/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "CpuOperationUtils.h" #include "Operations.h" #include <algorithm> #include <cmath> #include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h" #include "Tracing.h" namespace android { namespace nn { inline bool localResponseNormFloat32Impl(const float* inputData, const Shape& inputShape, int32_t radius, float bias, float alpha, float beta, int32_t axis, float* outputData, const Shape& outputShape) { NNTRACE_TRANS("localResponseNormFloat32"); const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis); const uint32_t axisSize = getSizeOfDimension(inputShape, axis); const uint32_t innerSize = getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape)); for (uint32_t outer = 0; outer < outerSize; ++outer) { const float* inputBase = inputData + outer * axisSize * innerSize; float* outputBase = outputData + outer * axisSize * innerSize; for (uint32_t inner = 0; inner < innerSize; ++inner, ++inputBase, ++outputBase) { for (int32_t i = 0; i < axisSize; i++) { const int32_t dBegin = std::max(0, i - radius); // Add 1 on dEnd to comply with optimized_ops in TFLite const int32_t dEnd = std::min(static_cast<int32_t>(axisSize), i + radius + 1); float sum = 0.0f; for (int32_t d = dBegin; d < dEnd; d++) { float val = inputBase[d * innerSize]; sum += val * val; } float multiplier = std::pow(bias + alpha * sum, -beta); outputBase[i * innerSize] = inputBase[i * innerSize] * multiplier; } } } return true; } bool localResponseNormFloat16(const _Float16* inputData, const Shape& inputShape, int32_t radius, float bias, float alpha, float beta, int32_t axis, _Float16* outputData, const Shape& outputShape) { NNTRACE_TRANS("localResponseNormFloat16"); std::vector<float> inputDataFloat32(getNumberOfElements(inputShape)); convertFloat16ToFloat32(inputData, &inputDataFloat32); std::vector<float> outputDataFloat32(getNumberOfElements(outputShape)); localResponseNormFloat32(inputDataFloat32.data(), inputShape, radius, bias, alpha, beta, axis, outputDataFloat32.data(), outputShape); convertFloat32ToFloat16(outputDataFloat32, outputData); return true; } bool localResponseNormFloat32(const float* inputData, const Shape& inputShape, int32_t radius, float bias, float alpha, float beta, int32_t axis, float* outputData, const Shape& outputShape) { int32_t ndim = getNumberOfDimensions(inputShape); NN_CHECK(handleNegativeAxis(inputShape, &axis)); // TFLite optimized implementation only supports computation along the last axis if (axis == ndim - 1) { NNTRACE_COMP("optimized_ops::LocalResponseNormalization::float"); tflite::LocalResponseNormalizationParams param = { .range = radius, .bias = bias, .alpha = alpha, .beta = beta}; tflite::optimized_ops::LocalResponseNormalization( param, convertShapeToTflshape(inputShape), inputData, convertShapeToTflshape(outputShape), outputData); return true; } else { return localResponseNormFloat32Impl(inputData, inputShape, radius, bias, alpha, beta, axis, outputData, outputShape); } } } // namespace nn } // namespace android