/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // Provides C++ classes to more easily use the Neural Networks API. #ifndef ANDROID_ML_NN_RUNTIME_NEURAL_NETWORKS_WRAPPER_H #define ANDROID_ML_NN_RUNTIME_NEURAL_NETWORKS_WRAPPER_H #include "NeuralNetworks.h" #include <math.h> #include <optional> #include <string> #include <vector> namespace android { namespace nn { namespace wrapper { enum class Type { FLOAT32 = ANEURALNETWORKS_FLOAT32, INT32 = ANEURALNETWORKS_INT32, UINT32 = ANEURALNETWORKS_UINT32, TENSOR_FLOAT32 = ANEURALNETWORKS_TENSOR_FLOAT32, TENSOR_INT32 = ANEURALNETWORKS_TENSOR_INT32, TENSOR_QUANT8_ASYMM = ANEURALNETWORKS_TENSOR_QUANT8_ASYMM, BOOL = ANEURALNETWORKS_BOOL, TENSOR_QUANT16_SYMM = ANEURALNETWORKS_TENSOR_QUANT16_SYMM, TENSOR_FLOAT16 = ANEURALNETWORKS_TENSOR_FLOAT16, TENSOR_BOOL8 = ANEURALNETWORKS_TENSOR_BOOL8, FLOAT16 = ANEURALNETWORKS_FLOAT16, TENSOR_QUANT8_SYMM_PER_CHANNEL = ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL, TENSOR_QUANT16_ASYMM = ANEURALNETWORKS_TENSOR_QUANT16_ASYMM, TENSOR_QUANT8_SYMM = ANEURALNETWORKS_TENSOR_QUANT8_SYMM, }; enum class ExecutePreference { PREFER_LOW_POWER = ANEURALNETWORKS_PREFER_LOW_POWER, PREFER_FAST_SINGLE_ANSWER = ANEURALNETWORKS_PREFER_FAST_SINGLE_ANSWER, PREFER_SUSTAINED_SPEED = ANEURALNETWORKS_PREFER_SUSTAINED_SPEED }; enum class Result { NO_ERROR = ANEURALNETWORKS_NO_ERROR, OUT_OF_MEMORY = ANEURALNETWORKS_OUT_OF_MEMORY, INCOMPLETE = ANEURALNETWORKS_INCOMPLETE, UNEXPECTED_NULL = ANEURALNETWORKS_UNEXPECTED_NULL, BAD_DATA = ANEURALNETWORKS_BAD_DATA, OP_FAILED = ANEURALNETWORKS_OP_FAILED, UNMAPPABLE = ANEURALNETWORKS_UNMAPPABLE, BAD_STATE = ANEURALNETWORKS_BAD_STATE, OUTPUT_INSUFFICIENT_SIZE = ANEURALNETWORKS_OUTPUT_INSUFFICIENT_SIZE, UNAVAILABLE_DEVICE = ANEURALNETWORKS_UNAVAILABLE_DEVICE, }; struct SymmPerChannelQuantParams { ANeuralNetworksSymmPerChannelQuantParams params; std::vector<float> scales; SymmPerChannelQuantParams(std::vector<float> scalesVec, uint32_t channelDim) : scales(std::move(scalesVec)) { params = { .channelDim = channelDim, .scaleCount = static_cast<uint32_t>(scales.size()), .scales = scales.size() > 0 ? scales.data() : nullptr, }; } SymmPerChannelQuantParams(const SymmPerChannelQuantParams& other) : params(other.params), scales(other.scales) { params.scales = scales.size() > 0 ? scales.data() : nullptr; } SymmPerChannelQuantParams& operator=(const SymmPerChannelQuantParams& other) { if (this != &other) { params = other.params; scales = other.scales; params.scales = scales.size() > 0 ? scales.data() : nullptr; } return *this; } }; struct OperandType { ANeuralNetworksOperandType operandType; std::vector<uint32_t> dimensions; std::optional<SymmPerChannelQuantParams> channelQuant; OperandType(const OperandType& other) : operandType(other.operandType), dimensions(other.dimensions), channelQuant(other.channelQuant) { operandType.dimensions = dimensions.size() > 0 ? dimensions.data() : nullptr; } OperandType& operator=(const OperandType& other) { if (this != &other) { operandType = other.operandType; dimensions = other.dimensions; channelQuant = other.channelQuant; operandType.dimensions = dimensions.size() > 0 ? dimensions.data() : nullptr; } return *this; } OperandType(Type type, std::vector<uint32_t> d, float scale = 0.0f, int32_t zeroPoint = 0) : dimensions(std::move(d)), channelQuant(std::nullopt) { operandType = { .type = static_cast<int32_t>(type), .dimensionCount = static_cast<uint32_t>(dimensions.size()), .dimensions = dimensions.size() > 0 ? dimensions.data() : nullptr, .scale = scale, .zeroPoint = zeroPoint, }; } OperandType(Type type, std::vector<uint32_t> data, float scale, int32_t zeroPoint, SymmPerChannelQuantParams&& channelQuant) : dimensions(std::move(data)), channelQuant(std::move(channelQuant)) { operandType = { .type = static_cast<int32_t>(type), .dimensionCount = static_cast<uint32_t>(dimensions.size()), .dimensions = dimensions.size() > 0 ? dimensions.data() : nullptr, .scale = scale, .zeroPoint = zeroPoint, }; } }; class Memory { public: Memory(size_t size, int protect, int fd, size_t offset) { mValid = ANeuralNetworksMemory_createFromFd(size, protect, fd, offset, &mMemory) == ANEURALNETWORKS_NO_ERROR; } Memory(AHardwareBuffer* buffer) { mValid = ANeuralNetworksMemory_createFromAHardwareBuffer(buffer, &mMemory) == ANEURALNETWORKS_NO_ERROR; } ~Memory() { ANeuralNetworksMemory_free(mMemory); } // Disallow copy semantics to ensure the runtime object can only be freed // once. Copy semantics could be enabled if some sort of reference counting // or deep-copy system for runtime objects is added later. Memory(const Memory&) = delete; Memory& operator=(const Memory&) = delete; // Move semantics to remove access to the runtime object from the wrapper // object that is being moved. This ensures the runtime object will be // freed only once. Memory(Memory&& other) { *this = std::move(other); } Memory& operator=(Memory&& other) { if (this != &other) { ANeuralNetworksMemory_free(mMemory); mMemory = other.mMemory; mValid = other.mValid; other.mMemory = nullptr; other.mValid = false; } return *this; } ANeuralNetworksMemory* get() const { return mMemory; } bool isValid() const { return mValid; } private: ANeuralNetworksMemory* mMemory = nullptr; bool mValid = true; }; class Model { public: Model() { // TODO handle the value returned by this call ANeuralNetworksModel_create(&mModel); } ~Model() { ANeuralNetworksModel_free(mModel); } // Disallow copy semantics to ensure the runtime object can only be freed // once. Copy semantics could be enabled if some sort of reference counting // or deep-copy system for runtime objects is added later. Model(const Model&) = delete; Model& operator=(const Model&) = delete; // Move semantics to remove access to the runtime object from the wrapper // object that is being moved. This ensures the runtime object will be // freed only once. Model(Model&& other) { *this = std::move(other); } Model& operator=(Model&& other) { if (this != &other) { ANeuralNetworksModel_free(mModel); mModel = other.mModel; mNextOperandId = other.mNextOperandId; mValid = other.mValid; other.mModel = nullptr; other.mNextOperandId = 0; other.mValid = false; } return *this; } Result finish() { if (mValid) { auto result = static_cast<Result>(ANeuralNetworksModel_finish(mModel)); if (result != Result::NO_ERROR) { mValid = false; } return result; } else { return Result::BAD_STATE; } } uint32_t addOperand(const OperandType* type) { if (ANeuralNetworksModel_addOperand(mModel, &(type->operandType)) != ANEURALNETWORKS_NO_ERROR) { mValid = false; } if (type->channelQuant) { if (ANeuralNetworksModel_setOperandSymmPerChannelQuantParams( mModel, mNextOperandId, &type->channelQuant.value().params) != ANEURALNETWORKS_NO_ERROR) { mValid = false; } } return mNextOperandId++; } void setOperandValue(uint32_t index, const void* buffer, size_t length) { if (ANeuralNetworksModel_setOperandValue(mModel, index, buffer, length) != ANEURALNETWORKS_NO_ERROR) { mValid = false; } } void setOperandValueFromMemory(uint32_t index, const Memory* memory, uint32_t offset, size_t length) { if (ANeuralNetworksModel_setOperandValueFromMemory(mModel, index, memory->get(), offset, length) != ANEURALNETWORKS_NO_ERROR) { mValid = false; } } void addOperation(ANeuralNetworksOperationType type, const std::vector<uint32_t>& inputs, const std::vector<uint32_t>& outputs) { if (ANeuralNetworksModel_addOperation(mModel, type, static_cast<uint32_t>(inputs.size()), inputs.data(), static_cast<uint32_t>(outputs.size()), outputs.data()) != ANEURALNETWORKS_NO_ERROR) { mValid = false; } } void identifyInputsAndOutputs(const std::vector<uint32_t>& inputs, const std::vector<uint32_t>& outputs) { if (ANeuralNetworksModel_identifyInputsAndOutputs( mModel, static_cast<uint32_t>(inputs.size()), inputs.data(), static_cast<uint32_t>(outputs.size()), outputs.data()) != ANEURALNETWORKS_NO_ERROR) { mValid = false; } } void relaxComputationFloat32toFloat16(bool isRelax) { if (ANeuralNetworksModel_relaxComputationFloat32toFloat16(mModel, isRelax) == ANEURALNETWORKS_NO_ERROR) { mRelaxed = isRelax; } } ANeuralNetworksModel* getHandle() const { return mModel; } bool isValid() const { return mValid; } bool isRelaxed() const { return mRelaxed; } protected: ANeuralNetworksModel* mModel = nullptr; // We keep track of the operand ID as a convenience to the caller. uint32_t mNextOperandId = 0; bool mValid = true; bool mRelaxed = false; }; class Event { public: Event() {} ~Event() { ANeuralNetworksEvent_free(mEvent); } // Disallow copy semantics to ensure the runtime object can only be freed // once. Copy semantics could be enabled if some sort of reference counting // or deep-copy system for runtime objects is added later. Event(const Event&) = delete; Event& operator=(const Event&) = delete; // Move semantics to remove access to the runtime object from the wrapper // object that is being moved. This ensures the runtime object will be // freed only once. Event(Event&& other) { *this = std::move(other); } Event& operator=(Event&& other) { if (this != &other) { ANeuralNetworksEvent_free(mEvent); mEvent = other.mEvent; other.mEvent = nullptr; } return *this; } Result wait() { return static_cast<Result>(ANeuralNetworksEvent_wait(mEvent)); } // Only for use by Execution void set(ANeuralNetworksEvent* newEvent) { ANeuralNetworksEvent_free(mEvent); mEvent = newEvent; } private: ANeuralNetworksEvent* mEvent = nullptr; }; class Compilation { public: Compilation(const Model* model) { int result = ANeuralNetworksCompilation_create(model->getHandle(), &mCompilation); if (result != 0) { // TODO Handle the error } } ~Compilation() { ANeuralNetworksCompilation_free(mCompilation); } // Disallow copy semantics to ensure the runtime object can only be freed // once. Copy semantics could be enabled if some sort of reference counting // or deep-copy system for runtime objects is added later. Compilation(const Compilation&) = delete; Compilation& operator=(const Compilation&) = delete; // Move semantics to remove access to the runtime object from the wrapper // object that is being moved. This ensures the runtime object will be // freed only once. Compilation(Compilation&& other) { *this = std::move(other); } Compilation& operator=(Compilation&& other) { if (this != &other) { ANeuralNetworksCompilation_free(mCompilation); mCompilation = other.mCompilation; other.mCompilation = nullptr; } return *this; } Result setPreference(ExecutePreference preference) { return static_cast<Result>(ANeuralNetworksCompilation_setPreference( mCompilation, static_cast<int32_t>(preference))); } Result setCaching(const std::string& cacheDir, const std::vector<uint8_t>& token) { if (token.size() != ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN) { return Result::BAD_DATA; } return static_cast<Result>(ANeuralNetworksCompilation_setCaching( mCompilation, cacheDir.c_str(), token.data())); } Result finish() { return static_cast<Result>(ANeuralNetworksCompilation_finish(mCompilation)); } ANeuralNetworksCompilation* getHandle() const { return mCompilation; } private: ANeuralNetworksCompilation* mCompilation = nullptr; }; class Execution { public: Execution(const Compilation* compilation) { int result = ANeuralNetworksExecution_create(compilation->getHandle(), &mExecution); if (result != 0) { // TODO Handle the error } } ~Execution() { ANeuralNetworksExecution_free(mExecution); } // Disallow copy semantics to ensure the runtime object can only be freed // once. Copy semantics could be enabled if some sort of reference counting // or deep-copy system for runtime objects is added later. Execution(const Execution&) = delete; Execution& operator=(const Execution&) = delete; // Move semantics to remove access to the runtime object from the wrapper // object that is being moved. This ensures the runtime object will be // freed only once. Execution(Execution&& other) { *this = std::move(other); } Execution& operator=(Execution&& other) { if (this != &other) { ANeuralNetworksExecution_free(mExecution); mExecution = other.mExecution; other.mExecution = nullptr; } return *this; } Result setInput(uint32_t index, const void* buffer, size_t length, const ANeuralNetworksOperandType* type = nullptr) { return static_cast<Result>( ANeuralNetworksExecution_setInput(mExecution, index, type, buffer, length)); } Result setInputFromMemory(uint32_t index, const Memory* memory, uint32_t offset, uint32_t length, const ANeuralNetworksOperandType* type = nullptr) { return static_cast<Result>(ANeuralNetworksExecution_setInputFromMemory( mExecution, index, type, memory->get(), offset, length)); } Result setOutput(uint32_t index, void* buffer, size_t length, const ANeuralNetworksOperandType* type = nullptr) { return static_cast<Result>( ANeuralNetworksExecution_setOutput(mExecution, index, type, buffer, length)); } Result setOutputFromMemory(uint32_t index, const Memory* memory, uint32_t offset, uint32_t length, const ANeuralNetworksOperandType* type = nullptr) { return static_cast<Result>(ANeuralNetworksExecution_setOutputFromMemory( mExecution, index, type, memory->get(), offset, length)); } Result startCompute(Event* event) { ANeuralNetworksEvent* ev = nullptr; Result result = static_cast<Result>(ANeuralNetworksExecution_startCompute(mExecution, &ev)); event->set(ev); return result; } Result compute() { return static_cast<Result>(ANeuralNetworksExecution_compute(mExecution)); } Result getOutputOperandDimensions(uint32_t index, std::vector<uint32_t>* dimensions) { uint32_t rank = 0; Result result = static_cast<Result>( ANeuralNetworksExecution_getOutputOperandRank(mExecution, index, &rank)); dimensions->resize(rank); if ((result != Result::NO_ERROR && result != Result::OUTPUT_INSUFFICIENT_SIZE) || rank == 0) { return result; } result = static_cast<Result>(ANeuralNetworksExecution_getOutputOperandDimensions( mExecution, index, dimensions->data())); return result; } private: ANeuralNetworksExecution* mExecution = nullptr; }; } // namespace wrapper } // namespace nn } // namespace android #endif // ANDROID_ML_NN_RUNTIME_NEURAL_NETWORKS_WRAPPER_H