/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "fuzzing/operation_signatures/OperationSignatureUtils.h" namespace android { namespace nn { namespace fuzzing_test { static void broadcastOpConstructor(Type dataType, uint32_t rank, RandomOperation* op) { // TODO: All inputs of the broadcast op have the same rank 4 for now. op->inputs[0]->dimensions.resize(rank); op->inputs[1]->dimensions.resize(rank); op->outputs[0]->dimensions.resize(rank); for (uint32_t i = 0; i < rank; i++) { if (getBernoulli(0.9f)) { op->inputs[0]->dimensions[i] = RandomVariableType::FREE; } else { op->inputs[0]->dimensions[i] = 1; } if (getBernoulli(0.9f)) { op->inputs[1]->dimensions[i] = op->inputs[0]->dimensions[i]; } else { op->inputs[1]->dimensions[i] = 1; } op->outputs[0]->dimensions[i] = max(op->inputs[0]->dimensions[i], op->inputs[1]->dimensions[i]); } // MUL requires output.scale > input0.scale * input1.scale. if (dataType == Type::TENSOR_QUANT8_ASYMM && op->opType == ANEURALNETWORKS_MUL) { float minScale = op->inputs[0]->scale * op->inputs[1]->scale; op->outputs[0]->scale = getUniform(minScale, minScale * 5); } // DIV and POW may produce Inf output values. We should not connect this output tensor to the // input of another operation. if (op->opType == ANEURALNETWORKS_DIV || op->opType == ANEURALNETWORKS_POW) { op->outputs[0]->doNotConnect = true; } } // For broadcast operations with fused activation. #define DEFINE_BROADCAST_WITH_ACT_SIGNATURE(op, ver, ...) \ DEFINE_OPERATION_SIGNATURE(op##_##ver){ \ .opType = ANEURALNETWORKS_##op, \ .supportedDataTypes = {__VA_ARGS__}, \ .supportedRanks = {1, 2, 3, 4}, \ .version = HalVersion::ver, \ .inputs = {INPUT_DEFAULT, INPUT_DEFAULT, PARAMETER_CHOICE(Type::INT32, 0, 1, 2, 3)}, \ .outputs = {OUTPUT_DEFAULT}, \ .constructor = broadcastOpConstructor}; // Arithmetic with activation. DEFINE_BROADCAST_WITH_ACT_SIGNATURE(ADD, V1_0, Type::TENSOR_FLOAT32, Type::TENSOR_QUANT8_ASYMM); DEFINE_BROADCAST_WITH_ACT_SIGNATURE(MUL, V1_0, Type::TENSOR_FLOAT32, Type::TENSOR_QUANT8_ASYMM); DEFINE_BROADCAST_WITH_ACT_SIGNATURE(SUB, V1_1, Type::TENSOR_FLOAT32); DEFINE_BROADCAST_WITH_ACT_SIGNATURE(DIV, V1_1, Type::TENSOR_FLOAT32); DEFINE_BROADCAST_WITH_ACT_SIGNATURE(ADD, V1_2, Type::TENSOR_FLOAT16); DEFINE_BROADCAST_WITH_ACT_SIGNATURE(MUL, V1_2, Type::TENSOR_FLOAT16); DEFINE_BROADCAST_WITH_ACT_SIGNATURE(SUB, V1_2, Type::TENSOR_FLOAT16, Type::TENSOR_QUANT8_ASYMM); DEFINE_BROADCAST_WITH_ACT_SIGNATURE(DIV, V1_2, Type::TENSOR_FLOAT16); // For broadcast ops with output of the same data type as inputs. #define DEFINE_BROADCAST_SIGNATURE(op, ver, ...) \ DEFINE_OPERATION_SIGNATURE(op##_##ver){.opType = ANEURALNETWORKS_##op, \ .supportedDataTypes = {__VA_ARGS__}, \ .supportedRanks = {1, 2, 3, 4, 5}, \ .version = HalVersion::ver, \ .inputs = {INPUT_DEFAULT, INPUT_DEFAULT}, \ .outputs = {OUTPUT_DEFAULT}, \ .constructor = broadcastOpConstructor}; // Arithmetic without activation. DEFINE_BROADCAST_SIGNATURE(POW, V1_2, Type::TENSOR_FLOAT32, Type::TENSOR_FLOAT16); DEFINE_BROADCAST_SIGNATURE(PRELU, V1_2, Type::TENSOR_FLOAT32, Type::TENSOR_FLOAT16, Type::TENSOR_QUANT8_ASYMM); DEFINE_BROADCAST_SIGNATURE(MAXIMUM, V1_2, Type::TENSOR_FLOAT32, Type::TENSOR_FLOAT16, Type::TENSOR_QUANT8_ASYMM, Type::TENSOR_INT32); DEFINE_BROADCAST_SIGNATURE(MINIMUM, V1_2, Type::TENSOR_FLOAT32, Type::TENSOR_FLOAT16, Type::TENSOR_QUANT8_ASYMM, Type::TENSOR_INT32); // Logical DEFINE_BROADCAST_SIGNATURE(LOGICAL_AND, V1_2, Type::TENSOR_BOOL8); DEFINE_BROADCAST_SIGNATURE(LOGICAL_OR, V1_2, Type::TENSOR_BOOL8); // Comparisons #define DEFINE_COMPARISON_SIGNATURE(op, ver, ...) \ DEFINE_OPERATION_SIGNATURE(op##_##ver){.opType = ANEURALNETWORKS_##op, \ .supportedDataTypes = {__VA_ARGS__}, \ .supportedRanks = {1, 2, 3, 4}, \ .version = HalVersion::ver, \ .inputs = {INPUT_DEFAULT, INPUT_DEFAULT}, \ .outputs = {OUTPUT_TYPED(Type::TENSOR_BOOL8)}, \ .constructor = broadcastOpConstructor}; DEFINE_COMPARISON_SIGNATURE(EQUAL, V1_2, Type::TENSOR_FLOAT32, Type::TENSOR_FLOAT16, Type::TENSOR_INT32, Type::TENSOR_QUANT8_ASYMM, Type::TENSOR_BOOL8); DEFINE_COMPARISON_SIGNATURE(GREATER, V1_2, Type::TENSOR_FLOAT32, Type::TENSOR_FLOAT16, Type::TENSOR_INT32, Type::TENSOR_QUANT8_ASYMM); DEFINE_COMPARISON_SIGNATURE(GREATER_EQUAL, V1_2, Type::TENSOR_FLOAT32, Type::TENSOR_FLOAT16, Type::TENSOR_INT32, Type::TENSOR_QUANT8_ASYMM); DEFINE_COMPARISON_SIGNATURE(LESS, V1_2, Type::TENSOR_FLOAT32, Type::TENSOR_FLOAT16, Type::TENSOR_INT32, Type::TENSOR_QUANT8_ASYMM); DEFINE_COMPARISON_SIGNATURE(LESS_EQUAL, V1_2, Type::TENSOR_FLOAT32, Type::TENSOR_FLOAT16, Type::TENSOR_INT32, Type::TENSOR_QUANT8_ASYMM); DEFINE_COMPARISON_SIGNATURE(NOT_EQUAL, V1_2, Type::TENSOR_FLOAT32, Type::TENSOR_FLOAT16, Type::TENSOR_INT32, Type::TENSOR_QUANT8_ASYMM, Type::TENSOR_BOOL8); } // namespace fuzzing_test } // namespace nn } // namespace android