimeInfo"; const size_t count = mModel->operands.size(); mOperands.resize(count); // Start by setting the runtime info to what's in the model. for (size_t i = 0; i < count; i++) { const Operand& from = mModel->operands[i]; RunTimeOperandInfo& to = mOperands[i]; to.type = from.type; to.dimensions = from.dimensions; to.scale = from.scale; to.zeroPoint = from.zeroPoint; to.length = from.location.length; to.lifetime = from.lifetime; to.extraParams = from.extraParams; switch (from.lifetime) { case OperandLifeTime::TEMPORARY_VARIABLE: to.buffer = nullptr; to.numberOfUsesLeft = from.numberOfConsumers; break; case OperandLifeTime::CONSTANT_COPY: to.buffer = const_cast<uint8_t*>(&mModel->operandValues[from.location.offset]); to.numberOfUsesLeft = 0; break; case OperandLifeTime::CONSTANT_REFERENCE: { auto poolIndex = from.location.poolIndex; nnAssert(poolIndex < modelPoolInfos.size()); auto& r = modelPoolInfos[poolIndex]; to.buffer = r.getBuffer() + from.location.offset; to.numberOfUsesLeft = 0; break; } case OperandLifeTime::MODEL_INPUT: case OperandLifeTime::MODEL_OUTPUT: case OperandLifeTime::NO_VALUE: to.buffer = nullptr; to.numberOfUsesLeft = 0; break; default: nnAssert(false); break; } } // Adjust the runtime info for the arguments passed to the model, // modifying the buffer location, and possibly the dimensions. auto updateForArguments = [this, &requestPoolInfos]( const std::vector<uint32_t>& indexes, const hidl_vec<RequestArgument>& arguments) { nnAssert(indexes.size() == arguments.size()); for (size_t i = 0; i < indexes.size(); i++) { const uint32_t operandIndex = indexes[i]; const RequestArgument& from = arguments[i]; RunTimeOperandInfo& to = mOperands[operandIndex]; if (from.dimensions.size() > 0) { // It's the responsibility of the caller to validate that // from.dimensions only modifies the dimensions that were // unspecified in the model. That's the case in SampleDriver.cpp // with the call to validateRequest(). // TODO make sure that's the case for the default CPU path. to.dimensions = from.dimensions; } if (from.hasNoValue) { to.lifetime = OperandLifeTime::NO_VALUE; nnAssert(to.buffer == nullptr); to.length = 0; } else { auto poolIndex = from.location.poolIndex; nnAssert(poolIndex < requestPoolInfos.size()); auto& r = requestPoolInfos[poolIndex]; to.buffer = r.getBuffer() + from.location.offset; to.length = from.location.length; } } }; updateForArguments(mModel->inputIndexes, mRequest->inputs); updateForArguments(mModel->outputIndexes, mRequest->outputs); return true; } void CpuExecutor::freeNoLongerUsedOperands(const std::vector<uint32_t>& inputs) { for (uint32_t i : inputs) { auto& info = mOperands[i]; // Check if it's a static or model input/output. if (info.numberOfUsesLeft == 0) { continue; } info.numberOfUsesLeft--; if (info.numberOfUsesLeft == 0 && info.buffer != nullptr) { delete[] info.buffer; info.buffer = nullptr; } } } int CpuExecutor::executeOperation(const Operation& operation) { // VLOG(CPUEXE) << "CpuExecutor::executeOperation(" << toString(operation) << ")"; const hidl_vec<uint32_t>& ins = operation.inputs; const hidl_vec<uint32_t>& outs = operation.outputs; bool success = false; int result = ANEURALNETWORKS_NO_ERROR; // Function to verify that the number of input and output parameters // matches what is expected. Also checks that all the parameters have // values. This function is to be used only for operations that do not // accept optional arguments. // TODO Have a version that works for optional arguments. auto allParametersPresent = [&operation, &ins, &outs, this](size_t requiredIns, size_t requiredOuts) -> bool { auto verify = [&operation, this](size_t requiredCount, const hidl_vec<uint32_t>& indexes, const char* type) -> bool { size_t actualCount = indexes.size(); if (actualCount != requiredCount) { LOG(ERROR) << getOperationName(operation.type) << ": Invalid number of " << type << " operands. Got " << actualCount << " of " << requiredCount; return false; } for (size_t i = 0; i < actualCount; i++) { if (mOperands[indexes[i]].lifetime == OperandLifeTime::NO_VALUE) { LOG(ERROR) << getOperationName(operation.type) << " " << type << " operand " << i << " is required but missing."; return false; } } return true; }; auto verifyNoZeroSizedInputs = [&operation, this](const hidl_vec<uint32_t>& indexes) { for (size_t i = 0; i < indexes.size(); i++) { for (size_t j = 0; j < mOperands[indexes[i]].dimensions.size(); j++) { if (mOperands[indexes[i]].dimensions[j] == 0) { LOG(ERROR) << getOperationName(operation.type) << " does not support zero-sized tensor, but input " << i << " dimension " << j << " is zero."; return false; } } } return true; }; return verify(requiredIns, ins, "in") && verify(requiredOuts, outs, "out") && verifyNoZeroSizedInputs(ins); }; switch (operation.type) { case OperationType::OEM_OPERATION: { LOG(ERROR) << "OEM operation not supported for CPU execution"; success = false; } break; case OperationType::FLOOR: { if (!allParametersPresent(1, 1)) { return ANEURALNETWORKS_BAD_DATA; } const RunTimeOperandInfo& input = mOperands[ins[0]]; RunTimeOperandInfo& output = mOperands[outs[0]]; Shape outShape = output.shape(); if (!floorPrepare(input.shape(), &outShape) || !setInfoAndAllocateIfNeeded(&output, outShape, &result)) { break; } if (input.type == OperandType::TENSOR_FLOAT32) { success = floorFloat32(reinterpret_cast<const float*>(input.buffer), reinterpret_cast<float*>(output.buffer), outShape); } else if (input.type == OperandType::TENSOR_FLOAT16) { success = floorFloat16(reinterpret_cast<const _Float16*>(input.buffer), reinterpret_cast<_Float16*>(output.buffer), outShape); } } break; case OperationType::DEPTHWISE_CONV_2D: { const size_t inCount = ins.size(); if ((inCount != 14 && inCount != 12 && inCount != 11 && inCount != 9 && inCount != 8) || !allParametersPresent(inCount, 1)) { return ANEURALNETWORKS_BAD_DATA; } const RunTimeOperandInfo& input = mOperands[ins[0]]; const RunTimeOperandInfo& filter = mOperands[ins[1]]; const RunTimeOperandInfo& bias = mOperands[ins[2]]; int32_t padding_left, padding_right; int32_t padding_top, padding_bottom; int32_t padding_implicit = 0; int32_t stride_width, stride_height; int32_t dilation_width_factor = 1, dilation_height_factor = 1; int32_t depth_multiplier; int32_t activation; bool data_layout = false; bool useImplicitPadding = false; if ((inCount >= 9 && mOperands[ins[8]].type == OperandType::BOOL) || inCount == 8) { padding_implicit = getScalarData<int32_t>(mOperands[ins[3]]); stride_width = getScalarData<int32_t>(mOperands[ins[4]]); stride_height = getScalarData<int32_t>(mOperands[ins[5]]); depth_multiplier = getScalarData<int32_t>(mOperands[ins[6]]); activation = getScalarData<int32_t>(mOperands[ins[7]]); if (inCount >= 9) { data_layout = getScalarData<bool>(mOperands[ins[8]]); } if (inCount == 11) { dilation_width_factor = getScalarData<int32_t>(mOperands[ins[9]]); dilation_height_factor = getScalarData<int32_t>(mOperands[ins[10]]); } useImplicitPadding = true; } else if (inCount >= 11 && mOperands[ins[8]].type == OperandType::INT32) { padding_left = getScalarData<int32_t>(mOperands[ins[3]]); padding_right = getScalarData<int32_t>(mOperands[ins[4]]); padding_top = getScalarData<int32_t>(mOperands[ins[5]]); padding_bottom = getScalarData<int32_t>(mOperands[ins[6]]); stride_width = getScalarData<int32_t>(mOperands[ins[7]]); stride_height = getScalarData<int32_t>(mOperands[ins[8]]); depth_multiplier = getScalarData<int32_t>(mOperands[ins[9]]); activation = getScalarData<int32_t>(mOperands[ins[10]]); if (inCount >= 12) { data_layout = getScalarData<bool>(mOperands[ins[11]]); } if (inCount == 14) { dilation_width_factor = getScalarData<int32_t>(mOperands[ins[12]]); dilation_height_factor = getScalarData<int32_t>(mOperands[ins[13]]); } } else { return ANEURALNETWORKS_BAD_DATA; } RunTimeOperandInfo& output = mOperands[outs[0]]; Shape outShape = output.shape(); RunTimeOperandInfo input_tmp, output_tmp; std::unique_ptr<uint8_t[]> input_tmp_guard, output_tmp_guard; if (!convertToNhwc(input_tmp, input, input_tmp_guard, data_layout)) { success = false; break; } output_tmp.lifetime = OperandLifeTime::TEMPORARY_VARIABLE; output_tmp.buffer = data_layout ? nullptr : output.buffer; output_tmp.length = data_layout ? 0 : output.length; if (useImplicitPadding) { Shape inputShape = input_tmp.shape(); Shape filterShape = filter.shape(); int32_t input_width = getSizeOfDimension(inputShape, 2); int32_t input_height = getSizeOfDimension(inputShape, 1); int32_t filter_width = getSizeOfDimension(filterShape, 2); int32_t filter_height = getSizeOfDimension(filterShape, 1); calculateExplicitPadding(input_width, stride_width, dilation_width_factor, filter_width, padding_implicit, &padding_left, &padding_right); calculateExplicitPadding(input_height, stride_height, dilation_height_factor, filter_height, padding_implicit, &padding_top, &padding_bottom); } if (!depthwiseConvPrepare(input_tmp.shape(), filter.shape(), bias.shape(), padding_left, padding_right, padding_top, padding_bottom, stride_width, stride_height, depth_multiplier, dilation_width_factor, dilation_height_factor, &outShape) || !setInfoAndAllocateIfNeeded(&output_tmp, outShape, &result)) { if (!data_layout) output.dimensions = output_tmp.dimensions; success = false; break; } if (input_tmp.type == OperandType::TENSOR_FLOAT32) { success = depthwiseConvFloat32( reinterpret_cast<const float*>(input_tmp.buffer), input_tmp.shape(), reinterpret_cast<const float*>(filter.buffer), filter.shape(), reinterpret_cast<const float*>(bias.buffer), bias.shape(), padding_left, padding_right, padding_top, padding_bottom, stride_width, stride_height, dilation_width_factor, dilation_height_factor, depth_multiplier, activation, reinterpret_cast<float*>(output_tmp.buffer), outShape); } else if (input_tmp.type == OperandType::TENSOR_FLOAT16) { success = depthwiseConvFloat16( reinterpret_cast<const _Float16*>(input_tmp.buffer), input_tmp.shape(), reinterpret_cast<const _Float16*>(filter.buffer), filter.shape(), reinterpret_cast<const _Float16*>(bias.buffer), bias.shape(), padding_left, padding_right, padding_top, padding_bottom, stride_width, stride_height, dilation_width_factor, dilation_height_factor, depth_multiplier, activation, reinterpret_cast<_Float16*>(output_tmp.buffer), outShape); } else if (input_tmp.type == OperandType::TENSOR_QUANT8_ASYMM) { if (filter.type == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) { success = depthwiseConvQuant8PerChannel( reinterpret_cast<const uint8_t*>(input_tmp.buffer), input_tmp.shape(), reinterpret_cast<const int8_t*>(filter.buffer), filter.shape(), filter.extraParams.channelQuant().scales.data(), reinterpret_cast<const int32_t*>(bias.buffer), bias.shape(), padding_left, padding_right, padding_top, padding_bottom, stride_width, stride_height, dilation_width_factor, dilation_height_factor, depth_multiplier, activation, reinterpret_cast<uint8_t*>(output_tmp.buffer), outShape); } else if (filter.type == OperandType::TENSOR_QUANT8_ASYMM) { success = depthwiseConvQuant8( reinterpret_cast<const uint8_t*>(input_tmp.buffer), input_tmp.shape(), reinterpret_cast<const uint8_t*>(filter.buffer), filter.shape(), reinterpret_cast<const int32_t*>(bias.buffer), bias.shape(), padding_left, padding_right, padding_top, padding_bottom, stride_width, stride_height, dilation_width_factor, dilation_height_factor, depth_multiplier, activation, reinterpret_cast<uint8_t*>(output_tmp.buffer), outShape); } } if (data_layout) { output_tmp_guard.reset(output_tmp.buffer); } if (!success || !convertFromNhwc(output, output_tmp, data_layout, &result)) { success = false; break; } } break; case OperationType::LOCAL_RESPONSE_NORMALIZATION: { const size_t inCount = ins.size(); if ((inCount != 6 && inCount != 5) || !allParametersPresent(inCount, 1)) { return ANEURALNETWORKS_BAD_DATA; } const RunTimeOperandInfo& input = mOperands[ins[0]]; int32_t radius = getScalarData<int32_t>(mOperands[ins[1]]); float bias = (input.type == OperandType::TENSOR_FLOAT16) ? getScalarData<_Float16>(mOperands[ins[2]]) : getScalarData<float>(mOperands[ins[2]]); float alpha = (input.type == OperandType::TENSOR_FLOAT16) ? getScalarData<_Float16>(mOperands[ins[3]]) : getScalarData<float>(mOperands[ins[3]]); float beta = (input.type == OperandType::TENSOR_FLOAT16) ? getScalarData<_Float16>(mOperands[ins[4]]) : getScalarData<float>(mOperands[ins[4]]); const int32_t axis = inCount == 6 ? getScalarData<int32_t>(mOperands[ins[5]]) : -1; RunTimeOperandInfo& output = mOperands[outs[0]]; Shape outShape = output.shape(); if (!genericNormalizationPrepare(input.shape(), &outShape) || !setInfoAndAllocateIfNeeded(&output, outShape, &result)) { success = false; break; } if (input.type == OperandType::TENSOR_FLOAT32) { success = localResponseNormFloat32( reinterpret_cast<const float*>(input.buffer), input.shape(), radius, bias, alpha, beta, axis, reinterpret_cast<float*>(output.buffer), outShape); } else if (input.type == OperandType::TENSOR_FLOAT16) { success = localResponseNormFloat16(reinterpret_cast<const _Float16*>(input.buffer), input.shape(), radius, bias, alpha, beta, axis, reinterpret_cast<_Float16*>(output.buffer), outShape); } } break; case OperationType::RESHAPE: { if (!allParametersPresent(2, 1)) { return ANEURALNETWORKS_BAD_DATA; } const RunTimeOperandInfo& input = mOperands[ins[0]]; const RunTimeOperandInfo& targetShape = mOperands[ins[1]]; RunTimeOperandInfo& output = mOperands[outs[0]]; Shape outShape = output.shape(); success = reshapePrepare(input.shape(), reinterpret_cast<const int32_t*>(targetShape.buffer), getNumberOfElements(targetShape.shape()), &outShape) && setInfoAndAllocateIfNeeded(&output, outShape, &result) && copyData(input.buffer, input.shape(), output.buffer, outShape); } break; case OperationType::DEPTH_TO_SPACE: { const size_t inCount = ins.size(); if ((inCount != 3 && inCount != 2) || !allParametersPresent(inCount, 1)) { return ANEURALNETWORKS_BAD_DATA; } const RunTimeOperandInfo& input = mOperands[ins[0]]; int32_t blockSize = getScalarData<int32_t>(mOperands[ins[1]]); bool data_layout = inCount == 3 ? getScalarData<bool>(mOperands[ins[2]]) : false; RunTimeOperandInfo& output = mOperands[outs[0]]; Shape outShape = output.shape(); RunTimeOperandInfo input_tmp, output_tmp; std::unique_ptr<uint8_t[]> input_tmp_guard, output_tmp_guard; if (!convertToNhwc(input_tmp, input, input_tmp_guard, data_layout)) { success = false; break; } output_tmp.lifetime = OperandLifeTime::TEMPORARY_VARIABLE; output_tmp.buffer = data_layout ? nullptr : output.buffer; output_tmp.length = data_layout ? 0 : output.length; if (!depthToSpacePrepare(input_tmp.shape(), blockSize, &outShape) || !setInfoAndAllocateIfNeeded(&output_tmp, outShape, &result)) { if (!data_layout) output.dimensions = output_tmp.dimensions; break; } switch (input_tmp.type) { case OperandType::TENSOR_FLOAT32: { success = depthToSpaceGeneric( reinterpret_cast<const float*>(input_tmp.buffer), input_tmp.shape(), blockSize, reinterpret_cast<float*>(output_tmp.buffer), outShape); break; } case OperandType::TENSOR_FLOAT16: { success = depthToSpaceGeneric( reinterpret_cast<const _Float16*>(input_tmp.buffer), input_tmp.shape(), blockSize, reinterpret_cast<_Float16*>(output_tmp.buffer), outShape); break; } case OperandType::TENSOR_QUANT8_ASYMM: { success = depthToSpaceGeneric( reinterpret_cast<const uint8_t*>(input_tmp.buffer), input_tmp.shape(), blockSize, reinterpret_cast<uint8_t*>(output_tmp.buffer), outShape); break; } default: { LOG(ERROR) << "Unsupported data type"; success = false; } } if (data_layout) { output_tmp_guard.reset(output_tmp.buffer); } if (!success || !convertFromNhwc(output, output_tmp, data_layout, &result)) { success = false; break; } } break; case OperationType::SPACE_TO_DEPTH: { const size_t inCount = ins.size(); if ((inCount != 3 && inCount != 2) || !allParametersPresent(inCount, 1)) { return ANEURALNETWORKS_BAD_DATA; } const RunTimeOperandInfo& input = mOperands[ins[0]]; int32_t blockSize = getScalarData<int32_t>(mOperands[ins[1]]); bool data_layout = inCount == 3 ? getScalarData<bool>(mOperands[ins[2]]) : false; RunTimeOperandInfo& output = mOperands[outs[0]]; Shape outShape = output.shape(); RunTimeOperandInfo input_tmp, output_tmp; std::unique_ptr<uint8_t[]> input_tmp_guard, output_tmp_guard; if (!convertToNhwc(input_tmp, input, input_tmp_guard, data_layout)) { success = false; break; } output_tmp.lifetime = OperandLifeTime::TEMPORARY_VARIABLE; output_tmp.buffer = data_layout ? nullptr : output.buffer; output_tmp.length = data_layout ? 0 : output.length; if (!spaceToDepthPrepare(input_tmp.shape(), blockSize, &outShape) || !setInfoAndAllocateIfNeeded(&output_tmp, outShape, &result)) { if (!data_layout) output.dimensions = output_tmp.dimensions; break; } switch (input_tmp.type) { case OperandType::TENSOR_FLOAT32: { success = spaceToDepthGeneric( reinterpret_cast<const float*>(input_tmp.buffer), input_tmp.shape(), blockSize, reinterpret_cast<float*>(output_tmp.buffer), outShape); break; } case OperandType::TENSOR_FLOAT16: { success = spaceToDepthGeneric( reinterpret_cast<const _Float16*>(input_tmp.buffer), input_tmp.shape(), blockSize, reinterpret_cast<_Float16*>(output_tmp.buffer), outShape); break; } case OperandType::TENSOR_QUANT8_ASYMM: { success = spaceToDepthGeneric( reinterpret_cast<const uint8_t*>(input_tmp.buffer), input_tmp.shape(), blockSize, reinterpret_cast<uint8_t*>(output_tmp.buffer), outShape); break; } default: { LOG(ERROR) << "Unsupported data type"; success = false; } } if (data_layout) { output_tmp_guard.reset(output_tmp.buffer); } if (!success || !convertFromNhwc(output, output_tmp, data_layout, &result)) { success = false; break; } } break; case OperationType::EMBEDDING_LOOKUP: { const RunTimeOperandInfo& values = mOperands[ins[EmbeddingLookup::kValueTensor]]; const RunTimeOperandInfo& lookups = mOperands[ins[EmbeddingLookup::kLookupTensor]]; RunTimeOperandInfo& output = mOperands[outs[EmbeddingLookup::kOutputTensor]]; Shape outputShape; EmbeddingLookup lookup(operation, mOperands); success = embeddingLookupPrepare(values.shape(), lookups.shape(), &outputShape) && setInfoAndAllocateIfNeeded(&output, outputShape, &result) && lookup.Eval(); } break; case OperationType::HASHTABLE_LOOKUP: { const RunTimeOperandInfo& lookups = mOperands[ins[HashtableLookup::kLookupTensor]]; const RunTimeOperandInfo& keys = mOperands[ins[HashtableLookup::kKeyTensor]]; const RunTimeOperandInfo& values = mOperands[ins[HashtableLookup::kValueTensor]]; RunTimeOperandInfo& output = mOperands[outs[HashtableLookup::kOutputTensor]]; RunTimeOperandInfo& hits = mOperands[outs[HashtableLookup::kHitsTensor]]; Shape outputShape, hitShape; HashtableLookup lookup(operation, mOperands); success = hashtableLookupPrepare(lookups.shape(), keys.shape(), values.shape(), &outputShape, &hitShape) && setInfoAndAllocateIfNeeded(&output, outputShape, &result) && setInfoAndAllocateIfNeeded(&hits, hitShape, &result) && lookup.Eval(); } break; case OperationType::LSH_PROJECTION: { RunTimeOperandInfo& output = mOperands[outs[LSHProjection::kOutputTensor]]; Shape outputShape; if (!LSHProjection::Prepare(operation, mOperands, &outputShape) || !setInfoAndAllocateIfNeeded(&output, outputShape, &result)) { break; } LSHProjection lsh(operation, mOperands); const RunTimeOperandInfo& hash = mOperands[ins[LSHProjection::kHashTensor]]; switch (hash.type) { case OperandType::TENSOR_FLOAT32: { success = lsh.Eval<float>(); break; } case OperandType::TENSOR_FLOAT16: { success = lsh.Eval<_Float16>(); break; } default: { success = false; LOG(ERROR) << "Unsupported data type"; } } } break; case OperationType::BIDIRECTIONAL_SEQUENCE_LSTM: { const auto merge_outputs = getScalarData<bool>( mOperands[ins[BidirectionalSequenceLSTM::kMergeOutputsParam]]); RunTimeOperandInfo& fwOutput = mOperands[outs[BidirectionalSequenceLSTM::kFwOutputTensor]]; Shape fwOutputShape, bwOutputShape; BidirectionalSequenceLSTM lstm(operation, mOperands); success = lstm.Prepare(operation, mOperands, &fwOutputShape, &bwOutputShape) && setInfoAndAllocateIfNeeded(&fwOutput, fwOutputShape, &result); if (!merge_outputs) { RunTimeOperandInfo& bwOutput = mOperands[outs[BidirectionalSequenceLSTM::kBwOutputTensor]]; success = success && setInfoAndAllocateIfNeeded(&bwOutput, bwOutputShape, &result); } success = success && lstm.Eval(); } break; case OperationType::LSTM: { RunTimeOperandInfo& scratch = mOperands[outs[LSTMCell::kScratchBufferTensor]]; RunTimeOperandInfo& outputStateOut = mOperands[outs[LSTMCell::kOutputStateOutTensor]]; RunTimeOperandInfo& cellStateOut = mOperands[outs[LSTMCell::kCellStateOutTensor]]; RunTimeOperandInfo& output = mOperands[outs[LSTMCell::kOutputTensor]]; Shape scratchShape, outputStateShape, cellStateShape, outputShape; LSTMCell lstm_cell(operation, mOperands); success = lstm_cell.Prepare(operation, mOperands, &scratchShape, &outputStateShape, &cellStateShape, &outputShape) && setInfoAndAllocateIfNeeded(&scratch, scratchShape, &result) && setInfoAndAllocateIfNeeded(&outputStateOut, outputStateShape, &result) && setInfoAndAllocateIfNeeded(&cellStateOut, cellStateShape, &result) && setInfoAndAllocateIfNeeded(&output, outputShape, &result) && lstm_cell.Eval(); } break; case OperationType::RANDOM_MULTINOMIAL: { const RunTimeOperandInfo& lookups = mOperands[ins[HashtableLookup::kLookupTensor]]; const RunTimeOperandInfo& keys = mOperands[ins[HashtableLookup::kKeyTensor]]; const RunTimeOperandInfo& values = mOperands[ins[HashtableLookup::kValueTensor]]; RunTimeOperandInfo& output = mOperands[outs[Multinomial::kOutputTensor]]; Shape outputShape; Multinomial multinomial(operation, mOperands); success = Multinomial::Prepare(operation, mOperands, &outputShape) && setInfoAndAllocateIfNeeded(&output, outputShape, &result) && multinomial.Eval(); } break; case OperationType::RNN: { RunTimeOperandInfo& hiddenStateOut = mOperands[outs[RNN::kHiddenStateOutTensor]]; RunTimeOperandInfo& output = mOperands[outs[RNN::kOutputTensor]]; Shape hiddenStateShape, outputShape; RNN rnn_cell(operation, mOperands); success = RNN::Prepare(operation, mOperands, &hiddenStateShape, &outputShape) && setInfoAndAllocateIfNeeded(&hiddenStateOut, hiddenStateShape, &result) && setInfoAndAllocateIfNeeded(&output, outputShape, &result) && rnn_cell.Eval(); } break; case OperationType::SVDF: { RunTimeOperandInfo& stateOut = mOperands[outs[SVDF::kStateOutTensor]]; RunTimeOperandInfo& output = mOperands[outs[SVDF::kOutputTensor]]; Shape stateShape, outputShape; SVDF svdf(operation, mOperands); success = SVDF::Prepare(operation, mOperands, &stateShape, &outputShape) && setInfoAndAllocateIfNeeded(&stateOut, stateShape, &result) && setInfoAndAllocateIfNeeded(&output, outputShape, &result) && svdf.Eval(); } break; case OperationType::BATCH_TO_SPACE_ND: { const size_t inCount = ins.size(); if ((inCount != 3 && inCount != 2) || !allParametersPresent(inCount, 1)) { return ANEURALNETWORKS_BAD_DATA; } const RunTimeOperandInfo& input = mOperands[ins[0]]; const RunTimeOperandInfo& blockSize = mOperands[ins[1]]; bool data_layout = inCount == 3 ? getScalarData<bool>(mOperands[ins[2]]) : false; RunTimeOperandInfo& output = mOperands[outs[0]]; Shape outShape = output.shape(); RunTimeOperandInfo input_tmp, output_tmp; std::unique_ptr<uint8_t[]> input_tmp_guard, output_tmp_guard; if (!convertToNhwc(input_tmp, input, input_tmp_guard, data_layout)) { success = false; break; } output_tmp.lifetime = OperandLifeTime::TEMPORARY_VARIABLE; output_tmp.buffer = data_layout ? nullptr : output.buffer; output_tmp.length = data_layout ? 0 : output.length; if (!batchToSpacePrepare(input_tmp.shape(), reinterpret_cast<const int32_t*>(blockSize.buffer), blockSize.shape(), &outShape) || !setInfoAndAllocateIfNeeded(&output_tmp, outShape, &result)) { if (!data_layout) output.dimensions = output_tmp.dimensions; break; } switch (input_tmp.type) { case OperandType::TENSOR_FLOAT32: { success = batchToSpaceGeneric( reinterpret_cast<const float*>(input_tmp.buffer), input_tmp.shape(), reinterpret_cast<const int32_t*>(blockSize.buffer), reinterpret_cast<float*>(output_tmp.buffer), outShape); break; } case OperandType::TENSOR_FLOAT16: { success = batchToSpaceGeneric( reinterpret_cast<const _Float16*>(input_tmp.buffer), input_tmp.shape(), reinterpret_cast<const int32_t*>(blockSize.buffer), reinterpret_cast<_Float16*>(output_tmp.buffer), outShape); break; } case OperandType::TENSOR_QUANT8_ASYMM: { success = batchToSpaceGeneric( reinterpret_cast<const uint8_t*>(input_tmp.buffer), input_tmp.shape(), reinterpret_cast<const int32_t*>(blockSize.buffer), reinterpret_cast<uint8_t*>(output_tmp.buffer), outShape); break; } default: { LOG(ERROR) << "Unsupported data type"; success = false; } } if (data_layout) { output_tmp_guard.reset(output_tmp.buffer); } if (!success || !convertFromNhwc(output, output_tmp, data_layout, &result)) { success = false; break; } } break; case OperationType::SPACE_TO_BATCH_ND: { const size_t inCount = ins.size(); if ((inCount != 4 && inCount != 3) || !allParametersPresent(inCount, 1)) { return ANEURALNETWORKS_BAD_DATA; } const RunTimeOperandInfo& input = mOperands[ins[0]]; const RunTimeOperandInfo& blockSize = mOperands[ins[1]]; const RunTimeOperandInfo& paddings = mOperands[ins[2]]; bool data_layout = inCount == 4 ? getScalarData<bool>(mOperands[ins[3]]) : false; RunTimeOperandInfo& output = mOperands[outs[0]]; Shape outShape = output.shape(); RunTimeOperandInfo input_tmp, output_tmp; std::unique_ptr<uint8_t[]> input_tmp_guard, output_tmp_guard; if (!convertToNhwc(input_tmp, input, input_tmp_guard, data_layout)) { success = false; break; } output_tmp.lifetime = OperandLifeTime::TEMPORARY_VARIABLE; output_tmp.buffer = data_layout ? nullptr : output.buffer; output_tmp.length = data_layout ? 0 : output.length; if (!spaceToBatchPrepare( input_tmp.shape(), reinterpret_cast<const int32_t*>(blockSize.buffer), blockSize.shape(), reinterpret_cast<const int32_t*>(paddings.buffer), paddings.shape(), &outShape) || !setInfoAndAllocateIfNeeded(&output_tmp, outShape, &result)) { if (!data_layout) output.dimensions = output_tmp.dimensions; break; } switch (input_tmp.type) { case OperandType::TENSOR_FLOAT32: { success = spaceToBatchGeneric( reinterpret_cast<const float*>(input_tmp.buffer), input_tmp.shape(), reinterpret_cast<const int32_t*>(blockSize.buffer), reinterpret_cast<const int32_t*>(paddings.buffer), paddings.shape(), reinterpret_cast<float*>(output_tmp.buffer), outShape); break; } case OperandType::TENSOR_FLOAT16: { success = spaceToBatchGeneric( reinterpret_cast<const _Float16*>(input_tmp.buffer), input_tmp.shape(), reinterpret_cast<const int32_t*>(blockSize.buffer), reinterpret_cast<const int32_t*>(paddings.buffer), paddings.shape(), reinterpret_cast<_Float16*>(output_tmp.buffer), outShape); break; } case OperandType::TENSOR_QUANT8_ASYMM: { success = spaceToBatchGeneric( reinterpret_cast<const uint8_t*>(input_tmp.buffer), input_tmp.shape(), reinterpret_cast<const int32_t*>(blockSize.buffer), reinterpret_cast<const int32_t*>(paddings.buffer), paddings.shape(), reinterpret_cast<uint8_t*>(output_tmp.buffer), outShape); break; } default: { LOG(ERROR) << "Unsupported data type"; success = false; } } if (data_layout) { output_tmp_guard.reset(output_tmp.buffer); } if (!success || !convertFromNhwc(output, output_tmp, data_layout, &result)) { success = false; break; } } break; case OperationType::PAD: case OperationType::PAD_V2: { const bool isV2 = operation.type == OperationType::PAD_V2; if (!allParametersPresent(isV2 ? 3 : 2, 1)) { return ANEURALNETWORKS_BAD_DATA; } const RunTimeOperandInfo& input = mOperands[ins[0]]; const RunTimeOperandInfo& paddings = mOperands[ins[1]]; RunTimeOperandInfo& output = mOperands[outs[0]]; Shape outShape = output.shape(); if (!padPrepare(input.shape(), reinterpret_cast<const int32_t*>(paddings.buffer), paddings.shape(), &outShape) || !setInfoAndAllocateIfNeeded(&output, outShape, &result)) { break; } if (input.type == OperandType::TENSOR_FLOAT32) { float pad_value = isV2 ? getScalarData<float>(mOperands[ins[2]]) : 0; success = padGeneric(reinterpret_cast<const float*>(input.buffer), input.shape(), reinterpret_cast<const int32_t*>(paddings.buffer), pad_value, reinterpret_cast<float*>(output.buffer), outShape); } else if (input.type == OperandType::TENSOR_FLOAT16) { _Float16 pad_value = isV2 ? getScalarData<_Float16>(mOperands[ins[2]]) : 0; success = padGeneric(reinterpret_cast<const _Float16*>(input.buffer), input.shape(), reinterpret_cast<const int32_t*>(paddings.buffer), static_cast<_Float16>(pad_value), reinterpret_cast<_Float16*>(output.buffer), outShape); } else if (input.type == OperandType::TENSOR_QUANT8_ASYMM) { uint8_t pad_value = isV2 ? getScalarData<uint8_t>(mOperands[ins[2]]) : outShape.offset; success = padGeneric(input.buffer, input.shape(), reinterpret_cast<const int32_t*>(paddings.buffer), pad_value, output.buffer, outShape); } } break; case OperationType::CAST: { if (!allParametersPresent(1, 1)) { return ANEURALNETWORKS_BAD_DATA; } const RunTimeOperandInfo& input = mOperands[ins[0]]; RunTimeOperandInfo& output = mOperands[outs[0]]; Shape outShape = output.shape(); success = cast::prepare(input.shape(), &outShape) && setInfoAndAllocateIfNeeded(&output, outShape, &result) && cast::eval(input.buffer, input.shape(), output.buffer, outShape); } break; case OperationType::SQUEEZE: { if (ins.size() != 2 || outs.size() != 1 || mOperands[ins[0]].lifetime == OperandLifeTime::NO_VALUE || mOperands[outs[0]].lifetime == OperandLifeTime::NO_VALUE) { LOG(ERROR) << "Wrong input/output count or lifetime for SQUEEZE op."; return ANEURALNETWORKS_BAD_DATA; } const RunTimeOperandInfo& input = mOperands[ins[0]]; const RunTimeOperandInfo& squeezeDims = mOperands[ins[1]]; RunTimeOperandInfo& output = mOperands[outs[0]]; Shape outShape = output.shape(); success = squeezePrepare(input.shape(), reinterpret_cast<const int32_t*>(squeezeDims.buffer), squeezeDims.shape(), &outShape) && setInfoAndAllocateIfNeeded(&output, outShape, &result) && copyData(input.buffer, input.shape(), output.buffer, outShape); } break; case OperationType::STRIDED_SLICE: { if (!allParametersPresent(7, 1)) { return ANEURALNETWORKS_BAD_DATA; } const RunTimeOperandInfo& input = mOperands[ins[0]]; const RunTimeOperandInfo& begins = mOperands[ins[1]]; const RunTimeOperandInfo& ends = mOperands[ins[2]]; const RunTimeOperandInfo& strides = mOperands[ins[3]]; int32_t beginMask = getScalarData<int32_t>(mOperands[ins[4]]); int32_t endMask = getScalarData<int32_t>(mOperands[ins[5]]); int32_t shrinkAxisMask = getScalarData<int32_t>(mOperands[ins[6]]); RunTimeOperandInfo& output = mOperands[outs[0]]; Shape outShape = output.shape(); success = stridedSlicePrepare( input.shape(), reinterpret_cast<const int32_t*>(begins.buffer), begins.shape(), reinterpret_cast<const int32_t*>(ends.buffer), ends.shape(), reinterpret_cast<const int32_t*>(strides.buffer), strides.shape(), beginMask, endMask, shrinkAxisMask, &outShape) && setInfoAndAllocateIfNeeded(&output, outShape, &result) && stridedSliceGeneric(input.buffer, input.shape(), reinterpret_cast<const int32_t*>(begins.buffer), reinterpret_cast<const int32_t*>(ends.buffer), reinterpret_cast<const int32_t*>(strides.buffer), beginMask, endMask, shrinkAxisMask, output.buffer, outShape); } break; case OperationType::MEAN: { if (!allParametersPresent(3, 1)) { return ANEURALNETWORKS_BAD_DATA; } const RunTimeOperandInfo& input = mOperands[ins[0]]; const RunTimeOperandInfo& axis = mOperands[ins[1]]; int32_t keepDims = getScalarData<int32_t>(mOperands[ins[2]]); RunTimeOperandInfo& output = mOperands[outs[0]]; Shape outShape = output.shape(); if (!meanPrepare(input.shape(), reinterpret_cast<const int32_t*>(axis.buffer), axis.shape(), keepDims > 0, &outShape) || !setInfoAndAllocateIfNeeded(&output, outShape, &result)) { break; } if (input.type == OperandType::TENSOR_FLOAT16) { success = meanFloat16(reinterpret_cast<_Float16*>(input.buffer), input.shape(), reinterpret_cast<const int32_t*>(axis.buffer), axis.shape(), keepDims > 0, reinterpret_cast<_Float16*>(output.buffer), outShape); } else if (input.type == OperandType::TENSOR_FLOAT32) { success = meanGeneric<float, float>( reinterpret_cast<float*>(input.buffer), input.shape(), reinterpret_cast<const int32_t*>(axis.buffer), axis.shape(), keepDims > 0, reinterpret_cast<float*>(output.buffer), outShape); } else if (input.type == OperandType::TENSOR_QUANT8_ASYMM) { success = meanGeneric<uint8_t, int32_t>( reinterpret_cast<uint8_t*>(input.buffer), input.shape(), reinterpret_cast<const int32_t*>(axis.buffer), axis.shape(), keepDims > 0, reinterpret_cast<uint8_t*>(output.buffer), outShape); } } break; case OperationType::ARGMAX: case OperationType::ARGMIN: { if (!allParametersPresent(2, 1)) { return ANEURALNETWORKS_BAD_DATA; } const RunTimeOperandInfo& input = mOperands[ins[0]]; int32_t axis = getScalarData<int32_t>(mOperands[ins[1]]); RunTimeOperandInfo& output = mOperands[outs[0]]; Shape outShape = output.shape(); const bool isArgMin = operation.type == OperationType::ARGMIN; success = argMinMaxPrepare(input.shape(), axis, &outShape) && setInfoAndAllocateIfNeeded(&output, outShape, &result) && argMinMaxGeneric(input.buffer, input.shape(), axis, isArgMin, output.buffer, outShape); } break; case OperationType::EXPAND_DIMS: { if (!allParametersPresent(2, 1)) { return ANEURALNETWORKS_BAD_DATA; } const RunTimeOperandInfo& input = mOperands[ins[0]]; int32_t axis = getScalarData<int32_t>(mOperands[ins[1]]); RunTimeOperandInfo& output = mOperands[outs[0]]; Shape outShape = output.shape(); success = expand_dims::prepare(input.shape(), axis, &outShape) && setInfoAndAllocateIfNeeded(&output, outShape, &result) && expand_dims::eval(input.buffer, input.shape(), axis, output.buffer, outShape); } break; case OperationType::SPLIT: { if (ins.size() != 3) { LOG(ERROR) << "Wrong input count"; return ANEURALNETWORKS_BAD_DATA; } const RunTimeOperandInfo& input = mOperands[ins[0]]; const int32_t axis = getScalarData<int32_t>(mOperands[ins[1]]); const int32_t numOutputs = getScalarData<int32_t>(mOperands[ins[2]]); if (numOutputs != outs.size()) { return ANEURALNETWORKS_BAD_DATA; } std::vector<Shape> outputShapes(numOutputs); for (int i = 0; i < numOutputs; ++i) { outputShapes[i] = mOperands[outs[i]].shape(); } success = splitPrepare(input.shape(), axis, numOutputs, &outputShapes); for (int i = 0; i < numOutputs; ++i) { success = success && setInfoAndAllocateIfNeeded(&(mOperands[outs[i]]), outputShapes[i], &result); } switch (input.type) { case OperandType::TENSOR_FLOAT16: { std::vector<_Float16*> outputDataPtrs(numOutputs); for (int i = 0; i < numOutputs; ++i) { outputDataPtrs[i] = reinterpret_cast<_Float16*>(mOperands[outs[i]].buffer); } success = success && splitFloat16(reinterpret_cast<const _Float16*>(input.buffer), input.shape(), axis, &outputDataPtrs, outputShapes); } break; case OperandType::TENSOR_FLOAT32: { std::vector<float*> outputDataPtrs(numOutputs); for (int i = 0; i < numOutputs; ++i) { outputDataPtrs[i] = reinterpret_cast<float*>(mOperands[outs[i]].buffer); } success = success && splitFloat32(reinterpret_cast<const float*>(input.buffer), input.shape(), axis, &outputDataPtrs, outputShapes); } break; case OperandType::TENSOR_INT32: { std::vector<int32_t*> outputDataPtrs(numOutputs); for (int i = 0; i < numOutputs; ++i) { outputDataPtrs[i] = reinterpret_cast<int32_t*>(mOperands[outs[i]].buffer); } success = success && splitInt32(reinterpret_cast<const int32_t*>(input.buffer), input.shape(), axis, &outputDataPtrs, outputShapes); } break; case OperandType::TENSOR_QUANT8_ASYMM: { std::vector<uint8_t*> outputDataPtrs(numOutputs); for (int i = 0; i < numOutputs; ++i) { outputDataPtrs[i] = reinterpret_cast<uint8_t*>(mOperands[outs[i]].buffer); } success = success && splitQuant8(reinterpret_cast<const uint8_t*>(input.buffer), input.shape(), axis, &outputDataPtrs, outputShapes); } break; default: { return ANEURALNETWORKS_BAD_DATA; } } } break; case OperationType::MAXIMUM: case OperationType::MINIMUM: { if (!allParametersPresent(2, 1)) { return ANEURALNETWORKS_BAD_DATA; } const RunTimeOperandInfo& in1 = mOperands[ins[0]]; const RunTimeOperandInfo& in2 = mOperands[ins[1]]; RunTimeOperandInfo& output = mOperands[outs[0]]; Shape outputShape = output.shape(); const bool isMinimum = operation.type == OperationType::MINIMUM; success = maximum_minimum::prepare(in1.shape(), in2.shape(), &outputShape) && setInfoAndAllocateIfNeeded(&output, outputShape, &result) && maximum_minimum::eval(in1.buffer, in1.shape(), in2.buffer, in2.shape(), isMinimum, output.buffer, outputShape); } break; case OperationType::GROUPED_CONV_2D: { const size_t inCount = ins.size(); if ((inCount != 12 && inCount != 9) || !allParametersPresent(inCount, 1)) { return ANEURALNETWORKS_BAD_DATA; } const RunTimeOperandInfo& input = mOperands[ins[0]]; const RunTimeOperandInfo& filter = mOperands[ins[1]]; const RunTimeOperandInfo& bias = mOperands[ins[2]]; int32_t padding_left, padding_right; int32_t padding_top, padding_bottom; int32_t padding_implicit = 0; int32_t stride_width, stride_height; int32_t numGroups; int32_t activation; bool data_layout = false; if (inCount == 12) { padding_left = getScalarData<int32_t>(mOperands[ins[3]]); padding_right = getScalarData<int32_t>(mOperands[ins[4]]); padding_top = getScalarData<int32_t>(mOperands[ins[5]]); padding_bottom = getScalarData<int32_t>(mOperands[ins[6]]); stride_width = getScalarData<int32_t>(mOperands[ins[7]]); stride_height = getScalarData<int32_t>(mOperands[ins[8]]); numGroups = getScalarData<int32_t>(mOperands[ins[9]]); activation = getScalarData<int32_t>(mOperands[ins[10]]); data_layout = getScalarData<bool>(mOperands[ins[11]]); } else { padding_implicit = getScalarData<int32_t>(mOperands[ins[3]]); stride_width = getScalarData<int32_t>(mOperands[ins[4]]); stride_height = getScalarData<int32_t>(mOperands[ins[5]]); numGroups = getScalarData<int32_t>(mOperands[ins[6]]); activation = getScalarData<int32_t>(mOperands[ins[7]]); data_layout = getScalarData<bool>(mOperands[ins[8]]); } RunTimeOperandInfo& output = mOperands[outs[0]]; Shape outShape = output.shape(); RunTimeOperandInfo input_tmp, output_tmp; std::unique_ptr<uint8_t[]> input_tmp_guard, output_tmp_guard; if (!convertToNhwc(input_tmp, input, input_tmp_guard, data_layout)) { success = false; break; } output_tmp.lifetime = OperandLifeTime::TEMPORARY_VARIABLE; output_tmp.buffer = data_layout ? nullptr : output.buffer; output_tmp.length = data_layout ? 0 : output.length; if (inCount == 9) { Shape inputShape = input_tmp.shape(); Shape filterShape = filter.shape(); int32_t input_width = getSizeOfDimension(inputShape, 2); int32_t input_height = getSizeOfDimension(inputShape, 1); int32_t filter_width = getSizeOfDimension(filterShape, 2); int32_t filter_height = getSizeOfDimension(filterShape, 1); calculateExplicitPadding(input_width, stride_width, filter_width, padding_implicit, &padding_left, &padding_right); calculateExplicitPadding(input_height, stride_height, filter_height, padding_implicit, &padding_top, &padding_bottom); } if (!groupedConvPrepare(input_tmp.shape(), filter.shape(), bias.shape(), padding_left, padding_right, padding_top, padding_bottom, stride_width, stride_height, numGroups, &outShape) || !setInfoAndAllocateIfNeeded(&output_tmp, outShape, &result)) { if (!data_layout) output.dimensions = output_tmp.dimensions; success = false; break; } if (input_tmp.type == OperandType::TENSOR_FLOAT32) { success = groupedConvFloat32( reinterpret_cast<const float*>(input_tmp.buffer), input_tmp.shape(), reinterpret_cast<const float*>(filter.buffer), filter.shape(), reinterpret_cast<const float*>(bias.buffer), bias.shape(), padding_left, padding_right, padding_top, padding_bottom, stride_width, stride_height, numGroups, activation, reinterpret_cast<float*>(output_tmp.buffer), outShape); } else if (input_tmp.type == OperandType::TENSOR_FLOAT16) { success = groupedConvFloat16( reinterpret_cast<const _Float16*>(input_tmp.buffer), input_tmp.shape(), reinterpret_cast<const _Float16*>(filter.buffer), filter.shape(), reinterpret_cast<const _Float16*>(bias.buffer), bias.shape(), padding_left, padding_right, padding_top, padding_bottom, stride_width, stride_height, numGroups, activation, reinterpret_cast<_Float16*>(output_tmp.buffer), outShape); } else if (input_tmp.type == OperandType::TENSOR_QUANT8_ASYMM) { if (filter.type == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) { success = groupedConvQuant8PerChannel( reinterpret_cast<const uint8_t*>(input_tmp.buffer), input_tmp.shape(), reinterpret_cast<const int8_t*>(filter.buffer), filter.shape(), filter.extraParams.channelQuant().scales.data(), reinterpret_cast<const int32_t*>(bias.buffer), bias.shape(), padding_left, padding_right, padding_top, padding_bottom, stride_width, stride_height, numGroups, activation, reinterpret_cast<uint8_t*>(output_tmp.buffer), outShape); } else if (filter.type == OperandType::TENSOR_QUANT8_ASYMM) { success = groupedConvQuant8( reinterpret_cast<const uint8_t*>(input_tmp.buffer), input_tmp.shape(), reinterpret_cast<const uint8_t*>(filter.buffer), filter.shape(), reinterpret_cast<const int32_t*>(bias.buffer), bias.shape(), padding_left, padding_right, padding_top, padding_bottom, stride_width, stride_height, numGroups, activation, reinterpret_cast<uint8_t*>(output_tmp.buffer), outShape); } } if (data_layout) { output_tmp_guard.reset(output_tmp.buffer); } if (!success || !convertFromNhwc(output, output_tmp, data_layout, &result)) { success = false; break; } } break; case OperationType::TILE: { if (!allParametersPresent(2, 1)) { return ANEURALNETWORKS_BAD_DATA; } const RunTimeOperandInfo& input = mOperands[ins[0]]; const RunTimeOperandInfo& multiples = mOperands[ins[1]]; RunTimeOperandInfo& output = mOperands[outs[0]]; Shape outShape = output.shape(); success = tile::prepare(input.shape(), reinterpret_cast<const int32_t*>(multiples.buffer), multiples.shape(), &outShape) && setInfoAndAllocateIfNeeded(&output, outShape, &result) && tile::eval(input.buffer, input.shape(), reinterpret_cast<const int32_t*>(multiples.buffer), output.buffer, outShape); } break; case OperationType::QUANTIZED_16BIT_LSTM: { if (!allParametersPresent(15, 2)) { return ANEURALNETWORKS_BAD_DATA; } RunTimeOperandInfo& cellStateOut = mOperands[outs[QuantizedLSTMCell::kCellStateOutTensor]]; RunTimeOperandInfo& output = mOperands[outs[QuantizedLSTMCell::kOutputTensor]]; Shape cellStateOutShape, outputShape; QuantizedLSTMCell quantizedLSTMCell(operation, mOperands); success = QuantizedLSTMCell::prepare(operation, mOperands, &cellStateOutShape, &outputShape) && setInfoAndAllocateIfNeeded(&cellStateOut, cellStateOutShape, &result) && setInfoAndAllocateIfNeeded(&output, outputShape, &result) && quantizedLSTMCell.eval(); } break; case OperationType::POW: { if (!allParametersPresent(2, 1)) { return ANEURALNETWORKS_BAD_DATA; } const RunTimeOperandInfo& base = mOperands[ins[0]]; const RunTimeOperandInfo& exponent = mOperands[ins[1]]; RunTimeOperandInfo& output = mOperands[outs[0]]; Shape outShape = output.shape(); success = pow::prepare(base.shape(), exponent.shape(), &outShape) && setInfoAndAllocateIfNeeded(&output, outShape, &result) && pow::eval(base.buffer, base.shape(), exponent.buffer, exponent.shape(), output.buffer, outShape); } break; case OperationType::TOPK_V2: { if (!allParametersPresent(2, 2)) { return ANEURALNETWORKS_BAD_DATA; } const RunTimeOperandInfo& input = mOperands[ins[0]]; int32_t k = getScalarData<int32_t>(mOperands[ins[1]]); RunTimeOperandInfo& values = mOperands[outs[0]]; Shape valuesShape = values.shape(); RunTimeOperandInfo& indices = mOperands[outs[1]]; Shape indicesShape = indices.shape(); success = topk_v2::prepare(input.shape(), k, &valuesShape, &indicesShape) && setInfoAndAllocateIfNeeded(&values, valuesShape, &result) && setInfoAndAllocateIfNeeded(&indices, indicesShape, &result) && topk_v2::eval(input.buffer, input.shape(), k, values.buffer, valuesShape, indices.buffer, indicesShape); } break; default: { const OperationRegistration* operationRegistration = mOperationResolver->findOperation(operation.type); if (operationRegistration == nullptr) { LOG(ERROR) << getOperationName(operation.type) << " not registered"; } else if (operationRegistration->prepare == nullptr || operationRegistration->execute == nullptr) { LOG(ERROR) << "Incomplete operation registration: " << getOperationName(operation.type); } else { OperationExecutionContext context(&operation, mOperands.data()); success = operationRegistration->flags.allowOmittedOperand || context.checkNoOmittedOperand(); success = success && (operationRegistration->flags.allowZeroSizedInput || context.checkNoZeroSizedInput()); success = success && operationRegistration->prepare(&context) && operationRegistration->execute(&context); result = context.getResultCode(); } } } if (!success && result == ANEURALNETWORKS_NO_ERROR) { result = ANEURALNETWORKS_OP_FAILED; } if (result != ANEURALNETWORKS_NO_ERROR) { LOG(ERROR) << getOperationName(operation.type) << " failed."; return result; } freeNoLongerUsedOperands(ins); return ANEURALNETWORKS_NO_ERROR; } void CpuExecutor::finish(int result) { // Free allocated temporary operands. for (auto& info : mOperands) { if (info.lifetime == OperandLifeTime::TEMPORARY_VARIABLE && info.buffer != nullptr) { delete[] info.buffer; info.buffer = nullptr; } } // Only report the output shapes when the result code is NO_ERROR or // OUTPUT_INSUFFICIENT_SIZE. if (result == ANEURALNETWORKS_NO_ERROR || result == ANEURALNETWORKS_OUTPUT_INSUFFICIENT_SIZE) { const auto& outputs = mModel->outputIndexes; mOutputShapes.resize(outputs.size()); for (uint32_t i = 0; i < outputs.size(); i++) { const uint32_t operandIndex = outputs[i]; RunTimeOperandInfo& from = mOperands[operandIndex]; mOutputShapes[i].dimensions = from.dimensions; mOutputShapes[i].isSufficient = from.isSufficient(); } } else { mOutputShapes.clear(); } mModel = nullptr; mRequest = nullptr; mFinished = true; } // b/109953668, disable OpenMP #ifdef NNAPI_OPENMP ScopedOpenmpSettings::ScopedOpenmpSettings() { mBlocktimeInitial = kmp_get_blocktime(); kmp_set_blocktime(20); // ms, see b/109645291 #if NNAPI_LIMIT_CPU_THREADS // Code not yet enabled. Choosing the number of threads to be based on // benchmarking. See longer comment by the class declaration. mMaxThreadsInitial = Eigen::nbThreads(); const int nProcs = omp_get_num_procs(); int threads = nProcs; if (nProcs >= 8) { threads = nProcs - 4; } else if (nProcs >= 4) { threads = nProcs - 2; } Eigen::setNbThreads(threads); #endif } ScopedOpenmpSettings::~ScopedOpenmpSettings() { kmp_set_blocktime(mBlocktimeInitial); #if NNAPI_LIMIT_CPU_THREADS Eigen::setNbThreads(mMaxThreadsInitial); #endif } #endif // NNAPI_OPENMP } // namespace nn } // namespace android