//===- LiveRangeEdit.h - Basic tools for split and spill --------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // The LiveRangeEdit class represents changes done to a virtual register when it // is spilled or split. // // The parent register is never changed. Instead, a number of new virtual // registers are created and added to the newRegs vector. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_LIVERANGEEDIT_H #define LLVM_CODEGEN_LIVERANGEEDIT_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/None.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/CodeGen/LiveInterval.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SlotIndexes.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include <cassert> namespace llvm { class LiveIntervals; class MachineBlockFrequencyInfo; class MachineInstr; class MachineLoopInfo; class MachineOperand; class TargetInstrInfo; class TargetRegisterInfo; class VirtRegMap; class LiveRangeEdit : private MachineRegisterInfo::Delegate { public: /// Callback methods for LiveRangeEdit owners. class Delegate { virtual void anchor(); public: virtual ~Delegate() = default; /// Called immediately before erasing a dead machine instruction. virtual void LRE_WillEraseInstruction(MachineInstr *MI) {} /// Called when a virtual register is no longer used. Return false to defer /// its deletion from LiveIntervals. virtual bool LRE_CanEraseVirtReg(unsigned) { return true; } /// Called before shrinking the live range of a virtual register. virtual void LRE_WillShrinkVirtReg(unsigned) {} /// Called after cloning a virtual register. /// This is used for new registers representing connected components of Old. virtual void LRE_DidCloneVirtReg(unsigned New, unsigned Old) {} }; private: LiveInterval *Parent; SmallVectorImpl<unsigned> &NewRegs; MachineRegisterInfo &MRI; LiveIntervals &LIS; VirtRegMap *VRM; const TargetInstrInfo &TII; Delegate *const TheDelegate; /// FirstNew - Index of the first register added to NewRegs. const unsigned FirstNew; /// ScannedRemattable - true when remattable values have been identified. bool ScannedRemattable = false; /// DeadRemats - The saved instructions which have already been dead after /// rematerialization but not deleted yet -- to be done in postOptimization. SmallPtrSet<MachineInstr *, 32> *DeadRemats; /// Remattable - Values defined by remattable instructions as identified by /// tii.isTriviallyReMaterializable(). SmallPtrSet<const VNInfo *, 4> Remattable; /// Rematted - Values that were actually rematted, and so need to have their /// live range trimmed or entirely removed. SmallPtrSet<const VNInfo *, 4> Rematted; /// scanRemattable - Identify the Parent values that may rematerialize. void scanRemattable(AliasAnalysis *aa); /// allUsesAvailableAt - Return true if all registers used by OrigMI at /// OrigIdx are also available with the same value at UseIdx. bool allUsesAvailableAt(const MachineInstr *OrigMI, SlotIndex OrigIdx, SlotIndex UseIdx) const; /// foldAsLoad - If LI has a single use and a single def that can be folded as /// a load, eliminate the register by folding the def into the use. bool foldAsLoad(LiveInterval *LI, SmallVectorImpl<MachineInstr *> &Dead); using ToShrinkSet = SetVector<LiveInterval *, SmallVector<LiveInterval *, 8>, SmallPtrSet<LiveInterval *, 8>>; /// Helper for eliminateDeadDefs. void eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink, AliasAnalysis *AA); /// MachineRegisterInfo callback to notify when new virtual /// registers are created. void MRI_NoteNewVirtualRegister(unsigned VReg) override; /// \brief Check if MachineOperand \p MO is a last use/kill either in the /// main live range of \p LI or in one of the matching subregister ranges. bool useIsKill(const LiveInterval &LI, const MachineOperand &MO) const; /// Create a new empty interval based on OldReg. LiveInterval &createEmptyIntervalFrom(unsigned OldReg, bool createSubRanges); public: /// Create a LiveRangeEdit for breaking down parent into smaller pieces. /// @param parent The register being spilled or split. /// @param newRegs List to receive any new registers created. This needn't be /// empty initially, any existing registers are ignored. /// @param MF The MachineFunction the live range edit is taking place in. /// @param lis The collection of all live intervals in this function. /// @param vrm Map of virtual registers to physical registers for this /// function. If NULL, no virtual register map updates will /// be done. This could be the case if called before Regalloc. /// @param deadRemats The collection of all the instructions defining an /// original reg and are dead after remat. LiveRangeEdit(LiveInterval *parent, SmallVectorImpl<unsigned> &newRegs, MachineFunction &MF, LiveIntervals &lis, VirtRegMap *vrm, Delegate *delegate = nullptr, SmallPtrSet<MachineInstr *, 32> *deadRemats = nullptr) : Parent(parent), NewRegs(newRegs), MRI(MF.getRegInfo()), LIS(lis), VRM(vrm), TII(*MF.getSubtarget().getInstrInfo()), TheDelegate(delegate), FirstNew(newRegs.size()), DeadRemats(deadRemats) { MRI.setDelegate(this); } ~LiveRangeEdit() override { MRI.resetDelegate(this); } LiveInterval &getParent() const { assert(Parent && "No parent LiveInterval"); return *Parent; } unsigned getReg() const { return getParent().reg; } /// Iterator for accessing the new registers added by this edit. using iterator = SmallVectorImpl<unsigned>::const_iterator; iterator begin() const { return NewRegs.begin() + FirstNew; } iterator end() const { return NewRegs.end(); } unsigned size() const { return NewRegs.size() - FirstNew; } bool empty() const { return size() == 0; } unsigned get(unsigned idx) const { return NewRegs[idx + FirstNew]; } /// pop_back - It allows LiveRangeEdit users to drop new registers. /// The context is when an original def instruction of a register is /// dead after rematerialization, we still want to keep it for following /// rematerializations. We save the def instruction in DeadRemats, /// and replace the original dst register with a new dummy register so /// the live range of original dst register can be shrinked normally. /// We don't want to allocate phys register for the dummy register, so /// we want to drop it from the NewRegs set. void pop_back() { NewRegs.pop_back(); } ArrayRef<unsigned> regs() const { return makeArrayRef(NewRegs).slice(FirstNew); } /// createFrom - Create a new virtual register based on OldReg. unsigned createFrom(unsigned OldReg); /// create - Create a new register with the same class and original slot as /// parent. LiveInterval &createEmptyInterval() { return createEmptyIntervalFrom(getReg(), true); } unsigned create() { return createFrom(getReg()); } /// anyRematerializable - Return true if any parent values may be /// rematerializable. /// This function must be called before any rematerialization is attempted. bool anyRematerializable(AliasAnalysis *); /// checkRematerializable - Manually add VNI to the list of rematerializable /// values if DefMI may be rematerializable. bool checkRematerializable(VNInfo *VNI, const MachineInstr *DefMI, AliasAnalysis *); /// Remat - Information needed to rematerialize at a specific location. struct Remat { VNInfo *ParentVNI; // parent_'s value at the remat location. MachineInstr *OrigMI = nullptr; // Instruction defining OrigVNI. It contains // the real expr for remat. explicit Remat(VNInfo *ParentVNI) : ParentVNI(ParentVNI) {} }; /// canRematerializeAt - Determine if ParentVNI can be rematerialized at /// UseIdx. It is assumed that parent_.getVNINfoAt(UseIdx) == ParentVNI. /// When cheapAsAMove is set, only cheap remats are allowed. bool canRematerializeAt(Remat &RM, VNInfo *OrigVNI, SlotIndex UseIdx, bool cheapAsAMove); /// rematerializeAt - Rematerialize RM.ParentVNI into DestReg by inserting an /// instruction into MBB before MI. The new instruction is mapped, but /// liveness is not updated. /// Return the SlotIndex of the new instruction. SlotIndex rematerializeAt(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, const Remat &RM, const TargetRegisterInfo &, bool Late = false); /// markRematerialized - explicitly mark a value as rematerialized after doing /// it manually. void markRematerialized(const VNInfo *ParentVNI) { Rematted.insert(ParentVNI); } /// didRematerialize - Return true if ParentVNI was rematerialized anywhere. bool didRematerialize(const VNInfo *ParentVNI) const { return Rematted.count(ParentVNI); } /// eraseVirtReg - Notify the delegate that Reg is no longer in use, and try /// to erase it from LIS. void eraseVirtReg(unsigned Reg); /// eliminateDeadDefs - Try to delete machine instructions that are now dead /// (allDefsAreDead returns true). This may cause live intervals to be trimmed /// and further dead efs to be eliminated. /// RegsBeingSpilled lists registers currently being spilled by the register /// allocator. These registers should not be split into new intervals /// as currently those new intervals are not guaranteed to spill. void eliminateDeadDefs(SmallVectorImpl<MachineInstr *> &Dead, ArrayRef<unsigned> RegsBeingSpilled = None, AliasAnalysis *AA = nullptr); /// calculateRegClassAndHint - Recompute register class and hint for each new /// register. void calculateRegClassAndHint(MachineFunction &, const MachineLoopInfo &, const MachineBlockFrequencyInfo &); }; } // end namespace llvm #endif // LLVM_CODEGEN_LIVERANGEEDIT_H