/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ANDROID_RSCPPSTRUCTS_H #define ANDROID_RSCPPSTRUCTS_H #include "rsDefines.h" #include "util/RefBase.h" #include <pthread.h> /** * Every row in an RS allocation is guaranteed to be aligned by this amount, and * every row in a user-backed allocation must be aligned by this amount. */ #define RS_CPU_ALLOCATION_ALIGNMENT 16 struct dispatchTable; namespace android { class Surface; namespace RSC { typedef void (*ErrorHandlerFunc_t)(uint32_t errorNum, const char *errorText); typedef void (*MessageHandlerFunc_t)(uint32_t msgNum, const void *msgData, size_t msgLen); class RS; class BaseObj; class Element; class Type; class Allocation; class Script; class ScriptC; class Sampler; /** * Possible error codes used by RenderScript. Once a status other than RS_SUCCESS * is returned, the RenderScript context is considered dead and cannot perform any * additional work. */ enum RSError { RS_SUCCESS = 0, ///< No error RS_ERROR_INVALID_PARAMETER = 1, ///< An invalid parameter was passed to a function RS_ERROR_RUNTIME_ERROR = 2, ///< The RenderScript driver returned an error; this is ///< often indicative of a kernel that crashed RS_ERROR_INVALID_ELEMENT = 3, ///< An invalid Element was passed to a function RS_ERROR_MAX = 9999 }; /** * Flags that can control RenderScript behavior on a per-context level. */ enum RSInitFlags { RS_INIT_SYNCHRONOUS = 1, ///< All RenderScript calls will be synchronous. May reduce latency. RS_INIT_LOW_LATENCY = 2, ///< Prefer low latency devices over potentially higher throughput devices. // Bitflag 4 is reserved for the context flag low power RS_INIT_WAIT_FOR_ATTACH = 8, ///< Kernel execution will hold to give time for a debugger to be attached RS_INIT_MAX = 16 }; class Byte2 { public: int8_t x, y; Byte2(int8_t initX, int8_t initY) : x(initX), y(initY) {} Byte2() : x(0), y(0) {} }; class Byte3 { public: int8_t x, y, z; Byte3(int8_t initX, int8_t initY, int8_t initZ) : x(initX), y(initY), z(initZ) {} Byte3() : x(0), y(0), z(0) {} }; class Byte4 { public: int8_t x, y, z, w; Byte4(int8_t initX, int8_t initY, int8_t initZ, int8_t initW) : x(initX), y(initY), z(initZ), w(initW) {} Byte4() : x(0), y(0), z(0), w(0) {} }; class UByte2 { public: uint8_t x, y; UByte2(uint8_t initX, uint8_t initY) : x(initX), y(initY) {} UByte2() : x(0), y(0) {} }; class UByte3 { public: uint8_t x, y, z; UByte3(uint8_t initX, uint8_t initY, uint8_t initZ) : x(initX), y(initY), z(initZ) {} UByte3() : x(0), y(0), z(0) {} }; class UByte4 { public: uint8_t x, y, z, w; UByte4(uint8_t initX, uint8_t initY, uint8_t initZ, uint8_t initW) : x(initX), y(initY), z(initZ), w(initW) {} UByte4() : x(0), y(0), z(0), w(0) {} }; class Short2 { public: int16_t x, y; Short2(int16_t initX, int16_t initY) : x(initX), y(initY) {} Short2() : x(0), y(0) {} }; class Short3 { public: int16_t x, y, z; Short3(int16_t initX, int16_t initY, int16_t initZ) : x(initX), y(initY), z(initZ) {} Short3() : x(0), y(0), z(0) {} }; class Short4 { public: int16_t x, y, z, w; Short4(int16_t initX, int16_t initY, int16_t initZ, int16_t initW) : x(initX), y(initY), z(initZ), w(initW) {} Short4() : x(0), y(0), z(0), w(0) {} }; class UShort2 { public: uint16_t x, y; UShort2(uint16_t initX, uint16_t initY) : x(initX), y(initY) {} UShort2() : x(0), y(0) {} }; class UShort3 { public: uint16_t x, y, z; UShort3(uint16_t initX, uint16_t initY, uint16_t initZ) : x(initX), y(initY), z(initZ) {} UShort3() : x(0), y(0), z(0) {} }; class UShort4 { public: uint16_t x, y, z, w; UShort4(uint16_t initX, uint16_t initY, uint16_t initZ, uint16_t initW) : x(initX), y(initY), z(initZ), w(initW) {} UShort4() : x(0), y(0), z(0), w(0) {} }; class Int2 { public: int x, y; Int2(int initX, int initY) : x(initX), y(initY) {} Int2() : x(0), y(0) {} }; class Int3 { public: int x, y, z; Int3(int initX, int initY, int initZ) : x(initX), y(initY), z(initZ) {} Int3() : x(0), y(0), z(0) {} }; class Int4 { public: int x, y, z, w; Int4(int initX, int initY, int initZ, int initW) : x(initX), y(initY), z(initZ), w(initW) {} Int4() : x(0), y(0), z(0), w(0) {} }; class UInt2 { public: uint32_t x, y; UInt2(uint32_t initX, uint32_t initY) : x(initX), y(initY) {} UInt2() : x(0), y(0) {} }; class UInt3 { public: uint32_t x, y, z; UInt3(uint32_t initX, uint32_t initY, uint32_t initZ) : x(initX), y(initY), z(initZ) {} UInt3() : x(0), y(0), z(0) {} }; class UInt4 { public: uint32_t x, y, z, w; UInt4(uint32_t initX, uint32_t initY, uint32_t initZ, uint32_t initW) : x(initX), y(initY), z(initZ), w(initW) {} UInt4() : x(0), y(0), z(0), w(0) {} }; class Long2 { public: int64_t x, y; Long2(int64_t initX, int64_t initY) : x(initX), y(initY) {} Long2() : x(0), y(0) {} }; class Long3 { public: int64_t x, y, z; Long3(int64_t initX, int64_t initY, int64_t initZ) : x(initX), y(initY), z(initZ) {} Long3() : x(0), y(0), z(0) {} }; class Long4 { public: int64_t x, y, z, w; Long4(int64_t initX, int64_t initY, int64_t initZ, int64_t initW) : x(initX), y(initY), z(initZ), w(initW) {} Long4() : x(0), y(0), z(0), w(0) {} }; class ULong2 { public: uint64_t x, y; ULong2(uint64_t initX, uint64_t initY) : x(initX), y(initY) {} ULong2() : x(0), y(0) {} }; class ULong3 { public: uint64_t x, y, z; ULong3(uint64_t initX, uint64_t initY, uint64_t initZ) : x(initX), y(initY), z(initZ) {} ULong3() : x(0), y(0), z(0) {} }; class ULong4 { public: uint64_t x, y, z, w; ULong4(uint64_t initX, uint64_t initY, uint64_t initZ, uint64_t initW) : x(initX), y(initY), z(initZ), w(initW) {} ULong4() : x(0), y(0), z(0), w(0) {} }; class Float2 { public: float x, y; Float2(float initX, float initY) : x(initX), y(initY) {} Float2() : x(0), y(0) {} }; class Float3 { public: float x, y, z; Float3(float initX, float initY, float initZ) : x(initX), y(initY), z(initZ) {} Float3() : x(0.f), y(0.f), z(0.f) {} }; class Float4 { public: float x, y, z, w; Float4(float initX, float initY, float initZ, float initW) : x(initX), y(initY), z(initZ), w(initW) {} Float4() : x(0.f), y(0.f), z(0.f), w(0.f) {} }; class Double2 { public: double x, y; Double2(double initX, double initY) : x(initX), y(initY) {} Double2() : x(0), y(0) {} }; class Double3 { public: double x, y, z; Double3(double initX, double initY, double initZ) : x(initX), y(initY), z(initZ) {} Double3() : x(0), y(0), z(0) {} }; class Double4 { public: double x, y, z, w; Double4(double initX, double initY, double initZ, double initW) : x(initX), y(initY), z(initZ), w(initW) {} Double4() : x(0), y(0), z(0), w(0) {} }; /** * The RenderScript context. This class controls initialization, resource management, and teardown. */ class RS : public android::RSC::LightRefBase<RS> { public: RS(); virtual ~RS(); /** * Initializes a RenderScript context. A context must be initialized before it can be used. * @param[in] name Directory name to be used by this context. This should be equivalent to * Context.getCacheDir(). * @param[in] flags Optional flags for this context. * @return true on success */ bool init(const char * name, uint32_t flags = 0); /** * Initializes a RenderScript context. A context must be initialized before it can be used. * @param[in] name Directory name to be used by this context. This should be equivalent to * Context.getCacheDir(). * @param[in] flags Flags for this context. * @param[in] targetApi Target RS API level. * @return true on success */ bool init(const char * name, uint32_t flags, int targetApi); /** * Sets the error handler function for this context. This error handler is * called whenever an error is set. * * @param[in] func Error handler function */ void setErrorHandler(ErrorHandlerFunc_t func); /** * Returns the current error handler function for this context. * * @return pointer to current error handler function or NULL if not set */ ErrorHandlerFunc_t getErrorHandler() { return mErrorFunc; } /** * Sets the message handler function for this context. This message handler * is called whenever a message is sent from a RenderScript kernel. * * @param[in] func Message handler function */ void setMessageHandler(MessageHandlerFunc_t func); /** * Returns the current message handler function for this context. * * @return pointer to current message handler function or NULL if not set */ MessageHandlerFunc_t getMessageHandler() { return mMessageFunc; } /** * Returns current status for the context. * * @return current error */ RSError getError(); /** * Waits for any currently running asynchronous operations to finish. This * should only be used for performance testing and timing. */ void finish(); RsContext getContext() { return mContext; } void throwError(RSError error, const char *errMsg); static dispatchTable* dispatch; private: static bool usingNative; static bool initDispatch(int targetApi); static void * threadProc(void *); static bool gInitialized; static pthread_mutex_t gInitMutex; pthread_t mMessageThreadId; pid_t mNativeMessageThreadId; bool mMessageRun; RsContext mContext; RSError mCurrentError; ErrorHandlerFunc_t mErrorFunc; MessageHandlerFunc_t mMessageFunc; bool mInit; char mCacheDir[PATH_MAX+1]; uint32_t mCacheDirLen; struct { sp<const Element> U8; sp<const Element> U8_2; sp<const Element> U8_3; sp<const Element> U8_4; sp<const Element> I8; sp<const Element> I8_2; sp<const Element> I8_3; sp<const Element> I8_4; sp<const Element> U16; sp<const Element> U16_2; sp<const Element> U16_3; sp<const Element> U16_4; sp<const Element> I16; sp<const Element> I16_2; sp<const Element> I16_3; sp<const Element> I16_4; sp<const Element> U32; sp<const Element> U32_2; sp<const Element> U32_3; sp<const Element> U32_4; sp<const Element> I32; sp<const Element> I32_2; sp<const Element> I32_3; sp<const Element> I32_4; sp<const Element> U64; sp<const Element> U64_2; sp<const Element> U64_3; sp<const Element> U64_4; sp<const Element> I64; sp<const Element> I64_2; sp<const Element> I64_3; sp<const Element> I64_4; sp<const Element> F16; sp<const Element> F16_2; sp<const Element> F16_3; sp<const Element> F16_4; sp<const Element> F32; sp<const Element> F32_2; sp<const Element> F32_3; sp<const Element> F32_4; sp<const Element> F64; sp<const Element> F64_2; sp<const Element> F64_3; sp<const Element> F64_4; sp<const Element> BOOLEAN; sp<const Element> ELEMENT; sp<const Element> TYPE; sp<const Element> ALLOCATION; sp<const Element> SAMPLER; sp<const Element> SCRIPT; sp<const Element> MESH; sp<const Element> PROGRAM_FRAGMENT; sp<const Element> PROGRAM_VERTEX; sp<const Element> PROGRAM_RASTER; sp<const Element> PROGRAM_STORE; sp<const Element> A_8; sp<const Element> RGB_565; sp<const Element> RGB_888; sp<const Element> RGBA_5551; sp<const Element> RGBA_4444; sp<const Element> RGBA_8888; sp<const Element> YUV; sp<const Element> MATRIX_4X4; sp<const Element> MATRIX_3X3; sp<const Element> MATRIX_2X2; } mElements; struct { sp<const Sampler> CLAMP_NEAREST; sp<const Sampler> CLAMP_LINEAR; sp<const Sampler> CLAMP_LINEAR_MIP_LINEAR; sp<const Sampler> WRAP_NEAREST; sp<const Sampler> WRAP_LINEAR; sp<const Sampler> WRAP_LINEAR_MIP_LINEAR; sp<const Sampler> MIRRORED_REPEAT_NEAREST; sp<const Sampler> MIRRORED_REPEAT_LINEAR; sp<const Sampler> MIRRORED_REPEAT_LINEAR_MIP_LINEAR; } mSamplers; friend class Sampler; friend class Element; friend class ScriptC; }; /** * Base class for all RenderScript objects. Not for direct use by developers. */ class BaseObj : public android::RSC::LightRefBase<BaseObj> { public: void * getID() const; virtual ~BaseObj(); virtual void updateFromNative(); virtual bool equals(const sp<const BaseObj>& obj); protected: void *mID; RS* mRS; const char * mName; BaseObj(void *id, sp<RS> rs); void checkValid(); static void * getObjID(const sp<const BaseObj>& o); }; /** * This class provides the primary method through which data is passed to and * from RenderScript kernels. An Allocation provides the backing store for a * given Type. * * An Allocation also contains a set of usage flags that denote how the * Allocation could be used. For example, an Allocation may have usage flags * specifying that it can be used from a script as well as input to a * Sampler. A developer must synchronize across these different usages using * syncAll(int) in order to ensure that different users of the Allocation have * a consistent view of memory. For example, in the case where an Allocation is * used as the output of one kernel and as Sampler input in a later kernel, a * developer must call syncAll(RS_ALLOCATION_USAGE_SCRIPT) prior to launching the * second kernel to ensure correctness. */ class Allocation : public BaseObj { protected: sp<const Type> mType; uint32_t mUsage; sp<Allocation> mAdaptedAllocation; bool mConstrainedLOD; bool mConstrainedFace; bool mConstrainedY; bool mConstrainedZ; bool mReadAllowed; bool mWriteAllowed; bool mAutoPadding; uint32_t mSelectedY; uint32_t mSelectedZ; uint32_t mSelectedLOD; RsAllocationCubemapFace mSelectedFace; uint32_t mCurrentDimX; uint32_t mCurrentDimY; uint32_t mCurrentDimZ; uint32_t mCurrentCount; void * getIDSafe() const; void updateCacheInfo(const sp<const Type>& t); Allocation(void *id, sp<RS> rs, sp<const Type> t, uint32_t usage); void validateIsInt64(); void validateIsInt32(); void validateIsInt16(); void validateIsInt8(); void validateIsFloat32(); void validateIsFloat64(); void validateIsObject(); virtual void updateFromNative(); void validate2DRange(uint32_t xoff, uint32_t yoff, uint32_t w, uint32_t h); void validate3DRange(uint32_t xoff, uint32_t yoff, uint32_t zoff, uint32_t w, uint32_t h, uint32_t d); public: /** * Return Type for the allocation. * @return pointer to underlying Type */ sp<const Type> getType() const { return mType; } /** * Enable/Disable AutoPadding for Vec3 elements. * * @param useAutoPadding True: enable AutoPadding; flase: disable AutoPadding * */ void setAutoPadding(bool useAutoPadding) { mAutoPadding = useAutoPadding; } /** * Propagate changes from one usage of the Allocation to other usages of the Allocation. * @param[in] srcLocation source location with changes to propagate elsewhere */ void syncAll(RsAllocationUsageType srcLocation); /** * Send a buffer to the output stream. The contents of the Allocation will * be undefined after this operation. This operation is only valid if * USAGE_IO_OUTPUT is set on the Allocation. */ void ioSendOutput(); /** * Receive the latest input into the Allocation. This operation * is only valid if USAGE_IO_INPUT is set on the Allocation. */ void ioGetInput(); #ifndef RS_COMPATIBILITY_LIB /** * Returns the handle to a raw buffer that is being managed by the screen * compositor. This operation is only valid for Allocations with USAGE_IO_INPUT. * @return Surface associated with allocation */ sp<Surface> getSurface(); /** * Associate a Surface with this Allocation. This * operation is only valid for Allocations with USAGE_IO_OUTPUT. * @param[in] s Surface to associate with allocation */ void setSurface(const sp<Surface>& s); #endif /** * Generate a mipmap chain. This is only valid if the Type of the Allocation * includes mipmaps. This function will generate a complete set of mipmaps * from the top level LOD and place them into the script memory space. If * the Allocation is also using other memory spaces, a call to * syncAll(Allocation.USAGE_SCRIPT) is required. */ void generateMipmaps(); /** * Copy an array into part of this Allocation. * @param[in] off offset of first Element to be overwritten * @param[in] count number of Elements to copy * @param[in] data array from which to copy */ void copy1DRangeFrom(uint32_t off, size_t count, const void *data); /** * Copy part of an Allocation into part of this Allocation. * @param[in] off offset of first Element to be overwritten * @param[in] count number of Elements to copy * @param[in] data Allocation from which to copy * @param[in] dataOff offset of first Element in data to copy */ void copy1DRangeFrom(uint32_t off, size_t count, const sp<const Allocation>& data, uint32_t dataOff); /** * Copy an array into part of this Allocation. * @param[in] off offset of first Element to be overwritten * @param[in] count number of Elements to copy * @param[in] data array from which to copy */ void copy1DRangeTo(uint32_t off, size_t count, void *data); /** * Copy entire array to an Allocation. * @param[in] data array from which to copy */ void copy1DFrom(const void* data); /** * Copy entire Allocation to an array. * @param[in] data destination array */ void copy1DTo(void* data); /** * Copy from an array into a rectangular region in this Allocation. The * array is assumed to be tightly packed. * @param[in] xoff X offset of region to update in this Allocation * @param[in] yoff Y offset of region to update in this Allocation * @param[in] w Width of region to update * @param[in] h Height of region to update * @param[in] data Array from which to copy */ void copy2DRangeFrom(uint32_t xoff, uint32_t yoff, uint32_t w, uint32_t h, const void *data); /** * Copy from this Allocation into a rectangular region in an array. The * array is assumed to be tightly packed. * @param[in] xoff X offset of region to copy from this Allocation * @param[in] yoff Y offset of region to copy from this Allocation * @param[in] w Width of region to update * @param[in] h Height of region to update * @param[in] data destination array */ void copy2DRangeTo(uint32_t xoff, uint32_t yoff, uint32_t w, uint32_t h, void *data); /** * Copy from an Allocation into a rectangular region in this Allocation. * @param[in] xoff X offset of region to update in this Allocation * @param[in] yoff Y offset of region to update in this Allocation * @param[in] w Width of region to update * @param[in] h Height of region to update * @param[in] data Allocation from which to copy * @param[in] dataXoff X offset of region to copy from in data * @param[in] dataYoff Y offset of region to copy from in data */ void copy2DRangeFrom(uint32_t xoff, uint32_t yoff, uint32_t w, uint32_t h, const sp<const Allocation>& data, uint32_t dataXoff, uint32_t dataYoff); /** * Copy from a strided array into a rectangular region in this Allocation. * @param[in] xoff X offset of region to update in this Allocation * @param[in] yoff Y offset of region to update in this Allocation * @param[in] w Width of region to update * @param[in] h Height of region to update * @param[in] data array from which to copy * @param[in] stride stride of data in bytes */ void copy2DStridedFrom(uint32_t xoff, uint32_t yoff, uint32_t w, uint32_t h, const void *data, size_t stride); /** * Copy from a strided array into this Allocation. * @param[in] data array from which to copy * @param[in] stride stride of data in bytes */ void copy2DStridedFrom(const void *data, size_t stride); /** * Copy from a rectangular region in this Allocation into a strided array. * @param[in] xoff X offset of region to update in this Allocation * @param[in] yoff Y offset of region to update in this Allocation * @param[in] w Width of region to update * @param[in] h Height of region to update * @param[in] data destination array * @param[in] stride stride of data in bytes */ void copy2DStridedTo(uint32_t xoff, uint32_t yoff, uint32_t w, uint32_t h, void *data, size_t stride); /** * Copy this Allocation into a strided array. * @param[in] data destination array * @param[in] stride stride of data in bytes */ void copy2DStridedTo(void *data, size_t stride); /** * Copy from an array into a 3D region in this Allocation. The * array is assumed to be tightly packed. * @param[in] xoff X offset of region to update in this Allocation * @param[in] yoff Y offset of region to update in this Allocation * @param[in] zoff Z offset of region to update in this Allocation * @param[in] w Width of region to update * @param[in] h Height of region to update * @param[in] d Depth of region to update * @param[in] data Array from which to copy */ void copy3DRangeFrom(uint32_t xoff, uint32_t yoff, uint32_t zoff, uint32_t w, uint32_t h, uint32_t d, const void* data); /** * Copy from an Allocation into a 3D region in this Allocation. * @param[in] xoff X offset of region to update in this Allocation * @param[in] yoff Y offset of region to update in this Allocation * @param[in] zoff Z offset of region to update in this Allocation * @param[in] w Width of region to update * @param[in] h Height of region to update * @param[in] d Depth of region to update * @param[in] data Allocation from which to copy * @param[in] dataXoff X offset of region in data to copy from * @param[in] dataYoff Y offset of region in data to copy from * @param[in] dataZoff Z offset of region in data to copy from */ void copy3DRangeFrom(uint32_t xoff, uint32_t yoff, uint32_t zoff, uint32_t w, uint32_t h, uint32_t d, const sp<const Allocation>& data, uint32_t dataXoff, uint32_t dataYoff, uint32_t dataZoff); /** * Copy a 3D region in this Allocation into an array. The * array is assumed to be tightly packed. * @param[in] xoff X offset of region to update in this Allocation * @param[in] yoff Y offset of region to update in this Allocation * @param[in] zoff Z offset of region to update in this Allocation * @param[in] w Width of region to update * @param[in] h Height of region to update * @param[in] d Depth of region to update * @param[in] data Array from which to copy */ void copy3DRangeTo(uint32_t xoff, uint32_t yoff, uint32_t zoff, uint32_t w, uint32_t h, uint32_t d, void* data); /** * Creates an Allocation for use by scripts with a given Type. * @param[in] rs Context to which the Allocation will belong * @param[in] type Type of the Allocation * @param[in] mipmaps desired mipmap behavior for the Allocation * @param[in] usage usage for the Allocation * @return new Allocation */ static sp<Allocation> createTyped(const sp<RS>& rs, const sp<const Type>& type, RsAllocationMipmapControl mipmaps, uint32_t usage); /** * Creates an Allocation for use by scripts with a given Type and a backing pointer. For use * with RS_ALLOCATION_USAGE_SHARED. * @param[in] rs Context to which the Allocation will belong * @param[in] type Type of the Allocation * @param[in] mipmaps desired mipmap behavior for the Allocation * @param[in] usage usage for the Allocation * @param[in] pointer existing backing store to use for this Allocation if possible * @return new Allocation */ static sp<Allocation> createTyped(const sp<RS>& rs, const sp<const Type>& type, RsAllocationMipmapControl mipmaps, uint32_t usage, void * pointer); /** * Creates an Allocation for use by scripts with a given Type with no mipmaps. * @param[in] rs Context to which the Allocation will belong * @param[in] type Type of the Allocation * @param[in] usage usage for the Allocation * @return new Allocation */ static sp<Allocation> createTyped(const sp<RS>& rs, const sp<const Type>& type, uint32_t usage = RS_ALLOCATION_USAGE_SCRIPT); /** * Creates an Allocation with a specified number of given elements. * @param[in] rs Context to which the Allocation will belong * @param[in] e Element used in the Allocation * @param[in] count Number of elements of the Allocation * @param[in] usage usage for the Allocation * @return new Allocation */ static sp<Allocation> createSized(const sp<RS>& rs, const sp<const Element>& e, size_t count, uint32_t usage = RS_ALLOCATION_USAGE_SCRIPT); /** * Creates a 2D Allocation with a specified number of given elements. * @param[in] rs Context to which the Allocation will belong * @param[in] e Element used in the Allocation * @param[in] x Width in Elements of the Allocation * @param[in] y Height of the Allocation * @param[in] usage usage for the Allocation * @return new Allocation */ static sp<Allocation> createSized2D(const sp<RS>& rs, const sp<const Element>& e, size_t x, size_t y, uint32_t usage = RS_ALLOCATION_USAGE_SCRIPT); /** * Get the backing pointer for a USAGE_SHARED allocation. * @param[in] stride optional parameter. when non-NULL, will contain * stride in bytes of a 2D Allocation * @return pointer to data */ void * getPointer(size_t *stride = NULL); }; /** * An Element represents one item within an Allocation. An Element is roughly * equivalent to a C type in a RenderScript kernel. Elements may be basic * or complex. Some basic elements are: * - A single float value (equivalent to a float in a kernel) * - A four-element float vector (equivalent to a float4 in a kernel) * - An unsigned 32-bit integer (equivalent to an unsigned int in a kernel) * - A single signed 8-bit integer (equivalent to a char in a kernel) * Basic Elements are comprised of a Element.DataType and a * Element.DataKind. The DataType encodes C type information of an Element, * while the DataKind encodes how that Element should be interpreted by a * Sampler. Note that Allocation objects with DataKind USER cannot be used as * input for a Sampler. In general, Allocation objects that are intended for * use with a Sampler should use bitmap-derived Elements such as * Element::RGBA_8888. */ class Element : public BaseObj { public: bool isComplex(); /** * Elements could be simple, such as an int or a float, or a structure with * multiple sub-elements, such as a collection of floats, float2, * float4. This function returns zero for simple elements or the number of * sub-elements otherwise. * @return number of sub-elements */ size_t getSubElementCount() { return mVisibleElementMapSize; } /** * For complex Elements, this returns the sub-element at a given index. * @param[in] index index of sub-element * @return sub-element */ sp<const Element> getSubElement(uint32_t index); /** * For complex Elements, this returns the name of the sub-element at a given * index. * @param[in] index index of sub-element * @return name of sub-element */ const char * getSubElementName(uint32_t index); /** * For complex Elements, this returns the size of the sub-element at a given * index. * @param[in] index index of sub-element * @return size of sub-element */ size_t getSubElementArraySize(uint32_t index); /** * Returns the location of a sub-element within a complex Element. * @param[in] index index of sub-element * @return offset in bytes */ uint32_t getSubElementOffsetBytes(uint32_t index); /** * Returns the data type used for the Element. * @return data type */ RsDataType getDataType() const { return mType; } /** * Returns the data kind used for the Element. * @return data kind */ RsDataKind getDataKind() const { return mKind; } /** * Returns the size in bytes of the Element. * @return size in bytes */ size_t getSizeBytes() const { return mSizeBytes; } /** * Returns the number of vector components for this Element. * @return number of vector components */ uint32_t getVectorSize() const { return mVectorSize; } /** * Utility function for returning an Element containing a single bool. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> BOOLEAN(const sp<RS> &rs); /** * Utility function for returning an Element containing a single unsigned char. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> U8(const sp<RS> &rs); /** * Utility function for returning an Element containing a single signed char. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> I8(const sp<RS> &rs); /** * Utility function for returning an Element containing a single unsigned short. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> U16(const sp<RS> &rs); /** * Utility function for returning an Element containing a single signed short. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> I16(const sp<RS> &rs); /** * Utility function for returning an Element containing a single unsigned int. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> U32(const sp<RS> &rs); /** * Utility function for returning an Element containing a single signed int. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> I32(const sp<RS> &rs); /** * Utility function for returning an Element containing a single unsigned long long. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> U64(const sp<RS> &rs); /** * Utility function for returning an Element containing a single signed long long. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> I64(const sp<RS> &rs); /** * Utility function for returning an Element containing a single half. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> F16(const sp<RS> &rs); /** * Utility function for returning an Element containing a single float. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> F32(const sp<RS> &rs); /** * Utility function for returning an Element containing a single double. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> F64(const sp<RS> &rs); /** * Utility function for returning an Element containing a single Element. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> ELEMENT(const sp<RS> &rs); /** * Utility function for returning an Element containing a single Type. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> TYPE(const sp<RS> &rs); /** * Utility function for returning an Element containing a single Allocation. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> ALLOCATION(const sp<RS> &rs); /** * Utility function for returning an Element containing a single Sampler. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> SAMPLER(const sp<RS> &rs); /** * Utility function for returning an Element containing a single Script. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> SCRIPT(const sp<RS> &rs); /** * Utility function for returning an Element containing an ALPHA_8 pixel. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> A_8(const sp<RS> &rs); /** * Utility function for returning an Element containing an RGB_565 pixel. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> RGB_565(const sp<RS> &rs); /** * Utility function for returning an Element containing an RGB_888 pixel. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> RGB_888(const sp<RS> &rs); /** * Utility function for returning an Element containing an RGBA_5551 pixel. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> RGBA_5551(const sp<RS> &rs); /** * Utility function for returning an Element containing an RGBA_4444 pixel. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> RGBA_4444(const sp<RS> &rs); /** * Utility function for returning an Element containing an RGBA_8888 pixel. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> RGBA_8888(const sp<RS> &rs); /** * Utility function for returning an Element containing a half2. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> F16_2(const sp<RS> &rs); /** * Utility function for returning an Element containing a half3. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> F16_3(const sp<RS> &rs); /** * Utility function for returning an Element containing a half4. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> F16_4(const sp<RS> &rs); /** * Utility function for returning an Element containing a float2. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> F32_2(const sp<RS> &rs); /** * Utility function for returning an Element containing a float3. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> F32_3(const sp<RS> &rs); /** * Utility function for returning an Element containing a float4. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> F32_4(const sp<RS> &rs); /** * Utility function for returning an Element containing a double2. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> F64_2(const sp<RS> &rs); /** * Utility function for returning an Element containing a double3. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> F64_3(const sp<RS> &rs); /** * Utility function for returning an Element containing a double4. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> F64_4(const sp<RS> &rs); /** * Utility function for returning an Element containing a uchar2. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> U8_2(const sp<RS> &rs); /** * Utility function for returning an Element containing a uchar3. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> U8_3(const sp<RS> &rs); /** * Utility function for returning an Element containing a uchar4. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> U8_4(const sp<RS> &rs); /** * Utility function for returning an Element containing a char2. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> I8_2(const sp<RS> &rs); /** * Utility function for returning an Element containing a char3. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> I8_3(const sp<RS> &rs); /** * Utility function for returning an Element containing a char4. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> I8_4(const sp<RS> &rs); /** * Utility function for returning an Element containing a ushort2. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> U16_2(const sp<RS> &rs); /** * Utility function for returning an Element containing a ushort3. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> U16_3(const sp<RS> &rs); /** * Utility function for returning an Element containing a ushort4. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> U16_4(const sp<RS> &rs); /** * Utility function for returning an Element containing a short2. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> I16_2(const sp<RS> &rs); /** * Utility function for returning an Element containing a short3. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> I16_3(const sp<RS> &rs); /** * Utility function for returning an Element containing a short4. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> I16_4(const sp<RS> &rs); /** * Utility function for returning an Element containing a uint2. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> U32_2(const sp<RS> &rs); /** * Utility function for returning an Element containing a uint3. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> U32_3(const sp<RS> &rs); /** * Utility function for returning an Element containing a uint4. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> U32_4(const sp<RS> &rs); /** * Utility function for returning an Element containing an int2. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> I32_2(const sp<RS> &rs); /** * Utility function for returning an Element containing an int3. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> I32_3(const sp<RS> &rs); /** * Utility function for returning an Element containing an int4. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> I32_4(const sp<RS> &rs); /** * Utility function for returning an Element containing a ulong2. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> U64_2(const sp<RS> &rs); /** * Utility function for returning an Element containing a ulong3. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> U64_3(const sp<RS> &rs); /** * Utility function for returning an Element containing a ulong4. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> U64_4(const sp<RS> &rs); /** * Utility function for returning an Element containing a long2. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> I64_2(const sp<RS> &rs); /** * Utility function for returning an Element containing a long3. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> I64_3(const sp<RS> &rs); /** * Utility function for returning an Element containing a long4. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> I64_4(const sp<RS> &rs); /** * Utility function for returning an Element containing a YUV pixel. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> YUV(const sp<RS> &rs); /** * Utility function for returning an Element containing an rs_matrix_4x4. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> MATRIX_4X4(const sp<RS> &rs); /** * Utility function for returning an Element containing an rs_matrix_3x3. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> MATRIX_3X3(const sp<RS> &rs); /** * Utility function for returning an Element containing an rs_matrix_2x2. * @param[in] rs RenderScript context * @return Element */ static sp<const Element> MATRIX_2X2(const sp<RS> &rs); void updateFromNative(); /** * Create an Element with a given DataType. * @param[in] rs RenderScript context * @param[in] dt data type * @return Element */ static sp<const Element> createUser(const sp<RS>& rs, RsDataType dt); /** * Create a vector Element with the given DataType * @param[in] rs RenderScript * @param[in] dt DataType * @param[in] size vector size * @return Element */ static sp<const Element> createVector(const sp<RS>& rs, RsDataType dt, uint32_t size); /** * Create an Element with a given DataType and DataKind. * @param[in] rs RenderScript context * @param[in] dt DataType * @param[in] dk DataKind * @return Element */ static sp<const Element> createPixel(const sp<RS>& rs, RsDataType dt, RsDataKind dk); /** * Returns true if the Element can interoperate with this Element. * @param[in] e Element to compare * @return true if Elements can interoperate */ bool isCompatible(const sp<const Element>&e) const; /** * Builder class for producing complex elements with matching field and name * pairs. The builder starts empty. The order in which elements are added is * retained for the layout in memory. */ class Builder { private: RS* mRS; size_t mElementsCount; size_t mElementsVecSize; sp<const Element> * mElements; char ** mElementNames; size_t * mElementNameLengths; uint32_t * mArraySizes; bool mSkipPadding; public: explicit Builder(sp<RS> rs); ~Builder(); void add(const sp<const Element>& e, const char * name, uint32_t arraySize = 1); sp<const Element> create(); }; protected: friend class Type; Element(void *id, sp<RS> rs, sp<const Element> * elements, size_t elementCount, const char ** elementNames, size_t * elementNameLengths, uint32_t * arraySizes); Element(void *id, sp<RS> rs, RsDataType dt, RsDataKind dk, bool norm, uint32_t size); Element(void *id, sp<RS> rs); explicit Element(sp<RS> rs); virtual ~Element(); private: void updateVisibleSubElements(); size_t mElementsCount; size_t mVisibleElementMapSize; sp<const Element> * mElements; char ** mElementNames; size_t * mElementNameLengths; uint32_t * mArraySizes; uint32_t * mVisibleElementMap; uint32_t * mOffsetInBytes; RsDataType mType; RsDataKind mKind; bool mNormalized; size_t mSizeBytes; size_t mVectorSize; }; class FieldPacker { protected: unsigned char* mData; size_t mPos; size_t mLen; public: explicit FieldPacker(size_t len) : mPos(0), mLen(len) { mData = new unsigned char[len]; } virtual ~FieldPacker() { delete [] mData; } void align(size_t v) { if ((v & (v - 1)) != 0) { // ALOGE("Non-power-of-two alignment: %zu", v); return; } while ((mPos & (v - 1)) != 0) { mData[mPos++] = 0; } } void reset() { mPos = 0; } void reset(size_t i) { if (i >= mLen) { // ALOGE("Out of bounds: i (%zu) >= len (%zu)", i, mLen); return; } mPos = i; } void skip(size_t i) { size_t res = mPos + i; if (res > mLen) { // ALOGE("Exceeded buffer length: i (%zu) > len (%zu)", i, mLen); return; } mPos = res; } void* getData() const { return mData; } size_t getLength() const { return mLen; } template <typename T> void add(T t) { align(sizeof(t)); if (mPos + sizeof(t) <= mLen) { memcpy(&mData[mPos], &t, sizeof(t)); mPos += sizeof(t); } } /* void add(rs_matrix4x4 m) { for (size_t i = 0; i < 16; i++) { add(m.m[i]); } } void add(rs_matrix3x3 m) { for (size_t i = 0; i < 9; i++) { add(m.m[i]); } } void add(rs_matrix2x2 m) { for (size_t i = 0; i < 4; i++) { add(m.m[i]); } } */ void add(const sp<BaseObj>& obj) { if (obj != NULL) { add((uint32_t) (uintptr_t) obj->getID()); } else { add((uint32_t) 0); } } }; /** * A Type describes the Element and dimensions used for an Allocation or a * parallel operation. * * A Type always includes an Element and an X dimension. A Type may be * multidimensional, up to three dimensions. A nonzero value in the Y or Z * dimensions indicates that the dimension is present. Note that a Type with * only a given X dimension and a Type with the same X dimension but Y = 1 are * not equivalent. * * A Type also supports inclusion of level of detail (LOD) or cube map * faces. LOD and cube map faces are booleans to indicate present or not * present. * * A Type also supports YUV format information to support an Allocation in a YUV * format. The YUV formats supported are RS_YUV_YV12 and RS_YUV_NV21. */ class Type : public BaseObj { protected: friend class Allocation; uint32_t mDimX; uint32_t mDimY; uint32_t mDimZ; RsYuvFormat mYuvFormat; bool mDimMipmaps; bool mDimFaces; size_t mElementCount; sp<const Element> mElement; Type(void *id, sp<RS> rs); void calcElementCount(); virtual void updateFromNative(); public: /** * Returns the YUV format. * @return YUV format of the Allocation */ RsYuvFormat getYuvFormat() const { return mYuvFormat; } /** * Returns the Element of the Allocation. * @return YUV format of the Allocation */ sp<const Element> getElement() const { return mElement; } /** * Returns the X dimension of the Allocation. * @return X dimension of the allocation */ uint32_t getX() const { return mDimX; } /** * Returns the Y dimension of the Allocation. * @return Y dimension of the allocation */ uint32_t getY() const { return mDimY; } /** * Returns the Z dimension of the Allocation. * @return Z dimension of the allocation */ uint32_t getZ() const { return mDimZ; } /** * Returns true if the Allocation has mipmaps. * @return true if the Allocation has mipmaps */ bool hasMipmaps() const { return mDimMipmaps; } /** * Returns true if the Allocation is a cube map * @return true if the Allocation is a cube map */ bool hasFaces() const { return mDimFaces; } /** * Returns number of accessible Elements in the Allocation * @return number of accessible Elements in the Allocation */ size_t getCount() const { return mElementCount; } /** * Returns size in bytes of all Elements in the Allocation * @return size in bytes of all Elements in the Allocation */ size_t getSizeBytes() const { return mElementCount * mElement->getSizeBytes(); } /** * Creates a new Type with the given Element and dimensions. * @param[in] rs RenderScript context * @param[in] e Element * @param[in] dimX X dimension * @param[in] dimY Y dimension * @param[in] dimZ Z dimension * @return new Type */ static sp<const Type> create(const sp<RS>& rs, const sp<const Element>& e, uint32_t dimX, uint32_t dimY, uint32_t dimZ); class Builder { protected: RS* mRS; uint32_t mDimX; uint32_t mDimY; uint32_t mDimZ; RsYuvFormat mYuvFormat; bool mDimMipmaps; bool mDimFaces; sp<const Element> mElement; public: Builder(sp<RS> rs, sp<const Element> e); void setX(uint32_t value); void setY(uint32_t value); void setZ(uint32_t value); void setYuvFormat(RsYuvFormat format); void setMipmaps(bool value); void setFaces(bool value); sp<const Type> create(); }; }; /** * The parent class for all executable Scripts. This should not be used by applications. */ class Script : public BaseObj { private: protected: Script(void *id, sp<RS> rs); void forEach(uint32_t slot, const sp<const Allocation>& in, const sp<const Allocation>& out, const void *v, size_t) const; void bindAllocation(const sp<Allocation>& va, uint32_t slot) const; void setVar(uint32_t index, const void *, size_t len) const; void setVar(uint32_t index, const sp<const BaseObj>& o) const; void invoke(uint32_t slot, const void *v, size_t len) const; void invoke(uint32_t slot) const { invoke(slot, NULL, 0); } void setVar(uint32_t index, float v) const { setVar(index, &v, sizeof(v)); } void setVar(uint32_t index, double v) const { setVar(index, &v, sizeof(v)); } void setVar(uint32_t index, int32_t v) const { setVar(index, &v, sizeof(v)); } void setVar(uint32_t index, uint32_t v) const { setVar(index, &v, sizeof(v)); } void setVar(uint32_t index, int64_t v) const { setVar(index, &v, sizeof(v)); } void setVar(uint32_t index, bool v) const { setVar(index, &v, sizeof(v)); } public: class FieldBase { protected: sp<const Element> mElement; sp<Allocation> mAllocation; void init(const sp<RS>& rs, uint32_t dimx, uint32_t usages = 0); public: sp<const Element> getElement() { return mElement; } sp<const Type> getType() { return mAllocation->getType(); } sp<const Allocation> getAllocation() { return mAllocation; } //void updateAllocation(); }; }; /** * The parent class for all user-defined scripts. This is intended to be used by auto-generated code only. */ class ScriptC : public Script { protected: ScriptC(sp<RS> rs, const void *codeTxt, size_t codeLength, const char *cachedName, size_t cachedNameLength, const char *cacheDir, size_t cacheDirLength); }; /** * The parent class for all script intrinsics. Intrinsics provide highly optimized implementations of * basic functions. This is not intended to be used directly. */ class ScriptIntrinsic : public Script { protected: sp<const Element> mElement; ScriptIntrinsic(sp<RS> rs, int id, sp<const Element> e); virtual ~ScriptIntrinsic(); }; /** * Intrinsic for converting RGB to RGBA by using a 3D lookup table. The incoming * r,g,b values are use as normalized x,y,z coordinates into a 3D * allocation. The 8 nearest values are sampled and linearly interpolated. The * result is placed in the output. */ class ScriptIntrinsic3DLUT : public ScriptIntrinsic { private: ScriptIntrinsic3DLUT(sp<RS> rs, sp<const Element> e); public: /** * Supported Element types are U8_4. Default lookup table is identity. * @param[in] rs RenderScript context * @param[in] e Element * @return new ScriptIntrinsic */ static sp<ScriptIntrinsic3DLUT> create(const sp<RS>& rs, const sp<const Element>& e); /** * Launch the intrinsic. * @param[in] ain input Allocation * @param[in] aout output Allocation */ void forEach(const sp<Allocation>& ain, const sp<Allocation>& aout); /** * Sets the lookup table. The lookup table must use the same Element as the * intrinsic. * @param[in] lut new lookup table */ void setLUT(const sp<Allocation>& lut); }; /** * Intrinsic kernel provides high performance RenderScript APIs to BLAS. * * The BLAS (Basic Linear Algebra Subprograms) are routines that provide standard * building blocks for performing basic vector and matrix operations. * * For detailed description of BLAS, please refer to http://www.netlib.org/blas/ * **/ class ScriptIntrinsicBLAS : public ScriptIntrinsic { private: ScriptIntrinsicBLAS(sp<RS> rs, sp<const Element> e); public: /** * Create an intrinsic to access BLAS subroutines. * * @param rs The RenderScript context * @return ScriptIntrinsicBLAS */ static sp<ScriptIntrinsicBLAS> create(const sp<RS>& rs); /** * SGEMV performs one of the matrix-vector operations * y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/db/d58/sgemv_8f.html * * @param TransA The type of transpose applied to matrix A. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F32}. * @param X The input allocation contains vector x, supported elements type: {Element#F32}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type: {Element#F32}. * @param incY The increment for the elements of vector y, must be larger than zero. */ void SGEMV(RsBlasTranspose TransA, float alpha, const sp<Allocation>& A, const sp<Allocation>& X, int incX, float beta, const sp<Allocation>& Y, int incY); /** * DGEMV performs one of the matrix-vector operations * y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/dc/da8/dgemv_8f.html * * @param TransA The type of transpose applied to matrix A. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F64}. * @param X The input allocation contains vector x, supported elements type: {Element#F64}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type: {Element#F64}. * @param incY The increment for the elements of vector y, must be larger than zero. */ void DGEMV(RsBlasTranspose TransA, double alpha, const sp<Allocation>& A, const sp<Allocation>& X, int incX, double beta, const sp<Allocation>& Y, int incY); /** * CGEMV performs one of the matrix-vector operations * y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y or y := alpha*A**H*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/d4/d8a/cgemv_8f.html * * @param TransA The type of transpose applied to matrix A. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}. * @param X The input allocation contains vector x, supported elements type: {Element#F32_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type: {Element#F32_2}. * @param incY The increment for the elements of vector y, must be larger than zero. */ void CGEMV(RsBlasTranspose TransA, Float2 alpha, const sp<Allocation>& A, const sp<Allocation>& X, int incX, Float2 beta, const sp<Allocation>& Y, int incY); /** * ZGEMV performs one of the matrix-vector operations * y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y or y := alpha*A**H*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/db/d40/zgemv_8f.html * * @param TransA The type of transpose applied to matrix A. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}. * @param X The input allocation contains vector x, supported elements type: {Element#F64_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type: {Element#F64_2}. * @param incY The increment for the elements of vector y, must be larger than zero. */ void ZGEMV(RsBlasTranspose TransA, Double2 alpha, const sp<Allocation>& A, const sp<Allocation>& X, int incX, Double2 beta, const sp<Allocation>& Y, int incY); /** * SGBMV performs one of the matrix-vector operations * y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/d6/d46/sgbmv_8f.html * * Note: For a M*N matrix, the input Allocation should also be of size M*N (dimY = M, dimX = N), * but only the region M*(KL+KU+1) will be referenced. The following subroutine can is an * example showing how to convert the original matrix 'a' to row-based band matrix 'b'. * for i in range(0, m): * for j in range(max(0, i-kl), min(i+ku+1, n)): * b[i, j-i+kl] = a[i, j] * * @param TransA The type of transpose applied to matrix A. * @param KL The number of sub-diagonals of the matrix A. * @param KU The number of super-diagonals of the matrix A. * @param alpha The scalar alpha. * @param A The input allocation contains the band matrix A, supported elements type: {Element#F32}. * @param X The input allocation contains vector x, supported elements type: {Element#F32}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type: {Element#F32}. * @param incY The increment for the elements of vector y, must be larger than zero. */ void SGBMV(RsBlasTranspose TransA, int KL, int KU, float alpha, const sp<Allocation>& A, const sp<Allocation>& X, int incX, float beta, const sp<Allocation>& Y, int incY); /** * DGBMV performs one of the matrix-vector operations * y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/d2/d3f/dgbmv_8f.html * * Note: For a M*N matrix, the input Allocation should also be of size M*N (dimY = M, dimX = N), * but only the region M*(KL+KU+1) will be referenced. The following subroutine can is an * example showing how to convert the original matrix 'a' to row-based band matrix 'b'. * for i in range(0, m): * for j in range(max(0, i-kl), min(i+ku+1, n)): * b[i, j-i+kl] = a[i, j] * * @param TransA The type of transpose applied to matrix A. * @param KL The number of sub-diagonals of the matrix A. * @param KU The number of super-diagonals of the matrix A. * @param alpha The scalar alpha. * @param A The input allocation contains the band matrix A, supported elements type: {Element#F64}. * @param X The input allocation contains vector x, supported elements type: {Element#F64}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type: {Element#F64}. * @param incY The increment for the elements of vector y, must be larger than zero. */ void DGBMV(RsBlasTranspose TransA, int KL, int KU, double alpha, const sp<Allocation>& A, const sp<Allocation>& X, int incX, double beta, const sp<Allocation>& Y, int incY); /** * CGBMV performs one of the matrix-vector operations * y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y or y := alpha*A**H*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/d0/d75/cgbmv_8f.html * * Note: For a M*N matrix, the input Allocation should also be of size M*N (dimY = M, dimX = N), * but only the region M*(KL+KU+1) will be referenced. The following subroutine can is an * example showing how to convert the original matrix 'a' to row-based band matrix 'b'. * for i in range(0, m): * for j in range(max(0, i-kl), min(i+ku+1, n)): * b[i, j-i+kl] = a[i, j] * * @param TransA The type of transpose applied to matrix A. * @param KL The number of sub-diagonals of the matrix A. * @param KU The number of super-diagonals of the matrix A. * @param alpha The scalar alpha. * @param A The input allocation contains the band matrix A, supported elements type: {Element#F32_2}. * @param X The input allocation contains vector x, supported elements type: {Element#F32_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type: {Element#F32_2}. * @param incY The increment for the elements of vector y, must be larger than zero. */ void CGBMV(RsBlasTranspose TransA, int KL, int KU, Float2 alpha, const sp<Allocation>& A, const sp<Allocation>& X, int incX, Float2 beta, const sp<Allocation>& Y, int incY); /** * ZGBMV performs one of the matrix-vector operations * y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y or y := alpha*A**H*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/d9/d46/zgbmv_8f.html * * Note: For a M*N matrix, the input Allocation should also be of size M*N (dimY = M, dimX = N), * but only the region M*(KL+KU+1) will be referenced. The following subroutine can is an * example showing how to convert the original matrix 'a' to row-based band matrix 'b'. * for i in range(0, m): * for j in range(max(0, i-kl), min(i+ku+1, n)): * b[i, j-i+kl] = a[i, j] * * @param TransA The type of transpose applied to matrix A. * @param KL The number of sub-diagonals of the matrix A. * @param KU The number of super-diagonals of the matrix A. * @param alpha The scalar alpha. * @param A The input allocation contains the band matrix A, supported elements type: {Element#F64_2}. * @param X The input allocation contains vector x, supported elements type: {Element#F64_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type: {Element#F64_2}. * @param incY The increment for the elements of vector y, must be larger than zero. */ void ZGBMV(RsBlasTranspose TransA, int KL, int KU, Double2 alpha, const sp<Allocation>& A, const sp<Allocation>& X, int incX, Double2 beta, const sp<Allocation>& Y, int incY); /** * STRMV performs one of the matrix-vector operations * x := A*x or x := A**T*x * * Details: http://www.netlib.org/lapack/explore-html/de/d45/strmv_8f.html * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param A The input allocation contains matrix A, supported elements type: {Element#F32}. * @param X The input allocation contains vector x, supported elements type: {Element#F32}. * @param incX The increment for the elements of vector x, must be larger than zero. */ void STRMV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag, const sp<Allocation>& A, const sp<Allocation>& X, int incX); /** * DTRMV performs one of the matrix-vector operations * x := A*x or x := A**T*x * * Details: http://www.netlib.org/lapack/explore-html/dc/d7e/dtrmv_8f.html * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param A The input allocation contains matrix A, supported elements type: {Element#F64}. * @param X The input allocation contains vector x, supported elements type: {Element#F64}. * @param incX The increment for the elements of vector x, must be larger than zero. */ void DTRMV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag, const sp<Allocation>& A, const sp<Allocation>& X, int incX); /** * CTRMV performs one of the matrix-vector operations * x := A*x or x := A**T*x or x := A**H*x * * Details: http://www.netlib.org/lapack/explore-html/df/d78/ctrmv_8f.html * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}. * @param X The input allocation contains vector x, supported elements type: {Element#F32_2}. * @param incX The increment for the elements of vector x, must be larger than zero. */ void CTRMV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag, const sp<Allocation>& A, const sp<Allocation>& X, int incX); /** * ZTRMV performs one of the matrix-vector operations * x := A*x or x := A**T*x or x := A**H*x * * Details: http://www.netlib.org/lapack/explore-html/d0/dd1/ztrmv_8f.html * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}. * @param X The input allocation contains vector x, supported elements type: {Element#F64_2}. * @param incX The increment for the elements of vector x, must be larger than zero. */ void ZTRMV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag, const sp<Allocation>& A, const sp<Allocation>& X, int incX); /** * STBMV performs one of the matrix-vector operations * x := A*x or x := A**T*x * * Details: http://www.netlib.org/lapack/explore-html/d6/d7d/stbmv_8f.html * * Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), * but only the region N*(K+1) will be referenced. The following subroutine can is an * example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. * for i in range(0, n): * for j in range(i, min(i+k+1, n)): * b[i, j-i] = a[i, j] * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param K The number of off-diagonals of the matrix A * @param A The input allocation contains matrix A, supported elements type: {Element#F32}. * @param X The input allocation contains vector x, supported elements type: {Element#F32}. * @param incX The increment for the elements of vector x, must be larger than zero. */ void STBMV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag, int K, const sp<Allocation>& A, const sp<Allocation>& X, int incX); /** * DTBMV performs one of the matrix-vector operations * x := A*x or x := A**T*x * * Details: http://www.netlib.org/lapack/explore-html/df/d29/dtbmv_8f.html * * Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), * but only the region N*(K+1) will be referenced. The following subroutine can is an * example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. * for i in range(0, n): * for j in range(i, min(i+k+1, n)): * b[i, j-i] = a[i, j] * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param K The number of off-diagonals of the matrix A * @param A The input allocation contains matrix A, supported elements type: {Element#F64}. * @param X The input allocation contains vector x, supported elements type: {Element#F64}. * @param incX The increment for the elements of vector x, must be larger than zero. */ void DTBMV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag, int K, const sp<Allocation>& A, const sp<Allocation>& X, int incX); /** * CTBMV performs one of the matrix-vector operations * x := A*x or x := A**T*x or x := A**H*x * * Details: http://www.netlib.org/lapack/explore-html/d3/dcd/ctbmv_8f.html * * Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), * but only the region N*(K+1) will be referenced. The following subroutine can is an * example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. * for i in range(0, n): * for j in range(i, min(i+k+1, n)): * b[i, j-i] = a[i, j] * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param K The number of off-diagonals of the matrix A * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}. * @param X The input allocation contains vector x, supported elements type: {Element#F32_2}. * @param incX The increment for the elements of vector x, must be larger than zero. */ void CTBMV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag, int K, const sp<Allocation>& A, const sp<Allocation>& X, int incX); /** * ZTBMV performs one of the matrix-vector operations * x := A*x or x := A**T*x or x := A**H*x * * Details: http://www.netlib.org/lapack/explore-html/d3/d39/ztbmv_8f.html * * Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), * but only the region N*(K+1) will be referenced. The following subroutine can is an * example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. * for i in range(0, n): * for j in range(i, min(i+k+1, n)): * b[i, j-i] = a[i, j] * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param K The number of off-diagonals of the matrix A * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}. * @param X The input allocation contains vector x, supported elements type: {Element#F64_2}. * @param incX The increment for the elements of vector x, must be larger than zero. */ void ZTBMV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag, int K, const sp<Allocation>& A, const sp<Allocation>& X, int incX); /** * STPMV performs one of the matrix-vector operations * x := A*x or x := A**T*x * * Details: http://www.netlib.org/lapack/explore-html/db/db1/stpmv_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param Ap The input allocation contains packed matrix A, supported elements type: {Element#F32}. * @param X The input allocation contains vector x, supported elements type: {Element#F32}. * @param incX The increment for the elements of vector x, must be larger than zero. */ void STPMV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag, const sp<Allocation>& Ap, const sp<Allocation>& X, int incX); /** * DTPMV performs one of the matrix-vector operations * x := A*x or x := A**T*x * * Details: http://www.netlib.org/lapack/explore-html/dc/dcd/dtpmv_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param Ap The input allocation contains packed matrix A, supported elements type: {Element#F64}. * @param X The input allocation contains vector x, supported elements type: {Element#F64}. * @param incX The increment for the elements of vector x, must be larger than zero. */ void DTPMV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag, const sp<Allocation>& Ap, const sp<Allocation>& X, int incX); /** * CTPMV performs one of the matrix-vector operations * x := A*x or x := A**T*x or x := A**H*x * * Details: http://www.netlib.org/lapack/explore-html/d4/dbb/ctpmv_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param Ap The input allocation contains packed matrix A, supported elements type: {Element#F32_2}. * @param X The input allocation contains vector x, supported elements type: {Element#F32_2}. * @param incX The increment for the elements of vector x, must be larger than zero. */ void CTPMV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag, const sp<Allocation>& Ap, const sp<Allocation>& X, int incX); /** * ZTPMV performs one of the matrix-vector operations * x := A*x or x := A**T*x or x := A**H*x * * Details: http://www.netlib.org/lapack/explore-html/d2/d9e/ztpmv_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param Ap The input allocation contains packed matrix A, supported elements type: {Element#F64_2}. * @param X The input allocation contains vector x, supported elements type: {Element#F64_2}. * @param incX The increment for the elements of vector x, must be larger than zero. */ void ZTPMV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag, const sp<Allocation>& Ap, const sp<Allocation>& X, int incX); /** * STRSV solves one of the systems of equations * A*x = b or A**T*x = b * * Details: http://www.netlib.org/lapack/explore-html/d0/d2a/strsv_8f.html * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param A The input allocation contains matrix A, supported elements type: {Element#F32}. * @param X The input allocation contains vector x, supported elements type: {Element#F32}. * @param incX The increment for the elements of vector x, must be larger than zero. */ void STRSV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag, const sp<Allocation>& A, const sp<Allocation>& X, int incX); /** * DTRSV solves one of the systems of equations * A*x = b or A**T*x = b * * Details: http://www.netlib.org/lapack/explore-html/d6/d96/dtrsv_8f.html * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param A The input allocation contains matrix A, supported elements type: {Element#F64}. * @param X The input allocation contains vector x, supported elements type: {Element#F64}. * @param incX The increment for the elements of vector x, must be larger than zero. */ void DTRSV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag, const sp<Allocation>& A, const sp<Allocation>& X, int incX); /** * CTRSV solves one of the systems of equations * A*x = b or A**T*x = b or A**H*x = b * * Details: http://www.netlib.org/lapack/explore-html/d4/dc8/ctrsv_8f.html * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}. * @param X The input allocation contains vector x, supported elements type: {Element#F32_2}. * @param incX The increment for the elements of vector x, must be larger than zero. */ void CTRSV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag, const sp<Allocation>& A, const sp<Allocation>& X, int incX); /** * ZTRSV solves one of the systems of equations * A*x = b or A**T*x = b or A**H*x = b * * Details: http://www.netlib.org/lapack/explore-html/d1/d2f/ztrsv_8f.html * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}. * @param X The input allocation contains vector x, supported elements type: {Element#F64_2}. * @param incX The increment for the elements of vector x, must be larger than zero. */ void ZTRSV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag, const sp<Allocation>& A, const sp<Allocation>& X, int incX); /** * STBSV solves one of the systems of equations * A*x = b or A**T*x = b * * Details: http://www.netlib.org/lapack/explore-html/d0/d1f/stbsv_8f.html * * Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), * but only the region N*(K+1) will be referenced. The following subroutine can is an * example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. * for i in range(0, n): * for j in range(i, min(i+k+1, n)): * b[i, j-i] = a[i, j] * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param K The number of off-diagonals of the matrix A * @param A The input allocation contains matrix A, supported elements type: {Element#F32}. * @param X The input allocation contains vector x, supported elements type: {Element#F32}. * @param incX The increment for the elements of vector x, must be larger than zero. */ void STBSV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag, int K, const sp<Allocation>& A, const sp<Allocation>& X, int incX); /** * DTBSV solves one of the systems of equations * A*x = b or A**T*x = b * * Details: http://www.netlib.org/lapack/explore-html/d4/dcf/dtbsv_8f.html * * Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), * but only the region N*(K+1) will be referenced. The following subroutine can is an * example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. * for i in range(0, n): * for j in range(i, min(i+k+1, n)): * b[i, j-i] = a[i, j] * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param K The number of off-diagonals of the matrix A * @param A The input allocation contains matrix A, supported elements type: {Element#F64}. * @param X The input allocation contains vector x, supported elements type: {Element#F64}. * @param incX The increment for the elements of vector x, must be larger than zero. */ void DTBSV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag, int K, const sp<Allocation>& A, const sp<Allocation>& X, int incX); /** * CTBSV solves one of the systems of equations * A*x = b or A**T*x = b or A**H*x = b * * Details: http://www.netlib.org/lapack/explore-html/d9/d5f/ctbsv_8f.html * * Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), * but only the region N*(K+1) will be referenced. The following subroutine can is an * example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. * for i in range(0, n): * for j in range(i, min(i+k+1, n)): * b[i, j-i] = a[i, j] * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param K The number of off-diagonals of the matrix A * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}. * @param X The input allocation contains vector x, supported elements type: {Element#F32_2}. * @param incX The increment for the elements of vector x, must be larger than zero. */ void CTBSV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag, int K, const sp<Allocation>& A, const sp<Allocation>& X, int incX); /** * ZTBSV solves one of the systems of equations * A*x = b or A**T*x = b or A**H*x = b * * Details: http://www.netlib.org/lapack/explore-html/d4/d5a/ztbsv_8f.html * * Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), * but only the region N*(K+1) will be referenced. The following subroutine can is an * example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. * for i in range(0, n): * for j in range(i, min(i+k+1, n)): * b[i, j-i] = a[i, j] * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param K The number of off-diagonals of the matrix A * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}. * @param X The input allocation contains vector x, supported elements type: {Element#F64_2}. * @param incX The increment for the elements of vector x, must be larger than zero. */ void ZTBSV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag, int K, const sp<Allocation>& A, const sp<Allocation>& X, int incX); /** * STPSV solves one of the systems of equations * A*x = b or A**T*x = b * * Details: http://www.netlib.org/lapack/explore-html/d0/d7c/stpsv_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param Ap The input allocation contains packed matrix A, supported elements type: {Element#F32}. * @param X The input allocation contains vector x, supported elements type: {Element#F32}. * @param incX The increment for the elements of vector x, must be larger than zero. */ void STPSV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag, const sp<Allocation>& Ap, const sp<Allocation>& X, int incX); /** * DTPSV solves one of the systems of equations * A*x = b or A**T*x = b * * Details: http://www.netlib.org/lapack/explore-html/d9/d84/dtpsv_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param Ap The input allocation contains packed matrix A, supported elements type: {Element#F64}. * @param X The input allocation contains vector x, supported elements type: {Element#F64}. * @param incX The increment for the elements of vector x, must be larger than zero. */ void DTPSV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag, const sp<Allocation>& Ap, const sp<Allocation>& X, int incX); /** * CTPSV solves one of the systems of equations * A*x = b or A**T*x = b or A**H*x = b * * Details: http://www.netlib.org/lapack/explore-html/d8/d56/ctpsv_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param Ap The input allocation contains packed matrix A, supported elements type: {Element#F32_2}. * @param X The input allocation contains vector x, supported elements type: {Element#F32_2}. * @param incX The increment for the elements of vector x, must be larger than zero. */ void CTPSV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag, const sp<Allocation>& Ap, const sp<Allocation>& X, int incX); /** * ZTPSV solves one of the systems of equations * A*x = b or A**T*x = b or A**H*x = b * * Details: http://www.netlib.org/lapack/explore-html/da/d57/ztpsv_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param Ap The input allocation contains packed matrix A, supported elements type: {Element#F64_2}. * @param X The input allocation contains vector x, supported elements type: {Element#F64_2}. * @param incX The increment for the elements of vector x, must be larger than zero. */ void ZTPSV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag, const sp<Allocation>& Ap, const sp<Allocation>& X, int incX); /** * SSYMV performs the matrix-vector operation * y := alpha*A*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/d2/d94/ssymv_8f.html * * @param Uplo Specifies whether the upper or lower triangular part is to be referenced. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F32}. * @param X The input allocation contains vector x, supported elements type: {Element#F32}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type: {Element#F32}. * @param incY The increment for the elements of vector y, must be larger than zero. */ void SSYMV(RsBlasUplo Uplo, float alpha, const sp<Allocation>& A, const sp<Allocation>& X, int incX, float beta, const sp<Allocation>& Y, int incY); /** * SSBMV performs the matrix-vector operation * y := alpha*A*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/d3/da1/ssbmv_8f.html * * Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), * but only the region N*(K+1) will be referenced. The following subroutine can is an * example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. * for i in range(0, n): * for j in range(i, min(i+k+1, n)): * b[i, j-i] = a[i, j] * * @param Uplo Specifies whether the upper or lower triangular part of the band matrix A is being supplied. * @param K The number of off-diagonals of the matrix A * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F32}. * @param X The input allocation contains vector x, supported elements type: {Element#F32}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type: {Element#F32}. * @param incY The increment for the elements of vector y, must be larger than zero. */ void SSBMV(RsBlasUplo Uplo, int K, float alpha, const sp<Allocation>& A, const sp<Allocation>& X, int incX, float beta, const sp<Allocation>& Y, int incY); /** * SSPMV performs the matrix-vector operation * y := alpha*A*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/d8/d68/sspmv_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the upper or lower triangular part of the matrix A is supplied in packed form. * @param alpha The scalar alpha. * @param Ap The input allocation contains matrix A, supported elements type: {Element#F32}. * @param X The input allocation contains vector x, supported elements type: {Element#F32}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type: {Element#F32}. * @param incY The increment for the elements of vector y, must be larger than zero. */ void SSPMV(RsBlasUplo Uplo, float alpha, const sp<Allocation>& Ap, const sp<Allocation>& X, int incX, float beta, const sp<Allocation>& Y, int incY); /** * SGER performs the rank 1 operation * A := alpha*x*y**T + A * * Details: http://www.netlib.org/lapack/explore-html/db/d5c/sger_8f.html * * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type: {Element#F32}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param Y The input allocation contains vector y, supported elements type: {Element#F32}. * @param incY The increment for the elements of vector y, must be larger than zero. * @param A The input allocation contains matrix A, supported elements type: {Element#F32}. */ void SGER(float alpha, const sp<Allocation>& X, int incX, const sp<Allocation>& Y, int incY, const sp<Allocation>& A); /** * SSYR performs the rank 1 operation * A := alpha*x*x**T + A * * Details: http://www.netlib.org/lapack/explore-html/d6/dac/ssyr_8f.html * * @param Uplo Specifies whether the upper or lower triangular part is to be referenced. * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type: {Element#F32}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param A The input allocation contains matrix A, supported elements type: {Element#F32}. */ void SSYR(RsBlasUplo Uplo, float alpha, const sp<Allocation>& X, int incX, const sp<Allocation>& A); /** * SSPR performs the rank 1 operation * A := alpha*x*x**T + A * * Details: http://www.netlib.org/lapack/explore-html/d2/d9b/sspr_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form. * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type: {Element#F32}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param Ap The input allocation contains matrix A, supported elements type: {Element#F32}. */ void SSPR(RsBlasUplo Uplo, float alpha, const sp<Allocation>& X, int incX, const sp<Allocation>& Ap); /** * SSYR2 performs the symmetric rank 2 operation * A := alpha*x*y**T + alpha*y*x**T + A * * Details: http://www.netlib.org/lapack/explore-html/db/d99/ssyr2_8f.html * * @param Uplo Specifies whether the upper or lower triangular part is to be referenced. * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type: {Element#F32}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param Y The input allocation contains vector y, supported elements type: {Element#F32}. * @param incY The increment for the elements of vector y, must be larger than zero. * @param A The input allocation contains matrix A, supported elements type: {Element#F32}. */ void SSYR2(RsBlasUplo Uplo, float alpha, const sp<Allocation>& X, int incX, const sp<Allocation>& Y, int incY, const sp<Allocation>& A); /** * SSPR2 performs the symmetric rank 2 operation * A := alpha*x*y**T + alpha*y*x**T + A * * Details: http://www.netlib.org/lapack/explore-html/db/d3e/sspr2_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form. * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type: {Element#F32}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param Y The input allocation contains vector y, supported elements type: {Element#F32}. * @param incY The increment for the elements of vector y, must be larger than zero. * @param Ap The input allocation contains matrix A, supported elements type: {Element#F32}. */ void SSPR2(RsBlasUplo Uplo, float alpha, const sp<Allocation>& X, int incX, const sp<Allocation>& Y, int incY, const sp<Allocation>& Ap); /** * DSYMV performs the matrix-vector operation * y := alpha*A*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/d8/dbe/dsymv_8f.html * * @param Uplo Specifies whether the upper or lower triangular part is to be referenced. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F64}. * @param X The input allocation contains vector x, supported elements type: {Element#F64}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type: {Element#F64}. * @param incY The increment for the elements of vector y, must be larger than zero. */ void DSYMV(RsBlasUplo Uplo, double alpha, const sp<Allocation>& A, const sp<Allocation>& X, int incX, double beta, const sp<Allocation>& Y, int incY); /** * DSBMV performs the matrix-vector operation * y := alpha*A*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/d8/d1e/dsbmv_8f.html * * Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), * but only the region N*(K+1) will be referenced. The following subroutine can is an * example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. * for i in range(0, n): * for j in range(i, min(i+k+1, n)): * b[i, j-i] = a[i, j] * * @param Uplo Specifies whether the upper or lower triangular part of the band matrix A is being supplied. * @param K The number of off-diagonals of the matrix A * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F64}. * @param X The input allocation contains vector x, supported elements type: {Element#F64}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type: {Element#F64}. * @param incY The increment for the elements of vector y, must be larger than zero. */ void DSBMV(RsBlasUplo Uplo, int K, double alpha, const sp<Allocation>& A, const sp<Allocation>& X, int incX, double beta, const sp<Allocation>& Y, int incY); /** * DSPMV performs the matrix-vector operation * y := alpha*A*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/d4/d85/dspmv_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the upper or lower triangular part of the matrix A is supplied in packed form. * @param alpha The scalar alpha. * @param Ap The input allocation contains matrix A, supported elements type: {Element#F64}. * @param X The input allocation contains vector x, supported elements type: {Element#F64}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type: {Element#F64}. * @param incY The increment for the elements of vector y, must be larger than zero. */ void DSPMV(RsBlasUplo Uplo, double alpha, const sp<Allocation>& Ap, const sp<Allocation>& X, int incX, double beta, const sp<Allocation>& Y, int incY); /** * DGER performs the rank 1 operation * A := alpha*x*y**T + A * * Details: http://www.netlib.org/lapack/explore-html/dc/da8/dger_8f.html * * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type: {Element#F64}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param Y The input allocation contains vector y, supported elements type: {Element#F64}. * @param incY The increment for the elements of vector y, must be larger than zero. * @param A The input allocation contains matrix A, supported elements type: {Element#F64}. */ void DGER(double alpha, const sp<Allocation>& X, int incX, const sp<Allocation>& Y, int incY, const sp<Allocation>& A); /** * DSYR performs the rank 1 operation * A := alpha*x*x**T + A * * Details: http://www.netlib.org/lapack/explore-html/d3/d60/dsyr_8f.html * * @param Uplo Specifies whether the upper or lower triangular part is to be referenced. * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type: {Element#F64}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param A The input allocation contains matrix A, supported elements type: {Element#F64}. */ void DSYR(RsBlasUplo Uplo, double alpha, const sp<Allocation>& X, int incX, const sp<Allocation>& A); /** * DSPR performs the rank 1 operation * A := alpha*x*x**T + A * * Details: http://www.netlib.org/lapack/explore-html/dd/dba/dspr_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form. * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type: {Element#F64}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param Ap The input allocation contains matrix A, supported elements type: {Element#F64}. */ void DSPR(RsBlasUplo Uplo, double alpha, const sp<Allocation>& X, int incX, const sp<Allocation>& Ap); /** * DSYR2 performs the symmetric rank 2 operation * A := alpha*x*y**T + alpha*y*x**T + A * * Details: http://www.netlib.org/lapack/explore-html/de/d41/dsyr2_8f.html * * @param Uplo Specifies whether the upper or lower triangular part is to be referenced. * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type: {Element#F64}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param Y The input allocation contains vector y, supported elements type: {Element#F64}. * @param incY The increment for the elements of vector y, must be larger than zero. * @param A The input allocation contains matrix A, supported elements type: {Element#F64}. */ void DSYR2(RsBlasUplo Uplo, double alpha, const sp<Allocation>& X, int incX, const sp<Allocation>& Y, int incY, const sp<Allocation>& A); /** * DSPR2 performs the symmetric rank 2 operation * A := alpha*x*y**T + alpha*y*x**T + A * * Details: http://www.netlib.org/lapack/explore-html/dd/d9e/dspr2_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form. * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type: {Element#F64}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param Y The input allocation contains vector y, supported elements type: {Element#F64}. * @param incY The increment for the elements of vector y, must be larger than zero. * @param Ap The input allocation contains matrix A, supported elements type: {Element#F64}. */ void DSPR2(RsBlasUplo Uplo, double alpha, const sp<Allocation>& X, int incX, const sp<Allocation>& Y, int incY, const sp<Allocation>& Ap); /** * CHEMV performs the matrix-vector operation * y := alpha*A*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/d7/d51/chemv_8f.html * * @param Uplo Specifies whether the upper or lower triangular part is to be referenced. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}. * @param X The input allocation contains vector x, supported elements type: {Element#F32_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type: {Element#F32_2}. * @param incY The increment for the elements of vector y, must be larger than zero. */ void CHEMV(RsBlasUplo Uplo, Float2 alpha, const sp<Allocation>& A, const sp<Allocation>& X, int incX, Float2 beta, const sp<Allocation>& Y, int incY); /** * CHBMV performs the matrix-vector operation * y := alpha*A*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/db/dc2/chbmv_8f.html * * Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), * but only the region N*(K+1) will be referenced. The following subroutine can is an * example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. * for i in range(0, n): * for j in range(i, min(i+k+1, n)): * b[i, j-i] = a[i, j] * * @param Uplo Specifies whether the upper or lower triangular part of the band matrix A is being supplied. * @param K The number of off-diagonals of the matrix A * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}. * @param X The input allocation contains vector x, supported elements type: {Element#F32_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type: {Element#F32_2}. * @param incY The increment for the elements of vector y, must be larger than zero. */ void CHBMV(RsBlasUplo Uplo, int K, Float2 alpha, const sp<Allocation>& A, const sp<Allocation>& X, int incX, Float2 beta, const sp<Allocation>& Y, int incY); /** * CHPMV performs the matrix-vector operation * y := alpha*A*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/d2/d06/chpmv_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the upper or lower triangular part of the matrix A is supplied in packed form. * @param alpha The scalar alpha. * @param Ap The input allocation contains matrix A, supported elements type: {Element#F32_2}. * @param X The input allocation contains vector x, supported elements type: {Element#F32_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type: {Element#F32_2}. * @param incY The increment for the elements of vector y, must be larger than zero. */ void CHPMV(RsBlasUplo Uplo, Float2 alpha, const sp<Allocation>& Ap, const sp<Allocation>& X, int incX, Float2 beta, const sp<Allocation>& Y, int incY); /** * CGERU performs the rank 1 operation * A := alpha*x*y**T + A * * Details: http://www.netlib.org/lapack/explore-html/db/d5f/cgeru_8f.html * * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type: {Element#F32_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param Y The input allocation contains vector y, supported elements type: {Element#F32_2}. * @param incY The increment for the elements of vector y, must be larger than zero. * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}. */ void CGERU(Float2 alpha, const sp<Allocation>& X, int incX, const sp<Allocation>& Y, int incY, const sp<Allocation>& A); /** * CGERC performs the rank 1 operation * A := alpha*x*y**H + A * * Details: http://www.netlib.org/lapack/explore-html/dd/d84/cgerc_8f.html * * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type: {Element#F32_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param Y The input allocation contains vector y, supported elements type: {Element#F32_2}. * @param incY The increment for the elements of vector y, must be larger than zero. * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}. */ void CGERC(Float2 alpha, const sp<Allocation>& X, int incX, const sp<Allocation>& Y, int incY, const sp<Allocation>& A); /** * CHER performs the rank 1 operation * A := alpha*x*x**H + A * * Details: http://www.netlib.org/lapack/explore-html/d3/d6d/cher_8f.html * * @param Uplo Specifies whether the upper or lower triangular part is to be referenced. * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type: {Element#F32_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}. */ void CHER(RsBlasUplo Uplo, float alpha, const sp<Allocation>& X, int incX, const sp<Allocation>& A); /** * CHPR performs the rank 1 operation * A := alpha*x*x**H + A * * Details: http://www.netlib.org/lapack/explore-html/db/dcd/chpr_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form. * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type: {Element#F32_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param Ap The input allocation contains matrix A, supported elements type: {Element#F32_2}. */ void CHPR(RsBlasUplo Uplo, float alpha, const sp<Allocation>& X, int incX, const sp<Allocation>& Ap); /** * CHER2 performs the symmetric rank 2 operation * A := alpha*x*y**H + alpha*y*x**H + A * * Details: http://www.netlib.org/lapack/explore-html/db/d87/cher2_8f.html * * @param Uplo Specifies whether the upper or lower triangular part is to be referenced. * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type: {Element#F32_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param Y The input allocation contains vector y, supported elements type: {Element#F32_2}. * @param incY The increment for the elements of vector y, must be larger than zero. * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}. */ void CHER2(RsBlasUplo Uplo, Float2 alpha, const sp<Allocation>& X, int incX, const sp<Allocation>& Y, int incY, const sp<Allocation>& A); /** * CHPR2 performs the symmetric rank 2 operation * A := alpha*x*y**H + alpha*y*x**H + A * * Details: http://www.netlib.org/lapack/explore-html/d6/d44/chpr2_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form. * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type: {Element#F32_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param Y The input allocation contains vector y, supported elements type: {Element#F32_2}. * @param incY The increment for the elements of vector y, must be larger than zero. * @param Ap The input allocation contains matrix A, supported elements type: {Element#F32_2}. */ void CHPR2(RsBlasUplo Uplo, Float2 alpha, const sp<Allocation>& X, int incX, const sp<Allocation>& Y, int incY, const sp<Allocation>& Ap); /** * ZHEMV performs the matrix-vector operation * y := alpha*A*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/d0/ddd/zhemv_8f.html * * @param Uplo Specifies whether the upper or lower triangular part is to be referenced. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}. * @param X The input allocation contains vector x, supported elements type: {Element#F64_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type: {Element#F64_2}. * @param incY The increment for the elements of vector y, must be larger than zero. */ void ZHEMV(RsBlasUplo Uplo, Double2 alpha, const sp<Allocation>& A, const sp<Allocation>& X, int incX, Double2 beta, const sp<Allocation>& Y, int incY); /** * ZHBMV performs the matrix-vector operation * y := alpha*A*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/d3/d1a/zhbmv_8f.html * * Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), * but only the region N*(K+1) will be referenced. The following subroutine can is an * example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. * for i in range(0, n): * for j in range(i, min(i+k+1, n)): * b[i, j-i] = a[i, j] * * @param Uplo Specifies whether the upper or lower triangular part of the band matrix A is being supplied. * @param K The number of off-diagonals of the matrix A * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}. * @param X The input allocation contains vector x, supported elements type: {Element#F64_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type: {Element#F64_2}. * @param incY The increment for the elements of vector y, must be larger than zero. */ void ZHBMV(RsBlasUplo Uplo, int K, Double2 alpha, const sp<Allocation>& A, const sp<Allocation>& X, int incX, Double2 beta, const sp<Allocation>& Y, int incY); /** * ZHPMV performs the matrix-vector operation * y := alpha*A*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/d0/d60/zhpmv_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the upper or lower triangular part of the matrix A is supplied in packed form. * @param alpha The scalar alpha. * @param Ap The input allocation contains matrix A, supported elements type: {Element#F64_2}. * @param X The input allocation contains vector x, supported elements type: {Element#F64_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type: {Element#F64_2}. * @param incY The increment for the elements of vector y, must be larger than zero. */ void ZHPMV(RsBlasUplo Uplo, Double2 alpha, const sp<Allocation>& Ap, const sp<Allocation>& X, int incX, Double2 beta, const sp<Allocation>& Y, int incY); /** * ZGERU performs the rank 1 operation * A := alpha*x*y**T + A * * Details: http://www.netlib.org/lapack/explore-html/d7/d12/zgeru_8f.html * * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type: {Element#F64_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param Y The input allocation contains vector y, supported elements type: {Element#F64_2}. * @param incY The increment for the elements of vector y, must be larger than zero. * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}. */ void ZGERU(Double2 alpha, const sp<Allocation>& X, int incX, const sp<Allocation>& Y, int incY, const sp<Allocation>& A); /** * ZGERC performs the rank 1 operation * A := alpha*x*y**H + A * * Details: http://www.netlib.org/lapack/explore-html/d3/dad/zgerc_8f.html * * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type: {Element#F64_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param Y The input allocation contains vector y, supported elements type: {Element#F64_2}. * @param incY The increment for the elements of vector y, must be larger than zero. * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}. */ void ZGERC(Double2 alpha, const sp<Allocation>& X, int incX, const sp<Allocation>& Y, int incY, const sp<Allocation>& A); /** * ZHER performs the rank 1 operation * A := alpha*x*x**H + A * * Details: http://www.netlib.org/lapack/explore-html/de/d0e/zher_8f.html * * @param Uplo Specifies whether the upper or lower triangular part is to be referenced. * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type: {Element#F64_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}. */ void ZHER(RsBlasUplo Uplo, double alpha, const sp<Allocation>& X, int incX, const sp<Allocation>& A); /** * ZHPR performs the rank 1 operation * A := alpha*x*x**H + A * * Details: http://www.netlib.org/lapack/explore-html/de/de1/zhpr_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form. * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type: {Element#F64_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param Ap The input allocation contains matrix A, supported elements type: {Element#F64_2}. */ void ZHPR(RsBlasUplo Uplo, double alpha, const sp<Allocation>& X, int incX, const sp<Allocation>& Ap); /** * ZHER2 performs the symmetric rank 2 operation * A := alpha*x*y**H + alpha*y*x**H + A * * Details: http://www.netlib.org/lapack/explore-html/da/d8a/zher2_8f.html * * @param Uplo Specifies whether the upper or lower triangular part is to be referenced. * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type: {Element#F64_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param Y The input allocation contains vector y, supported elements type: {Element#F64_2}. * @param incY The increment for the elements of vector y, must be larger than zero. * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}. */ void ZHER2(RsBlasUplo Uplo, Double2 alpha, const sp<Allocation>& X, int incX, const sp<Allocation>& Y, int incY, const sp<Allocation>& A); /** * ZHPR2 performs the symmetric rank 2 operation * A := alpha*x*y**H + alpha*y*x**H + A * * Details: http://www.netlib.org/lapack/explore-html/d5/d52/zhpr2_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form. * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type: {Element#F64_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param Y The input allocation contains vector y, supported elements type: {Element#F64_2}. * @param incY The increment for the elements of vector y, must be larger than zero. * @param Ap The input allocation contains matrix A, supported elements type: {Element#F64_2}. */ void ZHPR2(RsBlasUplo Uplo, Double2 alpha, const sp<Allocation>& X, int incX, const sp<Allocation>& Y, int incY, const sp<Allocation>& Ap); /** * SGEMM performs one of the matrix-matrix operations * C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X**T * * Details: http://www.netlib.org/lapack/explore-html/d4/de2/sgemm_8f.html * * @param TransA The type of transpose applied to matrix A. * @param TransB The type of transpose applied to matrix B. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F32}. * @param B The input allocation contains matrix B, supported elements type: {Element#F32}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type: {Element#F32}. */ void SGEMM(RsBlasTranspose TransA, RsBlasTranspose TransB, float alpha, const sp<Allocation>& A, const sp<Allocation>& B, float beta, const sp<Allocation>& C); /** * DGEMM performs one of the matrix-matrix operations * C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X**T * * Details: http://www.netlib.org/lapack/explore-html/d7/d2b/dgemm_8f.html * * @param TransA The type of transpose applied to matrix A. * @param TransB The type of transpose applied to matrix B. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F64}. * @param B The input allocation contains matrix B, supported elements type: {Element#F64}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type: {Element#F64}. */ void DGEMM(RsBlasTranspose TransA, RsBlasTranspose TransB, double alpha, const sp<Allocation>& A, const sp<Allocation>& B, double beta, const sp<Allocation>& C); /** * CGEMM performs one of the matrix-matrix operations * C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X**T or op(X) = X**H * * Details: http://www.netlib.org/lapack/explore-html/d6/d5b/cgemm_8f.html * * @param TransA The type of transpose applied to matrix A. * @param TransB The type of transpose applied to matrix B. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}. * @param B The input allocation contains matrix B, supported elements type: {Element#F32_2}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type: {Element#F32_2}. */ void CGEMM(RsBlasTranspose TransA, RsBlasTranspose TransB, Float2 alpha, const sp<Allocation>& A, const sp<Allocation>& B, Float2 beta, const sp<Allocation>& C); /** * ZGEMM performs one of the matrix-matrix operations * C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X**T or op(X) = X**H * * Details: http://www.netlib.org/lapack/explore-html/d7/d76/zgemm_8f.html * * @param TransA The type of transpose applied to matrix A. * @param TransB The type of transpose applied to matrix B. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}. * @param B The input allocation contains matrix B, supported elements type: {Element#F64_2}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type: {Element#F64_2}. */ void ZGEMM(RsBlasTranspose TransA, RsBlasTranspose TransB, Double2 alpha, const sp<Allocation>& A, const sp<Allocation>& B, Double2 beta, const sp<Allocation>& C); /** * SSYMM performs one of the matrix-matrix operations * C := alpha*A*B + beta*C or C := alpha*B*A + beta*C * * Details: http://www.netlib.org/lapack/explore-html/d7/d42/ssymm_8f.html * * @param Side Specifies whether the symmetric matrix A appears on the left or right. * @param Uplo Specifies whether the upper or lower triangular part is to be referenced. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F32}. * @param B The input allocation contains matrix B, supported elements type: {Element#F32}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type: {Element#F32}. */ void SSYMM(RsBlasSide Side, RsBlasUplo Uplo, float alpha, const sp<Allocation>& A, const sp<Allocation>& B, float beta, const sp<Allocation>& C); /** * DSYMM performs one of the matrix-matrix operations * C := alpha*A*B + beta*C or C := alpha*B*A + beta*C * * Details: http://www.netlib.org/lapack/explore-html/d8/db0/dsymm_8f.html * * @param Side Specifies whether the symmetric matrix A appears on the left or right. * @param Uplo Specifies whether the upper or lower triangular part is to be referenced. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F64}. * @param B The input allocation contains matrix B, supported elements type: {Element#F64}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type: {Element#F64}. */ void DSYMM(RsBlasSide Side, RsBlasUplo Uplo, double alpha, const sp<Allocation>& A, const sp<Allocation>& B, double beta, const sp<Allocation>& C); /** * CSYMM performs one of the matrix-matrix operations * C := alpha*A*B + beta*C or C := alpha*B*A + beta*C * * Details: http://www.netlib.org/lapack/explore-html/db/d59/csymm_8f.html * * @param Side Specifies whether the symmetric matrix A appears on the left or right. * @param Uplo Specifies whether the upper or lower triangular part is to be referenced. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}. * @param B The input allocation contains matrix B, supported elements type: {Element#F32_2}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type: {Element#F32_2}. */ void CSYMM(RsBlasSide Side, RsBlasUplo Uplo, Float2 alpha, const sp<Allocation>& A, const sp<Allocation>& B, Float2 beta, const sp<Allocation>& C); /** * ZSYMM performs one of the matrix-matrix operations * C := alpha*A*B + beta*C or C := alpha*B*A + beta*C * * Details: http://www.netlib.org/lapack/explore-html/df/d51/zsymm_8f.html * * @param Side Specifies whether the symmetric matrix A appears on the left or right. * @param Uplo Specifies whether the upper or lower triangular part is to be referenced. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}. * @param B The input allocation contains matrix B, supported elements type: {Element#F64_2}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type: {Element#F64_2}. */ void ZSYMM(RsBlasSide Side, RsBlasUplo Uplo, Double2 alpha, const sp<Allocation>& A, const sp<Allocation>& B, Double2 beta, const sp<Allocation>& C); /** * SSYRK performs one of the symmetric rank k operations * C := alpha*A*A**T + beta*C or C := alpha*A**T*A + beta*C * * Details: http://www.netlib.org/lapack/explore-html/d0/d40/ssyrk_8f.html * * @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced. * @param Trans The type of transpose applied to the operation. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F32}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type: {Element#F32}. */ void SSYRK(RsBlasUplo Uplo, RsBlasTranspose Trans, float alpha, const sp<Allocation>& A, float beta, const sp<Allocation>& C); /** * DSYRK performs one of the symmetric rank k operations * C := alpha*A*A**T + beta*C or C := alpha*A**T*A + beta*C * * Details: http://www.netlib.org/lapack/explore-html/dc/d05/dsyrk_8f.html * * @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced. * @param Trans The type of transpose applied to the operation. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F64}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type: {Element#F64}. */ void DSYRK(RsBlasUplo Uplo, RsBlasTranspose Trans, double alpha, const sp<Allocation>& A, double beta, const sp<Allocation>& C); /** * CSYRK performs one of the symmetric rank k operations * C := alpha*A*A**T + beta*C or C := alpha*A**T*A + beta*C * * Details: http://www.netlib.org/lapack/explore-html/d3/d6a/csyrk_8f.html * * @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced. * @param Trans The type of transpose applied to the operation. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type: {Element#F32_2}. */ void CSYRK(RsBlasUplo Uplo, RsBlasTranspose Trans, Float2 alpha, const sp<Allocation>& A, Float2 beta, const sp<Allocation>& C); /** * ZSYRK performs one of the symmetric rank k operations * C := alpha*A*A**T + beta*C or C := alpha*A**T*A + beta*C * * Details: http://www.netlib.org/lapack/explore-html/de/d54/zsyrk_8f.html * * @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced. * @param Trans The type of transpose applied to the operation. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type: {Element#F64_2}. */ void ZSYRK(RsBlasUplo Uplo, RsBlasTranspose Trans, Double2 alpha, const sp<Allocation>& A, Double2 beta, const sp<Allocation>& C); /** * SSYR2K performs one of the symmetric rank 2k operations * C := alpha*A*B**T + alpha*B*A**T + beta*C or C := alpha*A**T*B + alpha*B**T*A + beta*C * * Details: http://www.netlib.org/lapack/explore-html/df/d3d/ssyr2k_8f.html * * @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced. * @param Trans The type of transpose applied to the operation. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F32}. * @param B The input allocation contains matrix B, supported elements type: {Element#F32}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type: {Element#F32}. */ void SSYR2K(RsBlasUplo Uplo, RsBlasTranspose Trans, float alpha, const sp<Allocation>& A, const sp<Allocation>& B, float beta, const sp<Allocation>& C); /** * DSYR2K performs one of the symmetric rank 2k operations * C := alpha*A*B**T + alpha*B*A**T + beta*C or C := alpha*A**T*B + alpha*B**T*A + beta*C * * Details: http://www.netlib.org/lapack/explore-html/d1/dec/dsyr2k_8f.html * * @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced. * @param Trans The type of transpose applied to the operation. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F64}. * @param B The input allocation contains matrix B, supported elements type: {Element#F64}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type: {Element#F64}. */ void DSYR2K(RsBlasUplo Uplo, RsBlasTranspose Trans, double alpha, const sp<Allocation>& A, const sp<Allocation>& B, double beta, const sp<Allocation>& C); /** * CSYR2K performs one of the symmetric rank 2k operations * C := alpha*A*B**T + alpha*B*A**T + beta*C or C := alpha*A**T*B + alpha*B**T*A + beta*C * * Details: http://www.netlib.org/lapack/explore-html/de/d7e/csyr2k_8f.html * * @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced. * @param Trans The type of transpose applied to the operation. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}. * @param B The input allocation contains matrix B, supported elements type: {Element#F32_2}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type: {Element#F32_2}. */ void CSYR2K(RsBlasUplo Uplo, RsBlasTranspose Trans, Float2 alpha, const sp<Allocation>& A, const sp<Allocation>& B, Float2 beta, const sp<Allocation>& C); /** * ZSYR2K performs one of the symmetric rank 2k operations * C := alpha*A*B**T + alpha*B*A**T + beta*C or C := alpha*A**T*B + alpha*B**T*A + beta*C * * Details: http://www.netlib.org/lapack/explore-html/df/d20/zsyr2k_8f.html * * @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced. * @param Trans The type of transpose applied to the operation. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}. * @param B The input allocation contains matrix B, supported elements type: {Element#F64_2}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type: {Element#F64_2}. */ void ZSYR2K(RsBlasUplo Uplo, RsBlasTranspose Trans, Double2 alpha, const sp<Allocation>& A, const sp<Allocation>& B, Double2 beta, const sp<Allocation>& C); /** * STRMM performs one of the matrix-matrix operations * B := alpha*op(A)*B or B := alpha*B*op(A) * op(A) is one of op(A) = A or op(A) = A**T * * Details: http://www.netlib.org/lapack/explore-html/df/d01/strmm_8f.html * * @param Side Specifies whether the symmetric matrix A appears on the left or right. * @param Uplo Specifies whether matrix A is upper or lower triangular. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F32}. * @param B The input allocation contains matrix B, supported elements type: {Element#F32}. */ void STRMM(RsBlasSide Side, RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag, float alpha, const sp<Allocation>& A, const sp<Allocation>& B); /** * DTRMM performs one of the matrix-matrix operations * B := alpha*op(A)*B or B := alpha*B*op(A) * op(A) is one of op(A) = A or op(A) = A**T * * Details: http://www.netlib.org/lapack/explore-html/dd/d19/dtrmm_8f.html * * @param Side Specifies whether the symmetric matrix A appears on the left or right. * @param Uplo Specifies whether matrix A is upper or lower triangular. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F64}. * @param B The input allocation contains matrix B, supported elements type: {Element#F64}. */ void DTRMM(RsBlasSide Side, RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag, double alpha, const sp<Allocation>& A, const sp<Allocation>& B); /** * CTRMM performs one of the matrix-matrix operations * B := alpha*op(A)*B or B := alpha*B*op(A) * op(A) is one of op(A) = A or op(A) = A**T or op(A) = A**H * * Details: http://www.netlib.org/lapack/explore-html/d4/d9b/ctrmm_8f.html * * @param Side Specifies whether the symmetric matrix A appears on the left or right. * @param Uplo Specifies whether matrix A is upper or lower triangular. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}. * @param B The input allocation contains matrix B, supported elements type: {Element#F32_2}. */ void CTRMM(RsBlasSide Side, RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag, Float2 alpha, const sp<Allocation>& A, const sp<Allocation>& B); /** * ZTRMM performs one of the matrix-matrix operations * B := alpha*op(A)*B or B := alpha*B*op(A) * op(A) is one of op(A) = A or op(A) = A**T or op(A) = A**H * * Details: http://www.netlib.org/lapack/explore-html/d8/de1/ztrmm_8f.html * * @param Side Specifies whether the symmetric matrix A appears on the left or right. * @param Uplo Specifies whether matrix A is upper or lower triangular. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}. * @param B The input allocation contains matrix B, supported elements type: {Element#F64_2}. */ void ZTRMM(RsBlasSide Side, RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag, Double2 alpha, const sp<Allocation>& A, const sp<Allocation>& B); /** * STRSM solves one of the matrix equations * op(A)*X := alpha*B or X*op(A) := alpha*B * op(A) is one of op(A) = A or op(A) = A**T * * Details: http://www.netlib.org/lapack/explore-html/d2/d8b/strsm_8f.html * * @param Side Specifies whether the symmetric matrix A appears on the left or right. * @param Uplo Specifies whether matrix A is upper or lower triangular. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F32}. * @param B The input allocation contains matrix B, supported elements type: {Element#F32}. */ void STRSM(RsBlasSide Side, RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag, float alpha, const sp<Allocation>& A, const sp<Allocation>& B); /** * DTRSM solves one of the matrix equations * op(A)*X := alpha*B or X*op(A) := alpha*B * op(A) is one of op(A) = A or op(A) = A**T * * Details: http://www.netlib.org/lapack/explore-html/de/da7/dtrsm_8f.html * * @param Side Specifies whether the symmetric matrix A appears on the left or right. * @param Uplo Specifies whether matrix A is upper or lower triangular. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F64}. * @param B The input allocation contains matrix B, supported elements type: {Element#F64}. */ void DTRSM(RsBlasSide Side, RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag, double alpha, const sp<Allocation>& A, const sp<Allocation>& B); /** * CTRSM solves one of the matrix equations * op(A)*X := alpha*B or X*op(A) := alpha*B * op(A) is one of op(A) = A or op(A) = A**T or op(A) = A**H * * Details: http://www.netlib.org/lapack/explore-html/de/d30/ctrsm_8f.html * * @param Side Specifies whether the symmetric matrix A appears on the left or right. * @param Uplo Specifies whether matrix A is upper or lower triangular. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}. * @param B The input allocation contains matrix B, supported elements type: {Element#F32_2}. */ void CTRSM(RsBlasSide Side, RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag, Float2 alpha, const sp<Allocation>& A, const sp<Allocation>& B); /** * ZTRSM solves one of the matrix equations * op(A)*X := alpha*B or X*op(A) := alpha*B * op(A) is one of op(A) = A or op(A) = A**T or op(A) = A**H * * Details: http://www.netlib.org/lapack/explore-html/d1/d39/ztrsm_8f.html * * @param Side Specifies whether the symmetric matrix A appears on the left or right. * @param Uplo Specifies whether matrix A is upper or lower triangular. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}. * @param B The input allocation contains matrix B, supported elements type: {Element#F64_2}. */ void ZTRSM(RsBlasSide Side, RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag, Double2 alpha, const sp<Allocation>& A, const sp<Allocation>& B); /** * CHEMM performs one of the matrix-matrix operations * C := alpha*A*B + beta*C or C := alpha*B*A + beta*C * * Details: http://www.netlib.org/lapack/explore-html/d3/d66/chemm_8f.html * * @param Side Specifies whether the symmetric matrix A appears on the left or right. * @param Uplo Specifies whether the upper or lower triangular part is to be referenced. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}. * @param B The input allocation contains matrix B, supported elements type: {Element#F32_2}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type: {Element#F32_2}. */ void CHEMM(RsBlasSide Side, RsBlasUplo Uplo, Float2 alpha, const sp<Allocation>& A, const sp<Allocation>& B, Float2 beta, const sp<Allocation>& C); /** * ZHEMM performs one of the matrix-matrix operations * C := alpha*A*B + beta*C or C := alpha*B*A + beta*C * * Details: http://www.netlib.org/lapack/explore-html/d6/d3e/zhemm_8f.html * * @param Side Specifies whether the symmetric matrix A appears on the left or right. * @param Uplo Specifies whether the upper or lower triangular part is to be referenced. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}. * @param B The input allocation contains matrix B, supported elements type: {Element#F64_2}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type: {Element#F64_2}. */ void ZHEMM(RsBlasSide Side, RsBlasUplo Uplo, Double2 alpha, const sp<Allocation>& A, const sp<Allocation>& B, Double2 beta, const sp<Allocation>& C); /** * CHERK performs one of the hermitian rank k operations * C := alpha*A*A**H + beta*C or C := alpha*A**H*A + beta*C * * Details: http://www.netlib.org/lapack/explore-html/d8/d52/cherk_8f.html * * @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced. * @param Trans The type of transpose applied to the operation. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type: {Element#F32_2}. */ void CHERK(RsBlasUplo Uplo, RsBlasTranspose Trans, float alpha, const sp<Allocation>& A, float beta, const sp<Allocation>& C); /** * ZHERK performs one of the hermitian rank k operations * C := alpha*A*A**H + beta*C or C := alpha*A**H*A + beta*C * * Details: http://www.netlib.org/lapack/explore-html/d1/db1/zherk_8f.html * * @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced. * @param Trans The type of transpose applied to the operation. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type: {Element#F64_2}. */ void ZHERK(RsBlasUplo Uplo, RsBlasTranspose Trans, double alpha, const sp<Allocation>& A, double beta, const sp<Allocation>& C); /** * CHER2K performs one of the hermitian rank 2k operations * C := alpha*A*B**H + conjg( alpha )*B*A**H + beta*C or C := alpha*A**H*B + conjg( alpha )*B**H*A + beta*C * * Details: http://www.netlib.org/lapack/explore-html/d1/d82/cher2k_8f.html * * @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced. * @param Trans The type of transpose applied to the operation. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}. * @param B The input allocation contains matrix B, supported elements type: {Element#F32_2}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type: {Element#F32_2}. */ void CHER2K(RsBlasUplo Uplo, RsBlasTranspose Trans, Float2 alpha, const sp<Allocation>& A, const sp<Allocation>& B, float beta, const sp<Allocation>& C); /** * ZHER2K performs one of the hermitian rank 2k operations * C := alpha*A*B**H + conjg( alpha )*B*A**H + beta*C or C := alpha*A**H*B + conjg( alpha )*B**H*A + beta*C * * Details: http://www.netlib.org/lapack/explore-html/d7/dfa/zher2k_8f.html * * @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced. * @param Trans The type of transpose applied to the operation. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}. * @param B The input allocation contains matrix B, supported elements type: {Element#F64_2}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type: {Element#F64_2}. */ void ZHER2K(RsBlasUplo Uplo, RsBlasTranspose Trans, Double2 alpha, const sp<Allocation>& A, const sp<Allocation>& B, double beta, const sp<Allocation>& C); /** * 8-bit GEMM-like operation for neural networks: C = A * Transpose(B) * Calculations are done in 1.10.21 fixed-point format for the final output, * just before there's a shift down to drop the fractional parts. The output * values are gated to 0 to 255 to fit in a byte, but the 10-bit format * gives some headroom to avoid wrapping around on small overflows. * * @param A The input allocation contains matrix A, supported elements type: {Element#U8}. * @param a_offset The offset for all values in matrix A, e.g A[i,j] = A[i,j] - a_offset. Value should be from 0 to 255. * @param B The input allocation contains matrix B, supported elements type: {Element#U8}. * @param b_offset The offset for all values in matrix B, e.g B[i,j] = B[i,j] - b_offset. Value should be from 0 to 255. * @param C The input allocation contains matrix C, supported elements type: {Element#U8}. * @param c_offset The offset for all values in matrix C. * @param c_mult The multiplier for all values in matrix C, e.g C[i,j] = (C[i,j] + c_offset) * c_mult. **/ void BNNM(const sp<Allocation>& A, int a_offset, const sp<Allocation>& B, int b_offset, const sp<Allocation>& C, int c_offset, int c_mult); }; /** * Intrinsic kernel for blending two Allocations. */ class ScriptIntrinsicBlend : public ScriptIntrinsic { private: ScriptIntrinsicBlend(sp<RS> rs, sp<const Element> e); public: /** * Supported Element types are U8_4. * @param[in] rs RenderScript context * @param[in] e Element * @return new ScriptIntrinsicBlend */ static sp<ScriptIntrinsicBlend> create(const sp<RS>& rs, const sp<const Element>& e); /** * sets dst = {0, 0, 0, 0} * @param[in] in input Allocation * @param[in] out output Allocation */ void forEachClear(const sp<Allocation>& in, const sp<Allocation>& out); /** * Sets dst = src * @param[in] in input Allocation * @param[in] out output Allocation */ void forEachSrc(const sp<Allocation>& in, const sp<Allocation>& out); /** * Sets dst = dst (NOP) * @param[in] in input Allocation * @param[in] out output Allocation */ void forEachDst(const sp<Allocation>& in, const sp<Allocation>& out); /** * Sets dst = src + dst * (1.0 - src.a) * @param[in] in input Allocation * @param[in] out output Allocation */ void forEachSrcOver(const sp<Allocation>& in, const sp<Allocation>& out); /** * Sets dst = dst + src * (1.0 - dst.a) * @param[in] in input Allocation * @param[in] out output Allocation */ void forEachDstOver(const sp<Allocation>& in, const sp<Allocation>& out); /** * Sets dst = src * dst.a * @param[in] in input Allocation * @param[in] out output Allocation */ void forEachSrcIn(const sp<Allocation>& in, const sp<Allocation>& out); /** * Sets dst = dst * src.a * @param[in] in input Allocation * @param[in] out output Allocation */ void forEachDstIn(const sp<Allocation>& in, const sp<Allocation>& out); /** * Sets dst = src * (1.0 - dst.a) * @param[in] in input Allocation * @param[in] out output Allocation */ void forEachSrcOut(const sp<Allocation>& in, const sp<Allocation>& out); /** * Sets dst = dst * (1.0 - src.a) * @param[in] in input Allocation * @param[in] out output Allocation */ void forEachDstOut(const sp<Allocation>& in, const sp<Allocation>& out); /** * Sets dst.rgb = src.rgb * dst.a + (1.0 - src.a) * dst.rgb * @param[in] in input Allocation * @param[in] out output Allocation */ void forEachSrcAtop(const sp<Allocation>& in, const sp<Allocation>& out); /** * Sets dst.rgb = dst.rgb * src.a + (1.0 - dst.a) * src.rgb * @param[in] in input Allocation * @param[in] out output Allocation */ void forEachDstAtop(const sp<Allocation>& in, const sp<Allocation>& out); /** * Sets dst = {src.r ^ dst.r, src.g ^ dst.g, src.b ^ dst.b, src.a ^ dst.a} * @param[in] in input Allocation * @param[in] out output Allocation */ void forEachXor(const sp<Allocation>& in, const sp<Allocation>& out); /** * Sets dst = src * dst * @param[in] in input Allocation * @param[in] out output Allocation */ void forEachMultiply(const sp<Allocation>& in, const sp<Allocation>& out); /** * Sets dst = min(src + dst, 1.0) * @param[in] in input Allocation * @param[in] out output Allocation */ void forEachAdd(const sp<Allocation>& in, const sp<Allocation>& out); /** * Sets dst = max(dst - src, 0.0) * @param[in] in input Allocation * @param[in] out output Allocation */ void forEachSubtract(const sp<Allocation>& in, const sp<Allocation>& out); }; /** * Intrinsic Gausian blur filter. Applies a Gaussian blur of the specified * radius to all elements of an Allocation. */ class ScriptIntrinsicBlur : public ScriptIntrinsic { private: ScriptIntrinsicBlur(sp<RS> rs, sp<const Element> e); public: /** * Supported Element types are U8 and U8_4. * @param[in] rs RenderScript context * @param[in] e Element * @return new ScriptIntrinsicBlur */ static sp<ScriptIntrinsicBlur> create(const sp<RS>& rs, const sp<const Element>& e); /** * Sets the input of the blur. * @param[in] in input Allocation */ void setInput(const sp<Allocation>& in); /** * Runs the intrinsic. * @param[in] output Allocation */ void forEach(const sp<Allocation>& out); /** * Sets the radius of the blur. The supported range is 0 < radius <= 25. * @param[in] radius radius of the blur */ void setRadius(float radius); }; /** * Intrinsic for applying a color matrix to allocations. This has the * same effect as loading each element and converting it to a * F32_N, multiplying the result by the 4x4 color matrix * as performed by rsMatrixMultiply() and writing it to the output * after conversion back to U8_N or F32_N. */ class ScriptIntrinsicColorMatrix : public ScriptIntrinsic { private: ScriptIntrinsicColorMatrix(sp<RS> rs, sp<const Element> e); public: /** * Creates a new intrinsic. * @param[in] rs RenderScript context * @return new ScriptIntrinsicColorMatrix */ static sp<ScriptIntrinsicColorMatrix> create(const sp<RS>& rs); /** * Applies the color matrix. Supported types are U8 and F32 with * vector lengths between 1 and 4. * @param[in] in input Allocation * @param[out] out output Allocation */ void forEach(const sp<Allocation>& in, const sp<Allocation>& out); /** * Set the value to be added after the color matrix has been * applied. The default value is {0, 0, 0, 0}. * @param[in] add float[4] of values */ void setAdd(float* add); /** * Set the color matrix which will be applied to each cell of the * image. The alpha channel will be copied. * * @param[in] m float[9] of values */ void setColorMatrix3(float* m); /** * Set the color matrix which will be applied to each cell of the * image. * * @param[in] m float[16] of values */ void setColorMatrix4(float* m); /** * Set a color matrix to convert from RGB to luminance. The alpha * channel will be a copy. */ void setGreyscale(); /** * Set the matrix to convert from RGB to YUV with a direct copy of * the 4th channel. */ void setRGBtoYUV(); /** * Set the matrix to convert from YUV to RGB with a direct copy of * the 4th channel. */ void setYUVtoRGB(); }; /** * Intrinsic for applying a 3x3 convolve to an allocation. */ class ScriptIntrinsicConvolve3x3 : public ScriptIntrinsic { private: ScriptIntrinsicConvolve3x3(sp<RS> rs, sp<const Element> e); public: /** * Supported types U8 and F32 with vector lengths between 1 and * 4. The default convolution kernel is the identity. * @param[in] rs RenderScript context * @param[in] e Element * @return new ScriptIntrinsicConvolve3x3 */ static sp<ScriptIntrinsicConvolve3x3> create(const sp<RS>& rs, const sp<const Element>& e); /** * Sets input for intrinsic. * @param[in] in input Allocation */ void setInput(const sp<Allocation>& in); /** * Launches the intrinsic. * @param[in] out output Allocation */ void forEach(const sp<Allocation>& out); /** * Sets convolution kernel. * @param[in] v float[9] of values */ void setCoefficients(float* v); }; /** * Intrinsic for applying a 5x5 convolve to an allocation. */ class ScriptIntrinsicConvolve5x5 : public ScriptIntrinsic { private: ScriptIntrinsicConvolve5x5(sp<RS> rs, sp<const Element> e); public: /** * Supported types U8 and F32 with vector lengths between 1 and * 4. The default convolution kernel is the identity. * @param[in] rs RenderScript context * @param[in] e Element * @return new ScriptIntrinsicConvolve5x5 */ static sp<ScriptIntrinsicConvolve5x5> create(const sp<RS>& rs, const sp<const Element>& e); /** * Sets input for intrinsic. * @param[in] in input Allocation */ void setInput(const sp<Allocation>& in); /** * Launches the intrinsic. * @param[in] out output Allocation */ void forEach(const sp<Allocation>& out); /** * Sets convolution kernel. * @param[in] v float[25] of values */ void setCoefficients(float* v); }; /** * Intrinsic for computing a histogram. */ class ScriptIntrinsicHistogram : public ScriptIntrinsic { private: ScriptIntrinsicHistogram(sp<RS> rs, sp<const Element> e); sp<Allocation> mOut; public: /** * Create an intrinsic for calculating the histogram of an uchar * or uchar4 image. * * Supported elements types are U8_4, U8_3, U8_2, and U8. * * @param[in] rs The RenderScript context * @param[in] e Element type for inputs * * @return ScriptIntrinsicHistogram */ static sp<ScriptIntrinsicHistogram> create(const sp<RS>& rs, const sp<const Element>& e); /** * Set the output of the histogram. 32 bit integer types are * supported. * * @param[in] aout The output allocation */ void setOutput(const sp<Allocation>& aout); /** * Set the coefficients used for the dot product calculation. The * default is {0.299f, 0.587f, 0.114f, 0.f}. * * Coefficients must be >= 0 and sum to 1.0 or less. * * @param[in] r Red coefficient * @param[in] g Green coefficient * @param[in] b Blue coefficient * @param[in] a Alpha coefficient */ void setDotCoefficients(float r, float g, float b, float a); /** * Process an input buffer and place the histogram into the output * allocation. The output allocation may be a narrower vector size * than the input. In this case the vector size of the output is * used to determine how many of the input channels are used in * the computation. This is useful if you have an RGBA input * buffer but only want the histogram for RGB. * * 1D and 2D input allocations are supported. * * @param[in] ain The input image */ void forEach(const sp<Allocation>& ain); /** * Process an input buffer and place the histogram into the output * allocation. The dot product of the input channel and the * coefficients from 'setDotCoefficients' are used to calculate * the output values. * * 1D and 2D input allocations are supported. * * @param ain The input image */ void forEach_dot(const sp<Allocation>& ain); }; /** * Intrinsic for applying a per-channel lookup table. Each channel of * the input has an independant lookup table. The tables are 256 * entries in size and can cover the full value range of U8_4. **/ class ScriptIntrinsicLUT : public ScriptIntrinsic { private: sp<Allocation> LUT; bool mDirty; unsigned char mCache[1024]; void setTable(unsigned int offset, unsigned char base, unsigned int length, unsigned char* lutValues); ScriptIntrinsicLUT(sp<RS> rs, sp<const Element> e); public: /** * Supported elements types are U8_4. * * The defaults tables are identity. * * @param[in] rs The RenderScript context * @param[in] e Element type for intputs and outputs * * @return ScriptIntrinsicLUT */ static sp<ScriptIntrinsicLUT> create(const sp<RS>& rs, const sp<const Element>& e); /** * Invoke the kernel and apply the lookup to each cell of ain and * copy to aout. * * @param[in] ain Input allocation * @param[in] aout Output allocation */ void forEach(const sp<Allocation>& ain, const sp<Allocation>& aout); /** * Sets entries in LUT for the red channel. * @param[in] base base of region to update * @param[in] length length of region to update * @param[in] lutValues LUT values to use */ void setRed(unsigned char base, unsigned int length, unsigned char* lutValues); /** * Sets entries in LUT for the green channel. * @param[in] base base of region to update * @param[in] length length of region to update * @param[in] lutValues LUT values to use */ void setGreen(unsigned char base, unsigned int length, unsigned char* lutValues); /** * Sets entries in LUT for the blue channel. * @param[in] base base of region to update * @param[in] length length of region to update * @param[in] lutValues LUT values to use */ void setBlue(unsigned char base, unsigned int length, unsigned char* lutValues); /** * Sets entries in LUT for the alpha channel. * @param[in] base base of region to update * @param[in] length length of region to update * @param[in] lutValues LUT values to use */ void setAlpha(unsigned char base, unsigned int length, unsigned char* lutValues); virtual ~ScriptIntrinsicLUT(); }; /** * Intrinsic for performing a resize of a 2D allocation. */ class ScriptIntrinsicResize : public ScriptIntrinsic { private: sp<Allocation> mInput; ScriptIntrinsicResize(sp<RS> rs, sp<const Element> e); public: /** * Supported Element types are U8_4. Default lookup table is identity. * @param[in] rs RenderScript context * @param[in] e Element * @return new ScriptIntrinsic */ static sp<ScriptIntrinsicResize> create(const sp<RS>& rs); /** * Resize copy the input allocation to the output specified. The * Allocation is rescaled if necessary using bi-cubic * interpolation. * @param[in] ain input Allocation * @param[in] aout output Allocation */ void forEach_bicubic(const sp<Allocation>& aout); /** * Set the input of the resize. * @param[in] lut new lookup table */ void setInput(const sp<Allocation>& ain); }; /** * Intrinsic for converting an Android YUV buffer to RGB. * * The input allocation should be supplied in a supported YUV format * as a YUV element Allocation. The output is RGBA; the alpha channel * will be set to 255. */ class ScriptIntrinsicYuvToRGB : public ScriptIntrinsic { private: ScriptIntrinsicYuvToRGB(sp<RS> rs, sp<const Element> e); public: /** * Create an intrinsic for converting YUV to RGB. * * Supported elements types are U8_4. * * @param[in] rs The RenderScript context * @param[in] e Element type for output * * @return ScriptIntrinsicYuvToRGB */ static sp<ScriptIntrinsicYuvToRGB> create(const sp<RS>& rs, const sp<const Element>& e); /** * Set the input YUV allocation. * * @param[in] ain The input allocation. */ void setInput(const sp<Allocation>& in); /** * Convert the image to RGB. * * @param[in] aout Output allocation. Must match creation element * type. */ void forEach(const sp<Allocation>& out); }; /** * Sampler object that defines how Allocations can be read as textures * within a kernel. Samplers are used in conjunction with the rsSample * runtime function to return values from normalized coordinates. * * Any Allocation used with a Sampler must have been created with * RS_ALLOCATION_USAGE_GRAPHICS_TEXTURE; using a Sampler on an * Allocation that was not created with * RS_ALLOCATION_USAGE_GRAPHICS_TEXTURE is undefined. **/ class Sampler : public BaseObj { private: Sampler(sp<RS> rs, void* id); Sampler(sp<RS> rs, void* id, RsSamplerValue min, RsSamplerValue mag, RsSamplerValue wrapS, RsSamplerValue wrapT, float anisotropy); RsSamplerValue mMin; RsSamplerValue mMag; RsSamplerValue mWrapS; RsSamplerValue mWrapT; float mAniso; public: /** * Creates a non-standard Sampler. * @param[in] rs RenderScript context * @param[in] min minification * @param[in] mag magnification * @param[in] wrapS S wrapping mode * @param[in] wrapT T wrapping mode * @param[in] anisotropy anisotropy setting */ static sp<Sampler> create(const sp<RS>& rs, RsSamplerValue min, RsSamplerValue mag, RsSamplerValue wrapS, RsSamplerValue wrapT, float anisotropy); /** * @return minification setting for the sampler */ RsSamplerValue getMinification(); /** * @return magnification setting for the sampler */ RsSamplerValue getMagnification(); /** * @return S wrapping mode for the sampler */ RsSamplerValue getWrapS(); /** * @return T wrapping mode for the sampler */ RsSamplerValue getWrapT(); /** * @return anisotropy setting for the sampler */ float getAnisotropy(); /** * Retrieve a sampler with min and mag set to nearest and wrap modes set to * clamp. * * @param rs Context to which the sampler will belong. * * @return Sampler */ static sp<const Sampler> CLAMP_NEAREST(const sp<RS> &rs); /** * Retrieve a sampler with min and mag set to linear and wrap modes set to * clamp. * * @param rs Context to which the sampler will belong. * * @return Sampler */ static sp<const Sampler> CLAMP_LINEAR(const sp<RS> &rs); /** * Retrieve a sampler with mag set to linear, min linear mipmap linear, and * wrap modes set to clamp. * * @param rs Context to which the sampler will belong. * * @return Sampler */ static sp<const Sampler> CLAMP_LINEAR_MIP_LINEAR(const sp<RS> &rs); /** * Retrieve a sampler with min and mag set to nearest and wrap modes set to * wrap. * * @param rs Context to which the sampler will belong. * * @return Sampler */ static sp<const Sampler> WRAP_NEAREST(const sp<RS> &rs); /** * Retrieve a sampler with min and mag set to linear and wrap modes set to * wrap. * * @param rs Context to which the sampler will belong. * * @return Sampler */ static sp<const Sampler> WRAP_LINEAR(const sp<RS> &rs); /** * Retrieve a sampler with mag set to linear, min linear mipmap linear, and * wrap modes set to wrap. * * @param rs Context to which the sampler will belong. * * @return Sampler */ static sp<const Sampler> WRAP_LINEAR_MIP_LINEAR(const sp<RS> &rs); /** * Retrieve a sampler with min and mag set to nearest and wrap modes set to * mirrored repeat. * * @param rs Context to which the sampler will belong. * * @return Sampler */ static sp<const Sampler> MIRRORED_REPEAT_NEAREST(const sp<RS> &rs); /** * Retrieve a sampler with min and mag set to linear and wrap modes set to * mirrored repeat. * * @param rs Context to which the sampler will belong. * * @return Sampler */ static sp<const Sampler> MIRRORED_REPEAT_LINEAR(const sp<RS> &rs); /** * Retrieve a sampler with min and mag set to linear and wrap modes set to * mirrored repeat. * * @param rs Context to which the sampler will belong. * * @return Sampler */ static sp<const Sampler> MIRRORED_REPEAT_LINEAR_MIP_LINEAR(const sp<RS> &rs); }; } // namespace RSC } // namespace android #endif