/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "LSHProjection.h" #include "CpuExecutor.h" #include "Tracing.h" #include "Utils.h" #include "utils/hash/farmhash.h" namespace android { namespace nn { LSHProjection::LSHProjection(const Operation& operation, std::vector<RunTimeOperandInfo>& operands) { input_ = GetInput(operation, operands, kInputTensor); weight_ = GetInput(operation, operands, kWeightTensor); hash_ = GetInput(operation, operands, kHashTensor); type_ = static_cast<LSHProjectionType>( getScalarData<int32_t>(*GetInput(operation, operands, kTypeParam))); output_ = GetOutput(operation, operands, kOutputTensor); } bool LSHProjection::Prepare(const Operation& operation, std::vector<RunTimeOperandInfo>& operands, Shape* outputShape) { const int num_inputs = NumInputsWithValues(operation, operands); NN_CHECK(num_inputs == 3 || num_inputs == 4); NN_CHECK_EQ(NumOutputs(operation), 1); const RunTimeOperandInfo* hash = GetInput(operation, operands, kHashTensor); NN_CHECK_EQ(NumDimensions(hash), 2); // Support up to 32 bits. NN_CHECK(SizeOfDimension(hash, 1) <= 32); const RunTimeOperandInfo* input = GetInput(operation, operands, kInputTensor); NN_CHECK(NumDimensions(input) >= 1); auto type = static_cast<LSHProjectionType>( getScalarData<int32_t>(operands[operation.inputs[kTypeParam]])); switch (type) { case LSHProjectionType_SPARSE: case LSHProjectionType_SPARSE_DEPRECATED: NN_CHECK(NumInputsWithValues(operation, operands) == 3); outputShape->dimensions = {SizeOfDimension(hash, 0)}; break; case LSHProjectionType_DENSE: { RunTimeOperandInfo* weight = GetInput(operation, operands, kWeightTensor); NN_CHECK_EQ(NumInputsWithValues(operation, operands), 4); NN_CHECK_EQ(NumDimensions(weight), 1); NN_CHECK_EQ(SizeOfDimension(weight, 0), SizeOfDimension(input, 0)); outputShape->dimensions = {SizeOfDimension(hash, 0) * SizeOfDimension(hash, 1)}; break; } default: return false; } outputShape->type = OperandType::TENSOR_INT32; outputShape->offset = 0; outputShape->scale = 0.f; return true; } // Compute sign bit of dot product of hash(seed, input) and weight. // NOTE: use float as seed, and convert it to double as a temporary solution // to match the trained model. This is going to be changed once the new // model is trained in an optimized method. // template <typename T> int runningSignBit(const RunTimeOperandInfo* input, const RunTimeOperandInfo* weight, float seed) { double score = 0.0; int input_item_bytes = nonExtensionOperandSizeOfData(input->type, input->dimensions) / SizeOfDimension(input, 0); char* input_ptr = (char*)(input->buffer); const size_t seed_size = sizeof(seed); const size_t key_bytes = seed_size + input_item_bytes; std::unique_ptr<char[]> key(new char[key_bytes]); for (uint32_t i = 0; i < SizeOfDimension(input, 0); ++i) { // Create running hash id and value for current dimension. memcpy(key.get(), &seed, seed_size); memcpy(key.get() + seed_size, input_ptr, input_item_bytes); int64_t hash_signature = farmhash::Fingerprint64(key.get(), key_bytes); double running_value = static_cast<double>(hash_signature); input_ptr += input_item_bytes; if (weight->lifetime == OperandLifeTime::NO_VALUE) { score += running_value; } else { score += static_cast<double>(reinterpret_cast<T*>(weight->buffer)[i]) * running_value; } } return (score > 0) ? 1 : 0; } template <typename T> void SparseLshProjection(LSHProjectionType type, const RunTimeOperandInfo* hash, const RunTimeOperandInfo* input, const RunTimeOperandInfo* weight, int32_t* out_buf) { int num_hash = SizeOfDimension(hash, 0); int num_bits = SizeOfDimension(hash, 1); for (int i = 0; i < num_hash; i++) { int32_t hash_signature = 0; for (int j = 0; j < num_bits; j++) { T seed = reinterpret_cast<T*>(hash->buffer)[i * num_bits + j]; int bit = runningSignBit<T>(input, weight, static_cast<float>(seed)); hash_signature = (hash_signature << 1) | bit; } if (type == LSHProjectionType_SPARSE_DEPRECATED) { *out_buf++ = hash_signature; } else { *out_buf++ = hash_signature + i * (1 << num_bits); } } } template <typename T> void DenseLshProjection(const RunTimeOperandInfo* hash, const RunTimeOperandInfo* input, const RunTimeOperandInfo* weight, int32_t* out_buf) { int num_hash = SizeOfDimension(hash, 0); int num_bits = SizeOfDimension(hash, 1); for (int i = 0; i < num_hash; i++) { for (int j = 0; j < num_bits; j++) { T seed = reinterpret_cast<T*>(hash->buffer)[i * num_bits + j]; int bit = runningSignBit<T>(input, weight, static_cast<float>(seed)); *out_buf++ = bit; } } } template <typename T> bool LSHProjection::Eval() { NNTRACE_COMP("LSHProjection::Eval"); int32_t* out_buf = reinterpret_cast<int32_t*>(output_->buffer); switch (type_) { case LSHProjectionType_DENSE: DenseLshProjection<T>(hash_, input_, weight_, out_buf); break; case LSHProjectionType_SPARSE: case LSHProjectionType_SPARSE_DEPRECATED: SparseLshProjection<T>(type_, hash_, input_, weight_, out_buf); break; default: return false; } return true; } template bool LSHProjection::Eval<float>(); template bool LSHProjection::Eval<_Float16>(); template int runningSignBit<float>(const RunTimeOperandInfo* input, const RunTimeOperandInfo* weight, float seed); template int runningSignBit<_Float16>(const RunTimeOperandInfo* input, const RunTimeOperandInfo* weight, float seed); template void SparseLshProjection<float>(LSHProjectionType type, const RunTimeOperandInfo* hash, const RunTimeOperandInfo* input, const RunTimeOperandInfo* weight, int32_t* outBuffer); template void SparseLshProjection<_Float16>(LSHProjectionType type, const RunTimeOperandInfo* hash, const RunTimeOperandInfo* input, const RunTimeOperandInfo* weight, int32_t* outBuffer); template void DenseLshProjection<float>(const RunTimeOperandInfo* hash, const RunTimeOperandInfo* input, const RunTimeOperandInfo* weight, int32_t* outBuffer); template void DenseLshProjection<_Float16>(const RunTimeOperandInfo* hash, const RunTimeOperandInfo* input, const RunTimeOperandInfo* weight, int32_t* outBuffer); } // namespace nn } // namespace android