/* Copyright 2015 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #ifndef TENSORFLOW_CORE_LIB_RANDOM_SIMPLE_PHILOX_H_ #define TENSORFLOW_CORE_LIB_RANDOM_SIMPLE_PHILOX_H_ #include <math.h> #include <string.h> #include <algorithm> #include "philox_random.h" #include "random_distributions.h" namespace tensorflow { namespace random { // A simple imperative interface to Philox class SimplePhilox { public: PHILOX_DEVICE_INLINE explicit SimplePhilox(PhiloxRandom* gen) : single_(gen) {} // 32 random bits PHILOX_DEVICE_INLINE uint32 Rand32() { return single_(); } // 64 random bits PHILOX_DEVICE_INLINE uint64 Rand64() { const uint32 lo = single_(), hi = single_(); return lo | static_cast<uint64>(hi) << 32; } // Uniform float in [0, 1) PHILOX_DEVICE_INLINE float RandFloat() { return Uint32ToFloat(single_()); } // Uniform double in [0, 1) PHILOX_DEVICE_INLINE double RandDouble() { const uint32 x0 = single_(), x1 = single_(); return Uint64ToDouble(x0, x1); } // Uniform integer in [0, n). // Uses rejection sampling, so may need more than one 32-bit sample. uint32 Uniform(uint32 n); // Approximately uniform integer in [0, n). // Uses rejection sampling, so may need more than one 64-bit sample. uint64 Uniform64(uint64 n); // True with probability 1/n. bool OneIn(uint32 n) { return Uniform(n) == 0; } // Skewed: pick "base" uniformly from range [0,max_log] and then // return "base" random bits. The effect is to pick a number in the // range [0,2^max_log-1] with bias towards smaller numbers. uint32 Skewed(int max_log); private: SingleSampleAdapter<PhiloxRandom> single_; }; } // namespace random } // namespace tensorflow #endif // TENSORFLOW_CORE_LIB_RANDOM_SIMPLE_PHILOX_H_