/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "CpuOperationUtils.h" #include "OperationResolver.h" #include "tensorflow/lite/kernels/internal/optimized/legacy_optimized_ops.h" #include "tensorflow/lite/kernels/internal/reference/reference_ops.h" #include "Tracing.h" namespace android { namespace nn { namespace transpose { constexpr char kOperationName[] = "TRANSPOSE"; constexpr uint32_t kNumInputs = 2; constexpr uint32_t kInputTensor = 0; constexpr uint32_t kPermTensor = 1; constexpr uint32_t kNumOutputs = 1; constexpr uint32_t kOutputTensor = 0; namespace { template <typename T> bool transposeGeneric(const T* inputData, const Shape& inputShape, const int32_t* perm, const Shape& permShape, T* outputData, const Shape& outputShape) { NNTRACE_TRANS("transposeGeneric"); // Reverse the permuted axes and convert to 4D due to the way Dims are // constructed. const int32_t kOutputDimensionNum = 4; // permData can be NO_VALUE representing a regular 2D matrix transpose int32_t permSize = perm == nullptr ? 2 : static_cast<int32_t>(getSizeOfDimension(permShape, 0)); int32_t perm_tmp[2] = {1, 0}; if (perm == nullptr) { perm = perm_tmp; } int32_t reversed_perm[kOutputDimensionNum]; for (int32_t output_k = 0, input_k = permSize - 1; output_k < permSize; ++output_k, --input_k) { reversed_perm[output_k] = permSize - perm[input_k] - 1; } for (int32_t k = permSize; k < kOutputDimensionNum; ++k) { reversed_perm[k] = k; } NNTRACE_COMP_SWITCH("reference_ops::Transpose"); tflite::reference_ops::Transpose(inputData, convertShapeToDims(inputShape), outputData, convertShapeToDims(outputShape), reversed_perm); return true; } } // namespace bool validate(const IOperationValidationContext* context) { NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs); NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs); const OperandType inputType = context->getInputType(kInputTensor); if (inputType == OperandType::TENSOR_FLOAT32 || inputType == OperandType::TENSOR_QUANT8_ASYMM) { NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_1)); } else if (inputType == OperandType::TENSOR_FLOAT16) { NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_2)); } else { NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName; } return validateInputTypes(context, {inputType, OperandType::TENSOR_INT32}) && validateOutputTypes(context, {inputType}); } bool prepare(IOperationExecutionContext* context) { // Only the permutation tensor can be omitted. NN_RET_CHECK(!context->isOmittedInput(kInputTensor)); NN_RET_CHECK(!context->isOmittedOutput(kOutputTensor)); const Shape& input = context->getInputShape(kInputTensor); uint32_t numInputDims = getNumberOfDimensions(input); Shape output = context->getOutputShape(kOutputTensor); output.type = input.type; output.offset = input.offset; output.scale = input.scale; // permData can be NO_VALUE representing a regular 2D matrix transpose if (context->isOmittedInput(kPermTensor)) { NN_RET_CHECK_EQ(numInputDims, 2); output.dimensions = {getSizeOfDimension(input, 1), getSizeOfDimension(input, 0)}; } else { const Shape& permShape = context->getInputShape(kPermTensor); const int32_t* permData = context->getInputBuffer<int32_t>(kPermTensor); // Transpose op only supports 1D-4D input arrays. NN_RET_CHECK_LE(numInputDims, 4); // perm need to be provided as a 1-D int32 tensor. NN_RET_CHECK(permShape.type == OperandType::TENSOR_INT32); NN_RET_CHECK_EQ(getNumberOfDimensions(permShape), 1); NN_RET_CHECK_EQ(numInputDims, getSizeOfDimension(permShape, 0)); std::vector<uint32_t> outDims(numInputDims); for (int32_t idx = 0; idx < static_cast<int32_t>(numInputDims); ++idx) { NN_RET_CHECK(permData[idx] >= 0 && permData[idx] < static_cast<int32_t>(numInputDims)); outDims[idx] = getSizeOfDimension(input, permData[idx]); } output.dimensions = outDims; } return context->setOutputShape(kOutputTensor, output); } bool execute(IOperationExecutionContext* context) { // Bypass execution in the case of zero-sized input. if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true; switch (context->getInputType(kInputTensor)) { case OperandType::TENSOR_FLOAT32: return transposeGeneric(context->getInputBuffer<float>(kInputTensor), context->getInputShape(kInputTensor), context->getInputBuffer<int32_t>(kPermTensor), context->getInputShape(kPermTensor), context->getOutputBuffer<float>(kOutputTensor), context->getOutputShape(kOutputTensor)); case OperandType::TENSOR_FLOAT16: return transposeGeneric(context->getInputBuffer<_Float16>(kInputTensor), context->getInputShape(kInputTensor), context->getInputBuffer<int32_t>(kPermTensor), context->getInputShape(kPermTensor), context->getOutputBuffer<_Float16>(kOutputTensor), context->getOutputShape(kOutputTensor)); case OperandType::TENSOR_QUANT8_ASYMM: return transposeGeneric(context->getInputBuffer<uint8_t>(kInputTensor), context->getInputShape(kInputTensor), context->getInputBuffer<int32_t>(kPermTensor), context->getInputShape(kPermTensor), context->getOutputBuffer<uint8_t>(kOutputTensor), context->getOutputShape(kOutputTensor)); default: NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName; } } } // namespace transpose NN_REGISTER_OPERATION(TRANSPOSE, transpose::kOperationName, transpose::validate, transpose::prepare, transpose::execute, .allowOmittedOperand = true, .allowZeroSizedInput = true); } // namespace nn } // namespace android