/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "fuzzing/operation_signatures/OperationSignatureUtils.h" namespace android { namespace nn { namespace fuzzing_test { static void reduceOpConstructor(Type, uint32_t rank, RandomOperation* op) { setFreeDimensions(op->inputs[0], rank); // A boolean array indicating whether each dimension is selected to be reduced. bool reduce[4] = {false, false, false, false}; // Generate values for the "axis" tensor. uint32_t numAxis = getUniform<int32_t>(1, 10); op->inputs[1]->dimensions = {numAxis}; op->inputs[1]->resizeBuffer<int32_t>(numAxis); for (uint32_t i = 0; i < numAxis; i++) { int32_t dim = getUniform<int32_t>(-rank, rank - 1); op->inputs[1]->value<int32_t>(i) = dim; reduce[dim < 0 ? dim + rank : dim] = true; } // This scalar may have two types: in MEAN it is INT32, in REDUCE_* it is BOOL bool keepDims; if (op->inputs[2]->dataType == Type::BOOL) { keepDims = op->inputs[2]->value<bool8>(); } else { keepDims = op->inputs[2]->value<int32_t>() > 0; } for (uint32_t i = 0; i < rank; i++) { if (!reduce[i]) { op->outputs[0]->dimensions.emplace_back(op->inputs[0]->dimensions[i]); } else if (keepDims) { op->outputs[0]->dimensions.emplace_back(1); } } setSameQuantization(op->outputs[0], op->inputs[0]); // REDUCE_PROD may produce Inf output values. We should not connect the output tensor to the // input of another operation. if (op->opType == ANEURALNETWORKS_REDUCE_PROD) { op->outputs[0]->doNotConnect = true; } } #define DEFINE_MEAN_SIGNATURE(ver, ...) \ DEFINE_OPERATION_SIGNATURE(MEAN_##ver){ \ .opType = ANEURALNETWORKS_MEAN, \ .supportedDataTypes = {__VA_ARGS__}, \ .supportedRanks = {1, 2, 3, 4}, \ .version = HalVersion::ver, \ .inputs = {INPUT_DEFAULT, PARAMETER_NONE(Type::TENSOR_INT32), \ PARAMETER_CHOICE(Type::INT32, -100, 100)}, \ .outputs = {OUTPUT_DEFAULT}, \ .constructor = reduceOpConstructor}; DEFINE_MEAN_SIGNATURE(V1_1, Type::TENSOR_FLOAT32, Type::TENSOR_QUANT8_ASYMM); DEFINE_MEAN_SIGNATURE(V1_2, Type::TENSOR_FLOAT16); #define DEFINE_REDUCE_SIGNATURE(op, ver, ...) \ DEFINE_OPERATION_SIGNATURE(op##_##ver){ \ .opType = ANEURALNETWORKS_##op, \ .supportedDataTypes = {__VA_ARGS__}, \ .supportedRanks = {1, 2, 3, 4}, \ .version = HalVersion::ver, \ .inputs = {INPUT_DEFAULT, PARAMETER_NONE(Type::TENSOR_INT32), \ PARAMETER_CHOICE(Type::BOOL, true, false)}, \ .outputs = {OUTPUT_DEFAULT}, \ .constructor = reduceOpConstructor}; DEFINE_REDUCE_SIGNATURE(REDUCE_ALL, V1_2, Type::TENSOR_BOOL8); DEFINE_REDUCE_SIGNATURE(REDUCE_ANY, V1_2, Type::TENSOR_BOOL8); DEFINE_REDUCE_SIGNATURE(REDUCE_PROD, V1_2, Type::TENSOR_FLOAT32, Type::TENSOR_FLOAT16); DEFINE_REDUCE_SIGNATURE(REDUCE_SUM, V1_2, Type::TENSOR_FLOAT32, Type::TENSOR_FLOAT16); DEFINE_REDUCE_SIGNATURE(REDUCE_MAX, V1_2, Type::TENSOR_FLOAT32, Type::TENSOR_FLOAT16, Type::TENSOR_QUANT8_ASYMM); DEFINE_REDUCE_SIGNATURE(REDUCE_MIN, V1_2, Type::TENSOR_FLOAT32, Type::TENSOR_FLOAT16, Type::TENSOR_QUANT8_ASYMM); static void singleAxisReduceOpConstructor(Type, uint32_t rank, RandomOperation* op) { setFreeDimensions(op->inputs[0], rank); // "axis" must be in the range [-rank, rank). // Negative "axis" is used to specify axis from the end. int32_t axis = getUniform<int32_t>(-rank, rank - 1); op->inputs[1]->setScalarValue<int32_t>(axis); for (uint32_t i = 0; i < rank; i++) { if (i != static_cast<uint32_t>(axis) && i != axis + rank) { op->outputs[0]->dimensions.emplace_back(op->inputs[0]->dimensions[i]); } } } #define DEFINE_ARGMIN_MAX_SIGNATURE(op, ver, ...) \ DEFINE_OPERATION_SIGNATURE(op##_##ver){ \ .opType = ANEURALNETWORKS_##op, \ .supportedDataTypes = {Type::TENSOR_FLOAT32, Type::TENSOR_FLOAT16, Type::TENSOR_INT32, \ Type::TENSOR_QUANT8_ASYMM}, \ .supportedRanks = {1, 2, 3, 4, 5}, \ .version = HalVersion::ver, \ .inputs = {INPUT_DEFAULT, PARAMETER_NONE(Type::INT32)}, \ .outputs = {OUTPUT_TYPED(Type::TENSOR_INT32)}, \ .constructor = singleAxisReduceOpConstructor}; DEFINE_ARGMIN_MAX_SIGNATURE(ARGMAX, V1_2); DEFINE_ARGMIN_MAX_SIGNATURE(ARGMIN, V1_2); } // namespace fuzzing_test } // namespace nn } // namespace android