#include <gtest/gtest.h> #include <poll.h> #include <private/dvr/bufferhub_rpc.h> #include <private/dvr/consumer_buffer.h> #include <private/dvr/producer_buffer.h> #include <sys/epoll.h> #include <sys/eventfd.h> #include <ui/BufferHubDefs.h> #include <mutex> #include <thread> namespace { #define RETRY_EINTR(fnc_call) \ ([&]() -> decltype(fnc_call) { \ decltype(fnc_call) result; \ do { \ result = (fnc_call); \ } while (result == -1 && errno == EINTR); \ return result; \ })() using android::BufferHubDefs::isAnyClientAcquired; using android::BufferHubDefs::isAnyClientGained; using android::BufferHubDefs::isAnyClientPosted; using android::BufferHubDefs::isClientAcquired; using android::BufferHubDefs::isClientPosted; using android::BufferHubDefs::isClientReleased; using android::BufferHubDefs::kFirstClientBitMask; using android::dvr::ConsumerBuffer; using android::dvr::ProducerBuffer; using android::pdx::LocalHandle; using android::pdx::Status; using LibBufferHubTest = ::testing::Test; const int kWidth = 640; const int kHeight = 480; const int kFormat = HAL_PIXEL_FORMAT_RGBA_8888; const int kUsage = 0; // Maximum number of consumers for the buffer that only has one producer in the // test. const size_t kMaxConsumerCount = android::BufferHubDefs::kMaxNumberOfClients - 1; const int kPollTimeoutMs = 100; // Helper function to poll the eventfd in BufferHubBase. template <class BufferHubBase> int PollBufferEvent(const std::unique_ptr<BufferHubBase>& buffer, int timeout_ms = kPollTimeoutMs) { pollfd p = {buffer->event_fd(), POLLIN, 0}; return poll(&p, 1, timeout_ms); } } // namespace TEST_F(LibBufferHubTest, TestBasicUsage) { std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); ASSERT_TRUE(p.get() != nullptr); std::unique_ptr<ConsumerBuffer> c1 = ConsumerBuffer::Import(p->CreateConsumer()); ASSERT_TRUE(c1.get() != nullptr); // Check that consumers can spawn other consumers. std::unique_ptr<ConsumerBuffer> c2 = ConsumerBuffer::Import(c1->CreateConsumer()); ASSERT_TRUE(c2.get() != nullptr); // Checks the state masks of client p, c1 and c2. EXPECT_EQ(p->client_state_mask(), kFirstClientBitMask); EXPECT_EQ(c1->client_state_mask(), kFirstClientBitMask << 1); EXPECT_EQ(c2->client_state_mask(), kFirstClientBitMask << 2); // Initial state: producer not available, consumers not available. EXPECT_EQ(0, RETRY_EINTR(PollBufferEvent(p))); EXPECT_EQ(0, RETRY_EINTR(PollBufferEvent(c1))); EXPECT_EQ(0, RETRY_EINTR(PollBufferEvent(c2))); EXPECT_EQ(0, p->GainAsync()); EXPECT_EQ(0, p->Post(LocalHandle())); // New state: producer not available, consumers available. EXPECT_EQ(0, RETRY_EINTR(PollBufferEvent(p))); EXPECT_EQ(1, RETRY_EINTR(PollBufferEvent(c1))); EXPECT_EQ(1, RETRY_EINTR(PollBufferEvent(c2))); LocalHandle fence; EXPECT_EQ(0, c1->Acquire(&fence)); EXPECT_EQ(0, RETRY_EINTR(PollBufferEvent(c1))); EXPECT_EQ(1, RETRY_EINTR(PollBufferEvent(c2))); EXPECT_EQ(0, c2->Acquire(&fence)); EXPECT_EQ(0, RETRY_EINTR(PollBufferEvent(c2))); EXPECT_EQ(0, RETRY_EINTR(PollBufferEvent(c1))); EXPECT_EQ(0, c1->Release(LocalHandle())); EXPECT_EQ(0, RETRY_EINTR(PollBufferEvent(p))); EXPECT_EQ(0, c2->Discard()); EXPECT_EQ(1, RETRY_EINTR(PollBufferEvent(p))); EXPECT_EQ(0, p->Gain(&fence)); EXPECT_EQ(0, RETRY_EINTR(PollBufferEvent(p))); EXPECT_EQ(0, RETRY_EINTR(PollBufferEvent(c1))); EXPECT_EQ(0, RETRY_EINTR(PollBufferEvent(c2))); } TEST_F(LibBufferHubTest, TestEpoll) { std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); ASSERT_TRUE(p.get() != nullptr); std::unique_ptr<ConsumerBuffer> c = ConsumerBuffer::Import(p->CreateConsumer()); ASSERT_TRUE(c.get() != nullptr); LocalHandle epoll_fd{epoll_create1(EPOLL_CLOEXEC)}; ASSERT_TRUE(epoll_fd.IsValid()); epoll_event event; std::array<epoll_event, 64> events; auto event_sources = p->GetEventSources(); ASSERT_LT(event_sources.size(), events.size()); for (const auto& event_source : event_sources) { event = {.events = event_source.event_mask | EPOLLET, .data = {.fd = p->event_fd()}}; ASSERT_EQ(0, epoll_ctl(epoll_fd.Get(), EPOLL_CTL_ADD, event_source.event_fd, &event)); } event_sources = c->GetEventSources(); ASSERT_LT(event_sources.size(), events.size()); for (const auto& event_source : event_sources) { event = {.events = event_source.event_mask | EPOLLET, .data = {.fd = c->event_fd()}}; ASSERT_EQ(0, epoll_ctl(epoll_fd.Get(), EPOLL_CTL_ADD, event_source.event_fd, &event)); } // No events should be signaled initially. ASSERT_EQ(0, epoll_wait(epoll_fd.Get(), events.data(), events.size(), 0)); // Gain and post the producer and check for consumer signal. EXPECT_EQ(0, p->GainAsync()); EXPECT_EQ(0, p->Post({})); ASSERT_EQ(1, epoll_wait(epoll_fd.Get(), events.data(), events.size(), kPollTimeoutMs)); ASSERT_TRUE(events[0].events & EPOLLIN); ASSERT_EQ(c->event_fd(), events[0].data.fd); // Save the event bits to translate later. event = events[0]; // Check for events again. Edge-triggered mode should prevent any. EXPECT_EQ(0, epoll_wait(epoll_fd.Get(), events.data(), events.size(), kPollTimeoutMs)); EXPECT_EQ(0, epoll_wait(epoll_fd.Get(), events.data(), events.size(), kPollTimeoutMs)); EXPECT_EQ(0, epoll_wait(epoll_fd.Get(), events.data(), events.size(), kPollTimeoutMs)); EXPECT_EQ(0, epoll_wait(epoll_fd.Get(), events.data(), events.size(), kPollTimeoutMs)); // Translate the events. auto event_status = c->GetEventMask(event.events); ASSERT_TRUE(event_status); ASSERT_TRUE(event_status.get() & EPOLLIN); // Check for events again. Edge-triggered mode should prevent any. EXPECT_EQ(0, epoll_wait(epoll_fd.Get(), events.data(), events.size(), kPollTimeoutMs)); } TEST_F(LibBufferHubTest, TestStateMask) { std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); ASSERT_TRUE(p.get() != nullptr); // It's ok to create up to kMaxConsumerCount consumer buffers. uint32_t client_state_masks = p->client_state_mask(); std::array<std::unique_ptr<ConsumerBuffer>, kMaxConsumerCount> cs; for (size_t i = 0; i < kMaxConsumerCount; i++) { cs[i] = ConsumerBuffer::Import(p->CreateConsumer()); ASSERT_TRUE(cs[i].get() != nullptr); // Expect all buffers have unique state mask. EXPECT_EQ(client_state_masks & cs[i]->client_state_mask(), 0U); client_state_masks |= cs[i]->client_state_mask(); } EXPECT_EQ(client_state_masks, ~0U); // The 64th creation will fail with out-of-memory error. auto state = p->CreateConsumer(); EXPECT_EQ(state.error(), E2BIG); // Release any consumer should allow us to re-create. for (size_t i = 0; i < kMaxConsumerCount; i++) { client_state_masks &= ~cs[i]->client_state_mask(); cs[i] = nullptr; cs[i] = ConsumerBuffer::Import(p->CreateConsumer()); ASSERT_TRUE(cs[i].get() != nullptr); // The released state mask will be reused. EXPECT_EQ(client_state_masks & cs[i]->client_state_mask(), 0U); client_state_masks |= cs[i]->client_state_mask(); } } TEST_F(LibBufferHubTest, TestStateTransitions) { std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); ASSERT_TRUE(p.get() != nullptr); std::unique_ptr<ConsumerBuffer> c = ConsumerBuffer::Import(p->CreateConsumer()); ASSERT_TRUE(c.get() != nullptr); LocalHandle fence; EXPECT_EQ(0, p->GainAsync()); // Acquire in gained state should fail. EXPECT_EQ(-EBUSY, c->Acquire(&fence)); // Post in gained state should succeed. EXPECT_EQ(0, p->Post(LocalHandle())); // Post and gain in posted state should fail. EXPECT_EQ(-EBUSY, p->Post(LocalHandle())); EXPECT_EQ(-EBUSY, p->Gain(&fence)); // Acquire in posted state should succeed. EXPECT_EQ(0, c->Acquire(&fence)); // Acquire, post, and gain in acquired state should fail. EXPECT_EQ(-EBUSY, c->Acquire(&fence)); EXPECT_EQ(-EBUSY, p->Post(LocalHandle())); EXPECT_EQ(-EBUSY, p->Gain(&fence)); // Release in acquired state should succeed. EXPECT_EQ(0, c->Release(LocalHandle())); EXPECT_LT(0, RETRY_EINTR(PollBufferEvent(p))); // Acquire and post in released state should fail. EXPECT_EQ(-EBUSY, c->Acquire(&fence)); EXPECT_EQ(-EBUSY, p->Post(LocalHandle())); // Gain in released state should succeed. EXPECT_EQ(0, p->Gain(&fence)); // Acquire in gained state should fail. EXPECT_EQ(-EBUSY, c->Acquire(&fence)); } TEST_F(LibBufferHubTest, TestAsyncStateTransitions) { std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); ASSERT_TRUE(p.get() != nullptr); std::unique_ptr<ConsumerBuffer> c = ConsumerBuffer::Import(p->CreateConsumer()); ASSERT_TRUE(c.get() != nullptr); DvrNativeBufferMetadata metadata; LocalHandle invalid_fence; EXPECT_EQ(0, p->GainAsync()); // Acquire in gained state should fail. EXPECT_EQ(-EBUSY, c->AcquireAsync(&metadata, &invalid_fence)); EXPECT_FALSE(invalid_fence.IsValid()); EXPECT_FALSE(invalid_fence.IsValid()); // Post in gained state should succeed. EXPECT_EQ(0, p->PostAsync(&metadata, invalid_fence)); EXPECT_EQ(p->buffer_state(), c->buffer_state()); EXPECT_TRUE(isAnyClientPosted(p->buffer_state())); // Post and gain in posted state should fail. EXPECT_EQ(-EBUSY, p->PostAsync(&metadata, invalid_fence)); EXPECT_EQ(-EBUSY, p->GainAsync(&metadata, &invalid_fence)); EXPECT_FALSE(invalid_fence.IsValid()); // Acquire in posted state should succeed. EXPECT_LT(0, RETRY_EINTR(PollBufferEvent(c))); EXPECT_EQ(0, c->AcquireAsync(&metadata, &invalid_fence)); EXPECT_FALSE(invalid_fence.IsValid()); EXPECT_EQ(p->buffer_state(), c->buffer_state()); EXPECT_TRUE(isAnyClientAcquired(p->buffer_state())); // Acquire, post, and gain in acquired state should fail. EXPECT_EQ(-EBUSY, c->AcquireAsync(&metadata, &invalid_fence)); EXPECT_FALSE(invalid_fence.IsValid()); EXPECT_EQ(-EBUSY, p->PostAsync(&metadata, invalid_fence)); EXPECT_EQ(-EBUSY, p->GainAsync(&metadata, &invalid_fence)); EXPECT_FALSE(invalid_fence.IsValid()); // Release in acquired state should succeed. EXPECT_EQ(0, c->ReleaseAsync(&metadata, invalid_fence)); EXPECT_LT(0, RETRY_EINTR(PollBufferEvent(p))); EXPECT_EQ(p->buffer_state(), c->buffer_state()); EXPECT_TRUE(p->is_released()); // Acquire and post in released state should fail. EXPECT_EQ(-EBUSY, c->AcquireAsync(&metadata, &invalid_fence)); EXPECT_FALSE(invalid_fence.IsValid()); EXPECT_EQ(-EBUSY, p->PostAsync(&metadata, invalid_fence)); // Gain in released state should succeed. EXPECT_EQ(0, p->GainAsync(&metadata, &invalid_fence)); EXPECT_FALSE(invalid_fence.IsValid()); EXPECT_EQ(p->buffer_state(), c->buffer_state()); EXPECT_TRUE(isAnyClientGained(p->buffer_state())); // Acquire and gain in gained state should fail. EXPECT_EQ(-EBUSY, c->AcquireAsync(&metadata, &invalid_fence)); EXPECT_FALSE(invalid_fence.IsValid()); } TEST_F(LibBufferHubTest, TestGainTwiceByTheSameProducer) { std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); ASSERT_TRUE(p.get() != nullptr); ASSERT_EQ(0, p->GainAsync()); ASSERT_EQ(0, p->GainAsync()); } TEST_F(LibBufferHubTest, TestGainPostedBuffer) { std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); ASSERT_TRUE(p.get() != nullptr); std::unique_ptr<ConsumerBuffer> c = ConsumerBuffer::Import(p->CreateConsumer()); ASSERT_TRUE(c.get() != nullptr); ASSERT_EQ(0, p->GainAsync()); ASSERT_EQ(0, p->Post(LocalHandle())); ASSERT_TRUE(isAnyClientPosted(p->buffer_state())); // Gain in posted state should only succeed with gain_posted_buffer = true. LocalHandle invalid_fence; EXPECT_EQ(-EBUSY, p->Gain(&invalid_fence, false)); EXPECT_EQ(0, p->Gain(&invalid_fence, true)); } TEST_F(LibBufferHubTest, TestGainPostedBufferAsync) { std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); ASSERT_TRUE(p.get() != nullptr); std::unique_ptr<ConsumerBuffer> c = ConsumerBuffer::Import(p->CreateConsumer()); ASSERT_TRUE(c.get() != nullptr); ASSERT_EQ(0, p->GainAsync()); ASSERT_EQ(0, p->Post(LocalHandle())); ASSERT_TRUE(isAnyClientPosted(p->buffer_state())); // GainAsync in posted state should only succeed with gain_posted_buffer // equals true. DvrNativeBufferMetadata metadata; LocalHandle invalid_fence; EXPECT_EQ(-EBUSY, p->GainAsync(&metadata, &invalid_fence, false)); EXPECT_EQ(0, p->GainAsync(&metadata, &invalid_fence, true)); } TEST_F(LibBufferHubTest, TestGainPostedBuffer_noConsumer) { std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); ASSERT_TRUE(p.get() != nullptr); ASSERT_EQ(0, p->GainAsync()); ASSERT_EQ(0, p->Post(LocalHandle())); // Producer state bit is in released state after post, other clients shall be // in posted state although there is no consumer of this buffer yet. ASSERT_TRUE(isClientReleased(p->buffer_state(), p->client_state_mask())); ASSERT_TRUE(p->is_released()); ASSERT_TRUE(isAnyClientPosted(p->buffer_state())); // Gain in released state should succeed. LocalHandle invalid_fence; EXPECT_EQ(0, p->Gain(&invalid_fence, false)); } TEST_F(LibBufferHubTest, TestMaxConsumers) { std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); ASSERT_TRUE(p.get() != nullptr); uint32_t producer_state_mask = p->client_state_mask(); std::array<std::unique_ptr<ConsumerBuffer>, kMaxConsumerCount> cs; for (size_t i = 0; i < kMaxConsumerCount; ++i) { cs[i] = ConsumerBuffer::Import(p->CreateConsumer()); ASSERT_TRUE(cs[i].get() != nullptr); EXPECT_TRUE(cs[i]->is_released()); EXPECT_NE(producer_state_mask, cs[i]->client_state_mask()); } EXPECT_EQ(0, p->GainAsync()); DvrNativeBufferMetadata metadata; LocalHandle invalid_fence; // Post the producer should trigger all consumers to be available. EXPECT_EQ(0, p->PostAsync(&metadata, invalid_fence)); EXPECT_TRUE(isClientReleased(p->buffer_state(), p->client_state_mask())); for (size_t i = 0; i < kMaxConsumerCount; ++i) { EXPECT_TRUE( isClientPosted(cs[i]->buffer_state(), cs[i]->client_state_mask())); EXPECT_LT(0, RETRY_EINTR(PollBufferEvent(cs[i]))); EXPECT_EQ(0, cs[i]->AcquireAsync(&metadata, &invalid_fence)); EXPECT_TRUE( isClientAcquired(p->buffer_state(), cs[i]->client_state_mask())); } // All consumers have to release before the buffer is considered to be // released. for (size_t i = 0; i < kMaxConsumerCount; i++) { EXPECT_FALSE(p->is_released()); EXPECT_EQ(0, cs[i]->ReleaseAsync(&metadata, invalid_fence)); } EXPECT_LT(0, RETRY_EINTR(PollBufferEvent(p))); EXPECT_TRUE(p->is_released()); // Buffer state cross all clients must be consistent. for (size_t i = 0; i < kMaxConsumerCount; i++) { EXPECT_EQ(p->buffer_state(), cs[i]->buffer_state()); } } TEST_F(LibBufferHubTest, TestCreateConsumerWhenBufferGained) { std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); ASSERT_TRUE(p.get() != nullptr); EXPECT_EQ(0, p->GainAsync()); EXPECT_TRUE(isAnyClientGained(p->buffer_state())); std::unique_ptr<ConsumerBuffer> c = ConsumerBuffer::Import(p->CreateConsumer()); ASSERT_TRUE(c.get() != nullptr); EXPECT_TRUE(isAnyClientGained(c->buffer_state())); DvrNativeBufferMetadata metadata; LocalHandle invalid_fence; // Post the gained buffer should signal already created consumer. EXPECT_EQ(0, p->PostAsync(&metadata, invalid_fence)); EXPECT_TRUE(isAnyClientPosted(p->buffer_state())); EXPECT_LT(0, RETRY_EINTR(PollBufferEvent(c))); EXPECT_EQ(0, c->AcquireAsync(&metadata, &invalid_fence)); EXPECT_TRUE(isAnyClientAcquired(c->buffer_state())); } TEST_F(LibBufferHubTest, TestCreateTheFirstConsumerAfterPostingBuffer) { std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); ASSERT_TRUE(p.get() != nullptr); EXPECT_EQ(0, p->GainAsync()); EXPECT_TRUE(isAnyClientGained(p->buffer_state())); DvrNativeBufferMetadata metadata; LocalHandle invalid_fence; // Post the gained buffer before any consumer gets created. EXPECT_EQ(0, p->PostAsync(&metadata, invalid_fence)); EXPECT_TRUE(p->is_released()); EXPECT_EQ(0, RETRY_EINTR(PollBufferEvent(p))); // Newly created consumer will be signalled for the posted buffer although it // is created after producer posting. std::unique_ptr<ConsumerBuffer> c = ConsumerBuffer::Import(p->CreateConsumer()); ASSERT_TRUE(c.get() != nullptr); EXPECT_TRUE(isClientPosted(c->buffer_state(), c->client_state_mask())); EXPECT_EQ(0, c->AcquireAsync(&metadata, &invalid_fence)); } TEST_F(LibBufferHubTest, TestCreateConsumerWhenBufferReleased) { std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); ASSERT_TRUE(p.get() != nullptr); std::unique_ptr<ConsumerBuffer> c1 = ConsumerBuffer::Import(p->CreateConsumer()); ASSERT_TRUE(c1.get() != nullptr); EXPECT_EQ(0, p->GainAsync()); DvrNativeBufferMetadata metadata; LocalHandle invalid_fence; // Post, acquire, and release the buffer.. EXPECT_EQ(0, p->PostAsync(&metadata, invalid_fence)); EXPECT_LT(0, RETRY_EINTR(PollBufferEvent(c1))); EXPECT_EQ(0, c1->AcquireAsync(&metadata, &invalid_fence)); EXPECT_EQ(0, c1->ReleaseAsync(&metadata, invalid_fence)); // Note that the next PDX call is on the producer channel, which may be // executed before Release impulse gets executed by bufferhubd. Thus, here we // need to wait until the releasd is confirmed before creating another // consumer. EXPECT_LT(0, RETRY_EINTR(PollBufferEvent(p))); EXPECT_TRUE(p->is_released()); // Create another consumer immediately after the release, should not make the // buffer un-released. std::unique_ptr<ConsumerBuffer> c2 = ConsumerBuffer::Import(p->CreateConsumer()); ASSERT_TRUE(c2.get() != nullptr); EXPECT_TRUE(p->is_released()); EXPECT_EQ(0, p->GainAsync(&metadata, &invalid_fence)); EXPECT_TRUE(isAnyClientGained(p->buffer_state())); } TEST_F(LibBufferHubTest, TestWithCustomMetadata) { struct Metadata { int64_t field1; int64_t field2; }; std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(Metadata)); ASSERT_TRUE(p.get() != nullptr); std::unique_ptr<ConsumerBuffer> c = ConsumerBuffer::Import(p->CreateConsumer()); ASSERT_TRUE(c.get() != nullptr); EXPECT_EQ(0, p->GainAsync()); Metadata m = {1, 3}; EXPECT_EQ(0, p->Post(LocalHandle(), &m, sizeof(Metadata))); EXPECT_LE(0, RETRY_EINTR(PollBufferEvent(c))); LocalHandle fence; Metadata m2 = {}; EXPECT_EQ(0, c->Acquire(&fence, &m2, sizeof(m2))); EXPECT_EQ(m.field1, m2.field1); EXPECT_EQ(m.field2, m2.field2); EXPECT_EQ(0, c->Release(LocalHandle())); EXPECT_LT(0, RETRY_EINTR(PollBufferEvent(p, /*timeout_ms=*/0))); } TEST_F(LibBufferHubTest, TestPostWithWrongMetaSize) { struct Metadata { int64_t field1; int64_t field2; }; struct OverSizedMetadata { int64_t field1; int64_t field2; int64_t field3; }; std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(Metadata)); ASSERT_TRUE(p.get() != nullptr); std::unique_ptr<ConsumerBuffer> c = ConsumerBuffer::Import(p->CreateConsumer()); ASSERT_TRUE(c.get() != nullptr); EXPECT_EQ(0, p->GainAsync()); // It is illegal to post metadata larger than originally requested during // buffer allocation. OverSizedMetadata evil_meta = {}; EXPECT_NE(0, p->Post(LocalHandle(), &evil_meta, sizeof(OverSizedMetadata))); EXPECT_GE(0, RETRY_EINTR(PollBufferEvent(c))); // It is ok to post metadata smaller than originally requested during // buffer allocation. EXPECT_EQ(0, p->Post(LocalHandle())); } TEST_F(LibBufferHubTest, TestAcquireWithWrongMetaSize) { struct Metadata { int64_t field1; int64_t field2; }; struct OverSizedMetadata { int64_t field1; int64_t field2; int64_t field3; }; std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(Metadata)); ASSERT_TRUE(p.get() != nullptr); std::unique_ptr<ConsumerBuffer> c = ConsumerBuffer::Import(p->CreateConsumer()); ASSERT_TRUE(c.get() != nullptr); EXPECT_EQ(0, p->GainAsync()); Metadata m = {1, 3}; EXPECT_EQ(0, p->Post(LocalHandle(), &m, sizeof(m))); LocalHandle fence; int64_t sequence; OverSizedMetadata e; // It is illegal to acquire metadata larger than originally requested during // buffer allocation. EXPECT_NE(0, c->Acquire(&fence, &e, sizeof(e))); // It is ok to acquire metadata smaller than originally requested during // buffer allocation. EXPECT_EQ(0, c->Acquire(&fence, &sequence, sizeof(sequence))); EXPECT_EQ(m.field1, sequence); } TEST_F(LibBufferHubTest, TestAcquireWithNoMeta) { std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); ASSERT_TRUE(p.get() != nullptr); std::unique_ptr<ConsumerBuffer> c = ConsumerBuffer::Import(p->CreateConsumer()); ASSERT_TRUE(c.get() != nullptr); EXPECT_EQ(0, p->GainAsync()); int64_t sequence = 3; EXPECT_EQ(0, p->Post(LocalHandle(), &sequence, sizeof(sequence))); LocalHandle fence; EXPECT_EQ(0, c->Acquire(&fence)); } TEST_F(LibBufferHubTest, TestWithNoMeta) { std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create(kWidth, kHeight, kFormat, kUsage); ASSERT_TRUE(p.get() != nullptr); std::unique_ptr<ConsumerBuffer> c = ConsumerBuffer::Import(p->CreateConsumer()); ASSERT_TRUE(c.get() != nullptr); EXPECT_EQ(0, p->GainAsync()); LocalHandle fence; EXPECT_EQ(0, p->Post(LocalHandle())); EXPECT_EQ(0, c->Acquire(&fence)); } TEST_F(LibBufferHubTest, TestFailureToPostMetaFromABufferWithoutMeta) { std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create(kWidth, kHeight, kFormat, kUsage); ASSERT_TRUE(p.get() != nullptr); std::unique_ptr<ConsumerBuffer> c = ConsumerBuffer::Import(p->CreateConsumer()); ASSERT_TRUE(c.get() != nullptr); EXPECT_EQ(0, p->GainAsync()); int64_t sequence = 3; EXPECT_NE(0, p->Post(LocalHandle(), &sequence, sizeof(sequence))); } namespace { int PollFd(int fd, int timeout_ms) { pollfd p = {fd, POLLIN, 0}; return poll(&p, 1, timeout_ms); } } // namespace TEST_F(LibBufferHubTest, TestAcquireFence) { std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( kWidth, kHeight, kFormat, kUsage, /*metadata_size=*/0); ASSERT_TRUE(p.get() != nullptr); std::unique_ptr<ConsumerBuffer> c = ConsumerBuffer::Import(p->CreateConsumer()); ASSERT_TRUE(c.get() != nullptr); EXPECT_EQ(0, p->GainAsync()); DvrNativeBufferMetadata meta; LocalHandle f1(eventfd(0, EFD_CLOEXEC | EFD_NONBLOCK)); // Post with unsignaled fence. EXPECT_EQ(0, p->PostAsync(&meta, f1)); // Should acquire a valid fence. LocalHandle f2; EXPECT_LT(0, RETRY_EINTR(PollBufferEvent(c))); EXPECT_EQ(0, c->AcquireAsync(&meta, &f2)); EXPECT_TRUE(f2.IsValid()); // The original fence and acquired fence should have different fd number. EXPECT_NE(f1.Get(), f2.Get()); EXPECT_GE(0, PollFd(f2.Get(), 0)); // Signal the original fence will trigger the new fence. eventfd_write(f1.Get(), 1); // Now the original FD has been signaled. EXPECT_LT(0, PollFd(f2.Get(), kPollTimeoutMs)); // Release the consumer with an invalid fence. EXPECT_EQ(0, c->ReleaseAsync(&meta, LocalHandle())); // Should gain an invalid fence. LocalHandle f3; EXPECT_LT(0, RETRY_EINTR(PollBufferEvent(p))); EXPECT_EQ(0, p->GainAsync(&meta, &f3)); EXPECT_FALSE(f3.IsValid()); // Post with a signaled fence. EXPECT_EQ(0, p->PostAsync(&meta, f1)); // Should acquire a valid fence and it's already signalled. LocalHandle f4; EXPECT_LT(0, RETRY_EINTR(PollBufferEvent(c))); EXPECT_EQ(0, c->AcquireAsync(&meta, &f4)); EXPECT_TRUE(f4.IsValid()); EXPECT_LT(0, PollFd(f4.Get(), kPollTimeoutMs)); // Release with an unsignalled fence and signal it immediately after release // without producer gainning. LocalHandle f5(eventfd(0, EFD_CLOEXEC | EFD_NONBLOCK)); EXPECT_EQ(0, c->ReleaseAsync(&meta, f5)); eventfd_write(f5.Get(), 1); // Should gain a valid fence, which is already signaled. LocalHandle f6; EXPECT_LT(0, RETRY_EINTR(PollBufferEvent(p))); EXPECT_EQ(0, p->GainAsync(&meta, &f6)); EXPECT_TRUE(f6.IsValid()); EXPECT_LT(0, PollFd(f6.Get(), kPollTimeoutMs)); } TEST_F(LibBufferHubTest, TestOrphanedAcquire) { std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); ASSERT_TRUE(p.get() != nullptr); std::unique_ptr<ConsumerBuffer> c1 = ConsumerBuffer::Import(p->CreateConsumer()); ASSERT_TRUE(c1.get() != nullptr); const uint32_t client_state_mask1 = c1->client_state_mask(); EXPECT_EQ(0, p->GainAsync()); DvrNativeBufferMetadata meta; EXPECT_EQ(0, p->PostAsync(&meta, LocalHandle())); LocalHandle fence; EXPECT_LT(0, RETRY_EINTR(PollBufferEvent(c1))); EXPECT_EQ(0, c1->AcquireAsync(&meta, &fence)); // Destroy the consumer who has acquired but not released the buffer. c1 = nullptr; // The buffer is now available for the producer to gain. EXPECT_LT(0, RETRY_EINTR(PollBufferEvent(p))); // Newly added consumer is not able to acquire the buffer. std::unique_ptr<ConsumerBuffer> c2 = ConsumerBuffer::Import(p->CreateConsumer()); ASSERT_TRUE(c2.get() != nullptr); const uint32_t client_state_mask2 = c2->client_state_mask(); EXPECT_NE(client_state_mask1, client_state_mask2); EXPECT_EQ(0, RETRY_EINTR(PollBufferEvent(c2))); EXPECT_EQ(-EBUSY, c2->AcquireAsync(&meta, &fence)); // Producer should be able to gain. EXPECT_EQ(0, p->GainAsync(&meta, &fence, false)); } TEST_F(LibBufferHubTest, TestAcquireLastPosted) { std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); ASSERT_TRUE(p.get() != nullptr); std::unique_ptr<ConsumerBuffer> c1 = ConsumerBuffer::Import(p->CreateConsumer()); ASSERT_TRUE(c1.get() != nullptr); const uint32_t client_state_mask1 = c1->client_state_mask(); EXPECT_EQ(0, p->GainAsync()); DvrNativeBufferMetadata meta; EXPECT_EQ(0, p->PostAsync(&meta, LocalHandle())); EXPECT_LT(0, RETRY_EINTR(PollBufferEvent(c1))); // c2 is created when the buffer is in posted state. buffer state for c1 is // posted. Thus, c2 should be automatically set to posted and able to acquire. std::unique_ptr<ConsumerBuffer> c2 = ConsumerBuffer::Import(p->CreateConsumer()); ASSERT_TRUE(c2.get() != nullptr); const uint32_t client_state_mask2 = c2->client_state_mask(); EXPECT_NE(client_state_mask1, client_state_mask2); EXPECT_LT(0, RETRY_EINTR(PollBufferEvent(c2))); LocalHandle invalid_fence; EXPECT_EQ(0, c2->AcquireAsync(&meta, &invalid_fence)); EXPECT_EQ(0, c1->AcquireAsync(&meta, &invalid_fence)); // c3 is created when the buffer is in acquired state. buffer state for c1 and // c2 are acquired. Thus, c3 should be automatically set to posted and able to // acquire. std::unique_ptr<ConsumerBuffer> c3 = ConsumerBuffer::Import(p->CreateConsumer()); ASSERT_TRUE(c3.get() != nullptr); const uint32_t client_state_mask3 = c3->client_state_mask(); EXPECT_NE(client_state_mask1, client_state_mask3); EXPECT_NE(client_state_mask2, client_state_mask3); EXPECT_LT(0, RETRY_EINTR(PollBufferEvent(c3))); EXPECT_EQ(0, c3->AcquireAsync(&meta, &invalid_fence)); // Releasing c2 and c3 in normal ways. EXPECT_EQ(0, c2->Release(LocalHandle())); EXPECT_EQ(0, c3->ReleaseAsync(&meta, LocalHandle())); // Destroy the c1 who has not released the buffer. c1 = nullptr; // The buffer is now available for the producer to gain. EXPECT_LT(0, RETRY_EINTR(PollBufferEvent(p))); // C4 is created in released state. Thus, it cannot gain the just posted // buffer. std::unique_ptr<ConsumerBuffer> c4 = ConsumerBuffer::Import(p->CreateConsumer()); ASSERT_TRUE(c4.get() != nullptr); const uint32_t client_state_mask4 = c4->client_state_mask(); EXPECT_NE(client_state_mask3, client_state_mask4); EXPECT_GE(0, RETRY_EINTR(PollBufferEvent(c3))); EXPECT_EQ(-EBUSY, c3->AcquireAsync(&meta, &invalid_fence)); // Producer should be able to gain. EXPECT_EQ(0, p->GainAsync(&meta, &invalid_fence)); } TEST_F(LibBufferHubTest, TestDetachBufferFromProducer) { // TODO(b/112338294) rewrite test after migration return; /* std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); std::unique_ptr<ConsumerBuffer> c = ConsumerBuffer::Import(p->CreateConsumer()); ASSERT_TRUE(p.get() != nullptr); ASSERT_TRUE(c.get() != nullptr); DvrNativeBufferMetadata metadata; LocalHandle invalid_fence; int p_id = p->id(); // Detach in posted state should fail. EXPECT_EQ(0, p->GainAsync()); EXPECT_EQ(0, p->PostAsync(&metadata, invalid_fence)); EXPECT_GT(RETRY_EINTR(PollBufferEvent(c)), 0); auto s1 = p->Detach(); EXPECT_FALSE(s1); // Detach in acquired state should fail. EXPECT_EQ(0, c->AcquireAsync(&metadata, &invalid_fence)); s1 = p->Detach(); EXPECT_FALSE(s1); // Detach in released state should fail. EXPECT_EQ(0, c->ReleaseAsync(&metadata, invalid_fence)); EXPECT_GT(RETRY_EINTR(PollBufferEvent(p)), 0); s1 = p->Detach(); EXPECT_FALSE(s1); // Detach in gained state should succeed. EXPECT_EQ(0, p->GainAsync(&metadata, &invalid_fence)); s1 = p->Detach(); EXPECT_TRUE(s1); LocalChannelHandle handle = s1.take(); EXPECT_TRUE(handle.valid()); // Both producer and consumer should have hangup. EXPECT_GT(RETRY_EINTR(PollBufferEvent(p)), 0); auto s2 = p->GetEventMask(POLLHUP); EXPECT_TRUE(s2); EXPECT_EQ(s2.get(), POLLHUP); EXPECT_GT(RETRY_EINTR(PollBufferEvent(c)), 0); s2 = p->GetEventMask(POLLHUP); EXPECT_TRUE(s2); EXPECT_EQ(s2.get(), POLLHUP); auto s3 = p->CreateConsumer(); EXPECT_FALSE(s3); // Note that here the expected error code is EOPNOTSUPP as the socket towards // ProducerChannel has been teared down. EXPECT_EQ(s3.error(), EOPNOTSUPP); s3 = c->CreateConsumer(); EXPECT_FALSE(s3); // Note that here the expected error code is EPIPE returned from // ConsumerChannel::HandleMessage as the socket is still open but the producer // is gone. EXPECT_EQ(s3.error(), EPIPE); // Detached buffer handle can be use to construct a new BufferHubBuffer // object. auto d = BufferHubBuffer::Import(std::move(handle)); EXPECT_FALSE(handle.valid()); EXPECT_TRUE(d->IsConnected()); EXPECT_TRUE(d->IsValid()); EXPECT_EQ(d->id(), p_id); */ } TEST_F(LibBufferHubTest, TestDetach) { // TODO(b/112338294) rewrite test after migration return; /* std::unique_ptr<ProducerBuffer> p1 = ProducerBuffer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); ASSERT_TRUE(p1.get() != nullptr); int p1_id = p1->id(); // Detached the producer from gained state. EXPECT_EQ(0, p1->GainAsync()); auto status_or_handle = p1->Detach(); EXPECT_TRUE(status_or_handle.ok()); LocalChannelHandle h1 = status_or_handle.take(); EXPECT_TRUE(h1.valid()); // Detached buffer handle can be use to construct a new BufferHubBuffer // object. auto b1 = BufferHubBuffer::Import(std::move(h1)); EXPECT_FALSE(h1.valid()); EXPECT_TRUE(b1->IsValid()); int b1_id = b1->id(); EXPECT_EQ(b1_id, p1_id); */ }