//===- ScheduleDAGILP.h - ILP metric for ScheduleDAGInstrs ------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Definition of an ILP metric for machine level instruction scheduling. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_SCHEDULEDFS_H #define LLVM_CODEGEN_SCHEDULEDFS_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/ScheduleDAG.h" #include <cassert> #include <cstdint> #include <vector> namespace llvm { class raw_ostream; /// \brief Represent the ILP of the subDAG rooted at a DAG node. /// /// ILPValues summarize the DAG subtree rooted at each node. ILPValues are /// valid for all nodes regardless of their subtree membership. /// /// When computed using bottom-up DFS, this metric assumes that the DAG is a /// forest of trees with roots at the bottom of the schedule branching upward. struct ILPValue { unsigned InstrCount; /// Length may either correspond to depth or height, depending on direction, /// and cycles or nodes depending on context. unsigned Length; ILPValue(unsigned count, unsigned length): InstrCount(count), Length(length) {} // Order by the ILP metric's value. bool operator<(ILPValue RHS) const { return (uint64_t)InstrCount * RHS.Length < (uint64_t)Length * RHS.InstrCount; } bool operator>(ILPValue RHS) const { return RHS < *this; } bool operator<=(ILPValue RHS) const { return (uint64_t)InstrCount * RHS.Length <= (uint64_t)Length * RHS.InstrCount; } bool operator>=(ILPValue RHS) const { return RHS <= *this; } void print(raw_ostream &OS) const; void dump() const; }; /// \brief Compute the values of each DAG node for various metrics during DFS. class SchedDFSResult { friend class SchedDFSImpl; static const unsigned InvalidSubtreeID = ~0u; /// \brief Per-SUnit data computed during DFS for various metrics. /// /// A node's SubtreeID is set to itself when it is visited to indicate that it /// is the root of a subtree. Later it is set to its parent to indicate an /// interior node. Finally, it is set to a representative subtree ID during /// finalization. struct NodeData { unsigned InstrCount = 0; unsigned SubtreeID = InvalidSubtreeID; NodeData() = default; }; /// \brief Per-Subtree data computed during DFS. struct TreeData { unsigned ParentTreeID = InvalidSubtreeID; unsigned SubInstrCount = 0; TreeData() = default; }; /// \brief Record a connection between subtrees and the connection level. struct Connection { unsigned TreeID; unsigned Level; Connection(unsigned tree, unsigned level): TreeID(tree), Level(level) {} }; bool IsBottomUp; unsigned SubtreeLimit; /// DFS results for each SUnit in this DAG. std::vector<NodeData> DFSNodeData; // Store per-tree data indexed on tree ID, SmallVector<TreeData, 16> DFSTreeData; // For each subtree discovered during DFS, record its connections to other // subtrees. std::vector<SmallVector<Connection, 4>> SubtreeConnections; /// Cache the current connection level of each subtree. /// This mutable array is updated during scheduling. std::vector<unsigned> SubtreeConnectLevels; public: SchedDFSResult(bool IsBU, unsigned lim) : IsBottomUp(IsBU), SubtreeLimit(lim) {} /// \brief Get the node cutoff before subtrees are considered significant. unsigned getSubtreeLimit() const { return SubtreeLimit; } /// \brief Return true if this DFSResult is uninitialized. /// /// resize() initializes DFSResult, while compute() populates it. bool empty() const { return DFSNodeData.empty(); } /// \brief Clear the results. void clear() { DFSNodeData.clear(); DFSTreeData.clear(); SubtreeConnections.clear(); SubtreeConnectLevels.clear(); } /// \brief Initialize the result data with the size of the DAG. void resize(unsigned NumSUnits) { DFSNodeData.resize(NumSUnits); } /// \brief Compute various metrics for the DAG with given roots. void compute(ArrayRef<SUnit> SUnits); /// \brief Get the number of instructions in the given subtree and its /// children. unsigned getNumInstrs(const SUnit *SU) const { return DFSNodeData[SU->NodeNum].InstrCount; } /// \brief Get the number of instructions in the given subtree not including /// children. unsigned getNumSubInstrs(unsigned SubtreeID) const { return DFSTreeData[SubtreeID].SubInstrCount; } /// \brief Get the ILP value for a DAG node. /// /// A leaf node has an ILP of 1/1. ILPValue getILP(const SUnit *SU) const { return ILPValue(DFSNodeData[SU->NodeNum].InstrCount, 1 + SU->getDepth()); } /// \brief The number of subtrees detected in this DAG. unsigned getNumSubtrees() const { return SubtreeConnectLevels.size(); } /// \brief Get the ID of the subtree the given DAG node belongs to. /// /// For convenience, if DFSResults have not been computed yet, give everything /// tree ID 0. unsigned getSubtreeID(const SUnit *SU) const { if (empty()) return 0; assert(SU->NodeNum < DFSNodeData.size() && "New Node"); return DFSNodeData[SU->NodeNum].SubtreeID; } /// \brief Get the connection level of a subtree. /// /// For bottom-up trees, the connection level is the latency depth (in cycles) /// of the deepest connection to another subtree. unsigned getSubtreeLevel(unsigned SubtreeID) const { return SubtreeConnectLevels[SubtreeID]; } /// \brief Scheduler callback to update SubtreeConnectLevels when a tree is /// initially scheduled. void scheduleTree(unsigned SubtreeID); }; raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val); } // end namespace llvm #endif // LLVM_CODEGEN_SCHEDULEDFS_H