/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "fuzzing/operation_signatures/OperationSignatureUtils.h" namespace android { namespace nn { namespace fuzzing_test { // For pooling ops with explicit padding. static void poolingExplicitOpConstructor(Type, uint32_t rank, RandomOperation* op) { NN_FUZZER_CHECK(rank == 4); // Parameters int32_t paddingLeft = op->inputs[1]->value<int32_t>(); int32_t paddingRight = op->inputs[2]->value<int32_t>(); int32_t paddingTop = op->inputs[3]->value<int32_t>(); int32_t paddingBottom = op->inputs[4]->value<int32_t>(); int32_t strideWidth = op->inputs[5]->value<int32_t>(); int32_t strideHeight = op->inputs[6]->value<int32_t>(); auto filterWidth = op->inputs[7]->value<RandomVariable>(); auto filterHeight = op->inputs[8]->value<RandomVariable>(); bool useNchw = false; if (op->inputs.size() > 10) useNchw = op->inputs[10]->value<bool8>(); int heightIndex = useNchw ? 2 : 1; int widthIndex = useNchw ? 3 : 2; int channelIndex = useNchw ? 1 : 3; // Input, [batch, height_in, width_in, channel] op->inputs[0]->dimensions = {RandomVariableType::FREE, RandomVariableType::FREE, RandomVariableType::FREE, RandomVariableType::FREE}; // Output, [batch, height_out, width_out, channel] op->outputs[0]->dimensions.resize(4); // batch and channel op->outputs[0]->dimensions[0] = op->inputs[0]->dimensions[0]; op->outputs[0]->dimensions[channelIndex] = op->inputs[0]->dimensions[channelIndex]; // height explicitPadding(op->inputs[0]->dimensions[heightIndex], filterHeight, strideHeight, /*dilation=*/1, paddingTop, paddingBottom, &op->outputs[0]->dimensions[heightIndex]); // width explicitPadding(op->inputs[0]->dimensions[widthIndex], filterWidth, strideWidth, /*dilation=*/1, paddingLeft, paddingRight, &op->outputs[0]->dimensions[widthIndex]); setSameQuantization(op->outputs[0], op->inputs[0]); } // For pooling ops with implicit padding. static void poolingImplicitOpConstructor(Type, uint32_t rank, RandomOperation* op) { NN_FUZZER_CHECK(rank == 4); // Parameters int32_t paddingScheme = op->inputs[1]->value<int32_t>(); int32_t strideWidth = op->inputs[2]->value<int32_t>(); int32_t strideHeight = op->inputs[3]->value<int32_t>(); auto filterWidth = op->inputs[4]->value<RandomVariable>(); auto filterHeight = op->inputs[5]->value<RandomVariable>(); bool useNchw = false; if (op->inputs.size() > 7) useNchw = op->inputs[7]->value<bool8>(); int heightIndex = useNchw ? 2 : 1; int widthIndex = useNchw ? 3 : 2; int channelIndex = useNchw ? 1 : 3; // Input, [batch, height_in, width_in, channel] op->inputs[0]->dimensions = {RandomVariableType::FREE, RandomVariableType::FREE, RandomVariableType::FREE, RandomVariableType::FREE}; // Output, [batch, height_out, width_out, channel] op->outputs[0]->dimensions.resize(4); // batch and channel op->outputs[0]->dimensions[0] = op->inputs[0]->dimensions[0]; op->outputs[0]->dimensions[channelIndex] = op->inputs[0]->dimensions[channelIndex]; // height and width implicitPadding(op->inputs[0]->dimensions[heightIndex], filterHeight, strideHeight, /*dilation=*/1, paddingScheme, &op->outputs[0]->dimensions[heightIndex]); implicitPadding(op->inputs[0]->dimensions[widthIndex], filterWidth, strideWidth, /*dilation=*/1, paddingScheme, &op->outputs[0]->dimensions[widthIndex]); setSameQuantization(op->outputs[0], op->inputs[0]); } #define DEFINE_POOLING_SIGNATURE(op, ver, ...) \ DEFINE_OPERATION_SIGNATURE(op##_explicit_##ver){ \ .opType = ANEURALNETWORKS_##op, \ .supportedDataTypes = {__VA_ARGS__}, \ .supportedRanks = {4}, \ .version = HalVersion::ver, \ .inputs = \ { \ INPUT_DEFAULT, \ PARAMETER_RANGE(Type::INT32, 1, 3), \ PARAMETER_RANGE(Type::INT32, 1, 3), \ PARAMETER_RANGE(Type::INT32, 1, 3), \ PARAMETER_RANGE(Type::INT32, 1, 3), \ PARAMETER_RANGE(Type::INT32, 1, 3), \ PARAMETER_RANGE(Type::INT32, 1, 3), \ RANDOM_INT_RANGE(1, 4), \ RANDOM_INT_RANGE(1, 4), \ PARAMETER_CHOICE(Type::INT32, 0, 1, 2, 3), \ }, \ .outputs = {OUTPUT_DEFAULT}, \ .constructor = poolingExplicitOpConstructor}; \ DEFINE_OPERATION_SIGNATURE(op##_implicit_##ver){ \ .opType = ANEURALNETWORKS_##op, \ .supportedDataTypes = {__VA_ARGS__}, \ .supportedRanks = {4}, \ .version = HalVersion::ver, \ .inputs = \ { \ INPUT_DEFAULT, \ PARAMETER_CHOICE(Type::INT32, 1, 2), \ PARAMETER_RANGE(Type::INT32, 1, 3), \ PARAMETER_RANGE(Type::INT32, 1, 3), \ RANDOM_INT_RANGE(1, 4), \ RANDOM_INT_RANGE(1, 4), \ PARAMETER_CHOICE(Type::INT32, 0, 1, 2, 3), \ }, \ .outputs = {OUTPUT_DEFAULT}, \ .constructor = poolingImplicitOpConstructor}; DEFINE_POOLING_SIGNATURE(AVERAGE_POOL_2D, V1_0, Type::TENSOR_FLOAT32, Type::TENSOR_QUANT8_ASYMM); DEFINE_POOLING_SIGNATURE(L2_POOL_2D, V1_0, Type::TENSOR_FLOAT32); DEFINE_POOLING_SIGNATURE(MAX_POOL_2D, V1_0, Type::TENSOR_FLOAT32, Type::TENSOR_QUANT8_ASYMM); DEFINE_POOLING_SIGNATURE(AVERAGE_POOL_2D, V1_2, Type::TENSOR_FLOAT16); DEFINE_POOLING_SIGNATURE(L2_POOL_2D, V1_2, Type::TENSOR_FLOAT16); DEFINE_POOLING_SIGNATURE(MAX_POOL_2D, V1_2, Type::TENSOR_FLOAT16); #define DEFINE_POOLING_WITH_LAYOUT_SIGNATURE(op, ver, ...) \ DEFINE_OPERATION_SIGNATURE(op##_explicit_layout_##ver){ \ .opType = ANEURALNETWORKS_##op, \ .supportedDataTypes = {__VA_ARGS__}, \ .supportedRanks = {4}, \ .version = HalVersion::ver, \ .inputs = \ { \ INPUT_DEFAULT, \ PARAMETER_RANGE(Type::INT32, 1, 3), \ PARAMETER_RANGE(Type::INT32, 1, 3), \ PARAMETER_RANGE(Type::INT32, 1, 3), \ PARAMETER_RANGE(Type::INT32, 1, 3), \ PARAMETER_RANGE(Type::INT32, 1, 3), \ PARAMETER_RANGE(Type::INT32, 1, 3), \ RANDOM_INT_RANGE(1, 4), \ RANDOM_INT_RANGE(1, 4), \ PARAMETER_CHOICE(Type::INT32, 0, 1, 2, 3), \ PARAMETER_CHOICE(Type::BOOL, true, false), \ }, \ .outputs = {OUTPUT_DEFAULT}, \ .constructor = poolingExplicitOpConstructor}; \ DEFINE_OPERATION_SIGNATURE(op##_implicit_layout_##ver){ \ .opType = ANEURALNETWORKS_##op, \ .supportedDataTypes = {__VA_ARGS__}, \ .supportedRanks = {4}, \ .version = HalVersion::ver, \ .inputs = \ { \ INPUT_DEFAULT, \ PARAMETER_CHOICE(Type::INT32, 1, 2), \ PARAMETER_RANGE(Type::INT32, 1, 3), \ PARAMETER_RANGE(Type::INT32, 1, 3), \ RANDOM_INT_RANGE(1, 4), \ RANDOM_INT_RANGE(1, 4), \ PARAMETER_CHOICE(Type::INT32, 0, 1, 2, 3), \ PARAMETER_CHOICE(Type::BOOL, true, false), \ }, \ .outputs = {OUTPUT_DEFAULT}, \ .constructor = poolingImplicitOpConstructor}; DEFINE_POOLING_WITH_LAYOUT_SIGNATURE(AVERAGE_POOL_2D, V1_2, Type::TENSOR_FLOAT32, Type::TENSOR_FLOAT16, Type::TENSOR_QUANT8_ASYMM); DEFINE_POOLING_WITH_LAYOUT_SIGNATURE(L2_POOL_2D, V1_2, Type::TENSOR_FLOAT32, Type::TENSOR_FLOAT16); DEFINE_POOLING_WITH_LAYOUT_SIGNATURE(MAX_POOL_2D, V1_2, Type::TENSOR_FLOAT32, Type::TENSOR_FLOAT16, Type::TENSOR_QUANT8_ASYMM); } // namespace fuzzing_test } // namespace nn } // namespace android