/* ** Copyright 2011, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #ifndef ANDROID_BLOB_CACHE_H #define ANDROID_BLOB_CACHE_H #include <stddef.h> #include <functional> #include <memory> #include <utility> #include <vector> namespace android { // A BlobCache is an in-memory cache for binary key/value pairs. A BlobCache // does NOT provide any thread-safety guarantees. // // The cache contents can be serialized to an in-memory buffer or mmap'd file // and then reloaded in a subsequent execution of the program. This // serialization is non-portable and the data should only be used by the device // that generated it. class BlobCache { public: enum class Select { RANDOM, // evict random entries LRU, // evict least-recently-used entries DEFAULT = RANDOM, }; enum class Capacity { // cut back to no more than half capacity; new/replacement // entry still might not fit HALVE, // cut back to whatever is necessary to fit new/replacement // entry FIT, // cut back to no more than half capacity and ensure that // there's enough space for new/replacement entry FIT_HALVE, DEFAULT = HALVE, }; // When we're inserting or replacing an entry in the cache, and // there's not enough space, how do we clean the cache? typedef std::pair<Select, Capacity> Policy; static Policy defaultPolicy() { return Policy(Select::DEFAULT, Capacity::DEFAULT); } // Create an empty blob cache. The blob cache will cache key/value pairs // with key and value sizes less than or equal to maxKeySize and // maxValueSize, respectively. The total combined size of ALL cache entries // (key sizes plus value sizes) will not exceed maxTotalSize. BlobCache(size_t maxKeySize, size_t maxValueSize, size_t maxTotalSize, Policy policy = defaultPolicy()); // set inserts a new binary value into the cache and associates it with the // given binary key. If the key or value are too large for the cache then // the cache remains unchanged. This includes the case where a different // value was previously associated with the given key - the old value will // remain in the cache. If the given key and value are small enough to be // put in the cache (based on the maxKeySize, maxValueSize, and maxTotalSize // values specified to the BlobCache constructor), then the key/value pair // will be in the cache after set returns. Note, however, that a subsequent // call to set may evict old key/value pairs from the cache. // // Preconditions: // key != NULL // 0 < keySize // value != NULL // 0 < valueSize void set(const void* key, size_t keySize, const void* value, size_t valueSize); // get retrieves from the cache the binary value associated with a given // binary key. If the key is present in the cache then the length of the // binary value associated with that key is returned. If the key // is not present in the cache then 0 is returned. // // There are two variants of get: one takes a buffer (value, valueSize) // and one takes an allocator (value, alloc). // // For the BUFFER variant, if the value argument is non-NULL and // the size of the cached value is less than valueSize bytes then // the cached value is copied into the buffer pointed to by the // value argument. If the key is not present in the cache then // the buffer pointed to by the value argument is not modified. // // Preconditions: // key != NULL // 0 < keySize // 0 <= valueSize // // For the ALLOCATOR variant, if it is possible to allocate a // buffer for the cached value via a call to the allocator by // // size_t cached_value_size = ...; // void* buf = alloc(cached_value_size); // // then the cached value is copied into the newly-allocated buffer // and *value is set to the address of the newly-allocated buffer. // If the allocator returns NULL, or the key is not present in the // cache, then *value is set to NULL. // // Preconditions: // key != NULL // 0 < keySize // value != NULL // // Note that when calling get multiple times with the same key, the later // calls may fail, returning 0, even if earlier calls succeeded. The return // value must be checked for each call. size_t get(const void* key, size_t keySize, void* value, size_t valueSize); size_t get(const void* key, size_t keySize, void** value, std::function<void*(size_t)> alloc); template <typename T> size_t get(const void* key, size_t keySize, T** value, std::function<void*(size_t)> alloc) { void *valueVoid; const size_t size = get(key, keySize, &valueVoid, alloc); *value = static_cast<T*>(valueVoid); return size; } // getFlattenedSize returns the number of bytes needed to store the entire // serialized cache. size_t getFlattenedSize() const; // flatten serializes the current contents of the cache into the memory // pointed to by 'buffer'. The serialized cache contents can later be // loaded into a BlobCache object using the unflatten method. The contents // of the BlobCache object will not be modified. // // Preconditions: // size >= this.getFlattenedSize() int flatten(void* buffer, size_t size) const; // unflatten replaces the contents of the cache with the serialized cache // contents in the memory pointed to by 'buffer'. The previous contents of // the BlobCache will be evicted from the cache. If an error occurs while // unflattening the serialized cache contents then the BlobCache will be // left in an empty state. // int unflatten(void const* buffer, size_t size); private: // Copying is disallowed. BlobCache(const BlobCache&); void operator=(const BlobCache&); // A random function helper to get around MinGW not having nrand48() long int blob_random(); // Use this in place of a cache entry index to indicate that no // entry is being designated. static const size_t NoEntry = ~size_t(0); // Is this Capacity value one of the *FIT* values? static bool isFit(Capacity capacity); // clean evicts a selected set of entries from the cache to make // room for a new entry or for replacing an entry with a larger // one. mSelect determines how to pick entries to evict, and // mCapacity determines when to stop evicting entries. // // newEntrySize is the size of the entry we want to add to the // cache, or the new size of the entry we want to replace in the // cache. // // If we are replacing an entry in the cache, then onBehalfOf is // the index of that entry in the cache; otherwise, it is NoEntry. // // Returns true if at least one entry is evicted. bool clean(size_t newEntrySize, size_t onBehalfOf); // isCleanable returns true if the cache is full enough for the clean method // to have some effect, and false otherwise. bool isCleanable() const; // findVictim selects an entry to remove from the cache. The // cache must not be empty. size_t findVictim(); // findDownTo determines how far to clean the cache -- until it // results in a total size that does not exceed the return value // of findDownTo. newEntrySize and onBehalfOf have the same // meanings they do for clean. size_t findDownTo(size_t newEntrySize, size_t onBehalfOf); // A Blob is an immutable sized unstructured data blob. class Blob { public: Blob(const void* data, size_t size, bool copyData); ~Blob(); bool operator<(const Blob& rhs) const; const void* getData() const; size_t getSize() const; private: // Copying is not allowed. Blob(const Blob&); void operator=(const Blob&); // mData points to the buffer containing the blob data. const void* mData; // mSize is the size of the blob data in bytes. size_t mSize; // mOwnsData indicates whether or not this Blob object should free the // memory pointed to by mData when the Blob gets destructed. bool mOwnsData; }; // A CacheEntry is a single key/value pair in the cache. class CacheEntry { public: CacheEntry(); CacheEntry(const std::shared_ptr<Blob>& key, const std::shared_ptr<Blob>& value, uint32_t recency); CacheEntry(const CacheEntry& ce); bool operator<(const CacheEntry& rhs) const; const CacheEntry& operator=(const CacheEntry&); std::shared_ptr<Blob> getKey() const; std::shared_ptr<Blob> getValue() const; void setValue(const std::shared_ptr<Blob>& value); uint32_t getRecency() const; void setRecency(uint32_t recency); private: // mKey is the key that identifies the cache entry. std::shared_ptr<Blob> mKey; // mValue is the cached data associated with the key. std::shared_ptr<Blob> mValue; // mRecency is the last "time" (as indicated by // BlobCache::mAccessCount) that this entry was accessed. uint32_t mRecency; }; // A Header is the header for the entire BlobCache serialization format. No // need to make this portable, so we simply write the struct out. struct Header { // mMagicNumber is the magic number that identifies the data as // serialized BlobCache contents. It must always contain 'Blb$'. uint32_t mMagicNumber; // mBlobCacheVersion is the serialization format version. uint32_t mBlobCacheVersion; // mDeviceVersion is the device-specific version of the cache. This can // be used to invalidate the cache. uint32_t mDeviceVersion; // mNumEntries is number of cache entries following the header in the // data. size_t mNumEntries; // mBuildId is the build id of the device when the cache was created. // When an update to the build happens (via an OTA or other update) this // is used to invalidate the cache. int mBuildIdLength; char mBuildId[]; }; // An EntryHeader is the header for a serialized cache entry. No need to // make this portable, so we simply write the struct out. Each EntryHeader // is followed imediately by the key data and then the value data. // // The beginning of each serialized EntryHeader is 4-byte aligned, so the // number of bytes that a serialized cache entry will occupy is: // // ((sizeof(EntryHeader) + keySize + valueSize) + 3) & ~3 // struct EntryHeader { // mKeySize is the size of the entry key in bytes. size_t mKeySize; // mValueSize is the size of the entry value in bytes. size_t mValueSize; // mData contains both the key and value data for the cache entry. The // key comes first followed immediately by the value. uint8_t mData[]; }; // mMaxKeySize is the maximum key size that will be cached. Calls to // BlobCache::set with a keySize parameter larger than mMaxKeySize will // simply not add the key/value pair to the cache. const size_t mMaxKeySize; // mMaxValueSize is the maximum value size that will be cached. Calls to // BlobCache::set with a valueSize parameter larger than mMaxValueSize will // simply not add the key/value pair to the cache. const size_t mMaxValueSize; // mMaxTotalSize is the maximum size that all cache entries can occupy. This // includes space for both keys and values. When a call to BlobCache::set // would otherwise cause this limit to be exceeded, either the key/value // pair passed to BlobCache::set will not be cached or other cache entries // will be evicted from the cache to make room for the new entry. const size_t mMaxTotalSize; // mPolicySelect indicates how we pick entries to evict from the cache. const Select mPolicySelect; // mPolicyCapacity indicates how we decide when to stop evicting // entries from the cache. const Capacity mPolicyCapacity; // mTotalSize is the total combined size of all keys and values currently in // the cache. size_t mTotalSize; // mAccessCount is the number of times an entry has been // added/replaced by set(), or its content (not just its size) // retrieved by get(). It serves as a clock for recognizing how // recently an entry was accessed, for the Select::LRU policy. uint32_t mAccessCount; // mRandState is the pseudo-random number generator state. It is passed to // nrand48 to generate random numbers when needed. unsigned short mRandState[3]; // mCacheEntries stores all the cache entries that are resident in memory. // Cache entries are added to it by the 'set' method. std::vector<CacheEntry> mCacheEntries; }; } #endif // ANDROID_BLOB_CACHE_H