//===- llvm/CodeGen/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the target machine instruction set to the code generator. // //===----------------------------------------------------------------------===// #ifndef LLVM_TARGET_TARGETINSTRINFO_H #define LLVM_TARGET_TARGETINSTRINFO_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseMapInfo.h" #include "llvm/ADT/None.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineCombinerPattern.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/Support/BranchProbability.h" #include "llvm/Support/ErrorHandling.h" #include <cassert> #include <cstddef> #include <cstdint> #include <utility> #include <vector> namespace llvm { class DFAPacketizer; class InstrItineraryData; class LiveIntervals; class LiveVariables; class MachineMemOperand; class MachineRegisterInfo; class MCAsmInfo; class MCInst; struct MCSchedModel; class Module; class ScheduleDAG; class ScheduleHazardRecognizer; class SDNode; class SelectionDAG; class RegScavenger; class TargetRegisterClass; class TargetRegisterInfo; class TargetSchedModel; class TargetSubtargetInfo; template <class T> class SmallVectorImpl; //--------------------------------------------------------------------------- /// /// TargetInstrInfo - Interface to description of machine instruction set /// class TargetInstrInfo : public MCInstrInfo { public: TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u, unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u) : CallFrameSetupOpcode(CFSetupOpcode), CallFrameDestroyOpcode(CFDestroyOpcode), CatchRetOpcode(CatchRetOpcode), ReturnOpcode(ReturnOpcode) {} TargetInstrInfo(const TargetInstrInfo &) = delete; TargetInstrInfo &operator=(const TargetInstrInfo &) = delete; virtual ~TargetInstrInfo(); static bool isGenericOpcode(unsigned Opc) { return Opc <= TargetOpcode::GENERIC_OP_END; } /// Given a machine instruction descriptor, returns the register /// class constraint for OpNum, or NULL. const TargetRegisterClass *getRegClass(const MCInstrDesc &TID, unsigned OpNum, const TargetRegisterInfo *TRI, const MachineFunction &MF) const; /// Return true if the instruction is trivially rematerializable, meaning it /// has no side effects and requires no operands that aren't always available. /// This means the only allowed uses are constants and unallocatable physical /// registers so that the instructions result is independent of the place /// in the function. bool isTriviallyReMaterializable(const MachineInstr &MI, AliasAnalysis *AA = nullptr) const { return MI.getOpcode() == TargetOpcode::IMPLICIT_DEF || (MI.getDesc().isRematerializable() && (isReallyTriviallyReMaterializable(MI, AA) || isReallyTriviallyReMaterializableGeneric(MI, AA))); } protected: /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is /// set, this hook lets the target specify whether the instruction is actually /// trivially rematerializable, taking into consideration its operands. This /// predicate must return false if the instruction has any side effects other /// than producing a value, or if it requres any address registers that are /// not always available. /// Requirements must be check as stated in isTriviallyReMaterializable() . virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI, AliasAnalysis *AA) const { return false; } /// This method commutes the operands of the given machine instruction MI. /// The operands to be commuted are specified by their indices OpIdx1 and /// OpIdx2. /// /// If a target has any instructions that are commutable but require /// converting to different instructions or making non-trivial changes /// to commute them, this method can be overloaded to do that. /// The default implementation simply swaps the commutable operands. /// /// If NewMI is false, MI is modified in place and returned; otherwise, a /// new machine instruction is created and returned. /// /// Do not call this method for a non-commutable instruction. /// Even though the instruction is commutable, the method may still /// fail to commute the operands, null pointer is returned in such cases. virtual MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI, unsigned OpIdx1, unsigned OpIdx2) const; /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable /// operand indices to (ResultIdx1, ResultIdx2). /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be /// predefined to some indices or be undefined (designated by the special /// value 'CommuteAnyOperandIndex'). /// The predefined result indices cannot be re-defined. /// The function returns true iff after the result pair redefinition /// the fixed result pair is equal to or equivalent to the source pair of /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that /// the pairs (x,y) and (y,x) are equivalent. static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2, unsigned CommutableOpIdx1, unsigned CommutableOpIdx2); private: /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is /// set and the target hook isReallyTriviallyReMaterializable returns false, /// this function does target-independent tests to determine if the /// instruction is really trivially rematerializable. bool isReallyTriviallyReMaterializableGeneric(const MachineInstr &MI, AliasAnalysis *AA) const; public: /// These methods return the opcode of the frame setup/destroy instructions /// if they exist (-1 otherwise). Some targets use pseudo instructions in /// order to abstract away the difference between operating with a frame /// pointer and operating without, through the use of these two instructions. /// unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; } unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; } /// Returns true if the argument is a frame pseudo instruction. bool isFrameInstr(const MachineInstr &I) const { return I.getOpcode() == getCallFrameSetupOpcode() || I.getOpcode() == getCallFrameDestroyOpcode(); } /// Returns true if the argument is a frame setup pseudo instruction. bool isFrameSetup(const MachineInstr &I) const { return I.getOpcode() == getCallFrameSetupOpcode(); } /// Returns size of the frame associated with the given frame instruction. /// For frame setup instruction this is frame that is set up space set up /// after the instruction. For frame destroy instruction this is the frame /// freed by the caller. /// Note, in some cases a call frame (or a part of it) may be prepared prior /// to the frame setup instruction. It occurs in the calls that involve /// inalloca arguments. This function reports only the size of the frame part /// that is set up between the frame setup and destroy pseudo instructions. int64_t getFrameSize(const MachineInstr &I) const { assert(isFrameInstr(I) && "Not a frame instruction"); assert(I.getOperand(0).getImm() >= 0); return I.getOperand(0).getImm(); } /// Returns the total frame size, which is made up of the space set up inside /// the pair of frame start-stop instructions and the space that is set up /// prior to the pair. int64_t getFrameTotalSize(const MachineInstr &I) const { if (isFrameSetup(I)) { assert(I.getOperand(1).getImm() >= 0 && "Frame size must not be negative"); return getFrameSize(I) + I.getOperand(1).getImm(); } return getFrameSize(I); } unsigned getCatchReturnOpcode() const { return CatchRetOpcode; } unsigned getReturnOpcode() const { return ReturnOpcode; } /// Returns the actual stack pointer adjustment made by an instruction /// as part of a call sequence. By default, only call frame setup/destroy /// instructions adjust the stack, but targets may want to override this /// to enable more fine-grained adjustment, or adjust by a different value. virtual int getSPAdjust(const MachineInstr &MI) const; /// Return true if the instruction is a "coalescable" extension instruction. /// That is, it's like a copy where it's legal for the source to overlap the /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's /// expected the pre-extension value is available as a subreg of the result /// register. This also returns the sub-register index in SubIdx. virtual bool isCoalescableExtInstr(const MachineInstr &MI, unsigned &SrcReg, unsigned &DstReg, unsigned &SubIdx) const { return false; } /// If the specified machine instruction is a direct /// load from a stack slot, return the virtual or physical register number of /// the destination along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than loading from the stack slot. virtual unsigned isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const { return 0; } /// Check for post-frame ptr elimination stack locations as well. /// This uses a heuristic so it isn't reliable for correctness. virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI, int &FrameIndex) const { return 0; } /// If the specified machine instruction has a load from a stack slot, /// return true along with the FrameIndex of the loaded stack slot and the /// machine mem operand containing the reference. /// If not, return false. Unlike isLoadFromStackSlot, this returns true for /// any instructions that loads from the stack. This is just a hint, as some /// cases may be missed. virtual bool hasLoadFromStackSlot(const MachineInstr &MI, const MachineMemOperand *&MMO, int &FrameIndex) const; /// If the specified machine instruction is a direct /// store to a stack slot, return the virtual or physical register number of /// the source reg along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than storing to the stack slot. virtual unsigned isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex) const { return 0; } /// Check for post-frame ptr elimination stack locations as well. /// This uses a heuristic, so it isn't reliable for correctness. virtual unsigned isStoreToStackSlotPostFE(const MachineInstr &MI, int &FrameIndex) const { return 0; } /// If the specified machine instruction has a store to a stack slot, /// return true along with the FrameIndex of the loaded stack slot and the /// machine mem operand containing the reference. /// If not, return false. Unlike isStoreToStackSlot, /// this returns true for any instructions that stores to the /// stack. This is just a hint, as some cases may be missed. virtual bool hasStoreToStackSlot(const MachineInstr &MI, const MachineMemOperand *&MMO, int &FrameIndex) const; /// Return true if the specified machine instruction /// is a copy of one stack slot to another and has no other effect. /// Provide the identity of the two frame indices. virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex, int &SrcFrameIndex) const { return false; } /// Compute the size in bytes and offset within a stack slot of a spilled /// register or subregister. /// /// \param [out] Size in bytes of the spilled value. /// \param [out] Offset in bytes within the stack slot. /// \returns true if both Size and Offset are successfully computed. /// /// Not all subregisters have computable spill slots. For example, /// subregisters registers may not be byte-sized, and a pair of discontiguous /// subregisters has no single offset. /// /// Targets with nontrivial bigendian implementations may need to override /// this, particularly to support spilled vector registers. virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx, unsigned &Size, unsigned &Offset, const MachineFunction &MF) const; /// Returns the size in bytes of the specified MachineInstr, or ~0U /// when this function is not implemented by a target. virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const { return ~0U; } /// Return true if the instruction is as cheap as a move instruction. /// /// Targets for different archs need to override this, and different /// micro-architectures can also be finely tuned inside. virtual bool isAsCheapAsAMove(const MachineInstr &MI) const { return MI.isAsCheapAsAMove(); } /// Return true if the instruction should be sunk by MachineSink. /// /// MachineSink determines on its own whether the instruction is safe to sink; /// this gives the target a hook to override the default behavior with regards /// to which instructions should be sunk. virtual bool shouldSink(const MachineInstr &MI) const { return true; } /// Re-issue the specified 'original' instruction at the /// specific location targeting a new destination register. /// The register in Orig->getOperand(0).getReg() will be substituted by /// DestReg:SubIdx. Any existing subreg index is preserved or composed with /// SubIdx. virtual void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, unsigned SubIdx, const MachineInstr &Orig, const TargetRegisterInfo &TRI) const; /// \brief Clones instruction or the whole instruction bundle \p Orig and /// insert into \p MBB before \p InsertBefore. The target may update operands /// that are required to be unique. /// /// \p Orig must not return true for MachineInstr::isNotDuplicable(). virtual MachineInstr &duplicate(MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const; /// This method must be implemented by targets that /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target /// may be able to convert a two-address instruction into one or more true /// three-address instructions on demand. This allows the X86 target (for /// example) to convert ADD and SHL instructions into LEA instructions if they /// would require register copies due to two-addressness. /// /// This method returns a null pointer if the transformation cannot be /// performed, otherwise it returns the last new instruction. /// virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const { return nullptr; } // This constant can be used as an input value of operand index passed to // the method findCommutedOpIndices() to tell the method that the // corresponding operand index is not pre-defined and that the method // can pick any commutable operand. static const unsigned CommuteAnyOperandIndex = ~0U; /// This method commutes the operands of the given machine instruction MI. /// /// The operands to be commuted are specified by their indices OpIdx1 and /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value /// 'CommuteAnyOperandIndex', which means that the method is free to choose /// any arbitrarily chosen commutable operand. If both arguments are set to /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable /// operands; then commutes them if such operands could be found. /// /// If NewMI is false, MI is modified in place and returned; otherwise, a /// new machine instruction is created and returned. /// /// Do not call this method for a non-commutable instruction or /// for non-commuable operands. /// Even though the instruction is commutable, the method may still /// fail to commute the operands, null pointer is returned in such cases. MachineInstr * commuteInstruction(MachineInstr &MI, bool NewMI = false, unsigned OpIdx1 = CommuteAnyOperandIndex, unsigned OpIdx2 = CommuteAnyOperandIndex) const; /// Returns true iff the routine could find two commutable operands in the /// given machine instruction. /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. /// If any of the INPUT values is set to the special value /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable /// operand, then returns its index in the corresponding argument. /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method /// looks for 2 commutable operands. /// If INPUT values refer to some operands of MI, then the method simply /// returns true if the corresponding operands are commutable and returns /// false otherwise. /// /// For example, calling this method this way: /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex; /// findCommutedOpIndices(MI, Op1, Op2); /// can be interpreted as a query asking to find an operand that would be /// commutable with the operand#1. virtual bool findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const; /// A pair composed of a register and a sub-register index. /// Used to give some type checking when modeling Reg:SubReg. struct RegSubRegPair { unsigned Reg; unsigned SubReg; RegSubRegPair(unsigned Reg = 0, unsigned SubReg = 0) : Reg(Reg), SubReg(SubReg) {} }; /// A pair composed of a pair of a register and a sub-register index, /// and another sub-register index. /// Used to give some type checking when modeling Reg:SubReg1, SubReg2. struct RegSubRegPairAndIdx : RegSubRegPair { unsigned SubIdx; RegSubRegPairAndIdx(unsigned Reg = 0, unsigned SubReg = 0, unsigned SubIdx = 0) : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {} }; /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI /// and \p DefIdx. /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of /// the list is modeled as <Reg:SubReg, SubIdx>. Operands with the undef /// flag are not added to this list. /// E.g., REG_SEQUENCE %1:sub1, sub0, %2, sub1 would produce /// two elements: /// - %1:sub1, sub0 /// - %2<:0>, sub1 /// /// \returns true if it is possible to build such an input sequence /// with the pair \p MI, \p DefIdx. False otherwise. /// /// \pre MI.isRegSequence() or MI.isRegSequenceLike(). /// /// \note The generic implementation does not provide any support for /// MI.isRegSequenceLike(). In other words, one has to override /// getRegSequenceLikeInputs for target specific instructions. bool getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx, SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const; /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI /// and \p DefIdx. /// \p [out] InputReg of the equivalent EXTRACT_SUBREG. /// E.g., EXTRACT_SUBREG %1:sub1, sub0, sub1 would produce: /// - %1:sub1, sub0 /// /// \returns true if it is possible to build such an input sequence /// with the pair \p MI, \p DefIdx and the operand has no undef flag set. /// False otherwise. /// /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike(). /// /// \note The generic implementation does not provide any support for /// MI.isExtractSubregLike(). In other words, one has to override /// getExtractSubregLikeInputs for target specific instructions. bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx, RegSubRegPairAndIdx &InputReg) const; /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI /// and \p DefIdx. /// \p [out] BaseReg and \p [out] InsertedReg contain /// the equivalent inputs of INSERT_SUBREG. /// E.g., INSERT_SUBREG %0:sub0, %1:sub1, sub3 would produce: /// - BaseReg: %0:sub0 /// - InsertedReg: %1:sub1, sub3 /// /// \returns true if it is possible to build such an input sequence /// with the pair \p MI, \p DefIdx and the operand has no undef flag set. /// False otherwise. /// /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike(). /// /// \note The generic implementation does not provide any support for /// MI.isInsertSubregLike(). In other words, one has to override /// getInsertSubregLikeInputs for target specific instructions. bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const; /// Return true if two machine instructions would produce identical values. /// By default, this is only true when the two instructions /// are deemed identical except for defs. If this function is called when the /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for /// aggressive checks. virtual bool produceSameValue(const MachineInstr &MI0, const MachineInstr &MI1, const MachineRegisterInfo *MRI = nullptr) const; /// \returns true if a branch from an instruction with opcode \p BranchOpc /// bytes is capable of jumping to a position \p BrOffset bytes away. virtual bool isBranchOffsetInRange(unsigned BranchOpc, int64_t BrOffset) const { llvm_unreachable("target did not implement"); } /// \returns The block that branch instruction \p MI jumps to. virtual MachineBasicBlock *getBranchDestBlock(const MachineInstr &MI) const { llvm_unreachable("target did not implement"); } /// Insert an unconditional indirect branch at the end of \p MBB to \p /// NewDestBB. \p BrOffset indicates the offset of \p NewDestBB relative to /// the offset of the position to insert the new branch. /// /// \returns The number of bytes added to the block. virtual unsigned insertIndirectBranch(MachineBasicBlock &MBB, MachineBasicBlock &NewDestBB, const DebugLoc &DL, int64_t BrOffset = 0, RegScavenger *RS = nullptr) const { llvm_unreachable("target did not implement"); } /// Analyze the branching code at the end of MBB, returning /// true if it cannot be understood (e.g. it's a switch dispatch or isn't /// implemented for a target). Upon success, this returns false and returns /// with the following information in various cases: /// /// 1. If this block ends with no branches (it just falls through to its succ) /// just return false, leaving TBB/FBB null. /// 2. If this block ends with only an unconditional branch, it sets TBB to be /// the destination block. /// 3. If this block ends with a conditional branch and it falls through to a /// successor block, it sets TBB to be the branch destination block and a /// list of operands that evaluate the condition. These operands can be /// passed to other TargetInstrInfo methods to create new branches. /// 4. If this block ends with a conditional branch followed by an /// unconditional branch, it returns the 'true' destination in TBB, the /// 'false' destination in FBB, and a list of operands that evaluate the /// condition. These operands can be passed to other TargetInstrInfo /// methods to create new branches. /// /// Note that removeBranch and insertBranch must be implemented to support /// cases where this method returns success. /// /// If AllowModify is true, then this routine is allowed to modify the basic /// block (e.g. delete instructions after the unconditional branch). /// /// The CFG information in MBB.Predecessors and MBB.Successors must be valid /// before calling this function. virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl<MachineOperand> &Cond, bool AllowModify = false) const { return true; } /// Represents a predicate at the MachineFunction level. The control flow a /// MachineBranchPredicate represents is: /// /// Reg = LHS `Predicate` RHS == ConditionDef /// if Reg then goto TrueDest else goto FalseDest /// struct MachineBranchPredicate { enum ComparePredicate { PRED_EQ, // True if two values are equal PRED_NE, // True if two values are not equal PRED_INVALID // Sentinel value }; ComparePredicate Predicate = PRED_INVALID; MachineOperand LHS = MachineOperand::CreateImm(0); MachineOperand RHS = MachineOperand::CreateImm(0); MachineBasicBlock *TrueDest = nullptr; MachineBasicBlock *FalseDest = nullptr; MachineInstr *ConditionDef = nullptr; /// SingleUseCondition is true if ConditionDef is dead except for the /// branch(es) at the end of the basic block. /// bool SingleUseCondition = false; explicit MachineBranchPredicate() = default; }; /// Analyze the branching code at the end of MBB and parse it into the /// MachineBranchPredicate structure if possible. Returns false on success /// and true on failure. /// /// If AllowModify is true, then this routine is allowed to modify the basic /// block (e.g. delete instructions after the unconditional branch). /// virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB, MachineBranchPredicate &MBP, bool AllowModify = false) const { return true; } /// Remove the branching code at the end of the specific MBB. /// This is only invoked in cases where AnalyzeBranch returns success. It /// returns the number of instructions that were removed. /// If \p BytesRemoved is non-null, report the change in code size from the /// removed instructions. virtual unsigned removeBranch(MachineBasicBlock &MBB, int *BytesRemoved = nullptr) const { llvm_unreachable("Target didn't implement TargetInstrInfo::removeBranch!"); } /// Insert branch code into the end of the specified MachineBasicBlock. The /// operands to this method are the same as those returned by AnalyzeBranch. /// This is only invoked in cases where AnalyzeBranch returns success. It /// returns the number of instructions inserted. If \p BytesAdded is non-null, /// report the change in code size from the added instructions. /// /// It is also invoked by tail merging to add unconditional branches in /// cases where AnalyzeBranch doesn't apply because there was no original /// branch to analyze. At least this much must be implemented, else tail /// merging needs to be disabled. /// /// The CFG information in MBB.Predecessors and MBB.Successors must be valid /// before calling this function. virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond, const DebugLoc &DL, int *BytesAdded = nullptr) const { llvm_unreachable("Target didn't implement TargetInstrInfo::insertBranch!"); } unsigned insertUnconditionalBranch(MachineBasicBlock &MBB, MachineBasicBlock *DestBB, const DebugLoc &DL, int *BytesAdded = nullptr) const { return insertBranch(MBB, DestBB, nullptr, ArrayRef<MachineOperand>(), DL, BytesAdded); } /// Analyze the loop code, return true if it cannot be understoo. Upon /// success, this function returns false and returns information about the /// induction variable and compare instruction used at the end. virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst, MachineInstr *&CmpInst) const { return true; } /// Generate code to reduce the loop iteration by one and check if the loop /// is finished. Return the value/register of the new loop count. We need /// this function when peeling off one or more iterations of a loop. This /// function assumes the nth iteration is peeled first. virtual unsigned reduceLoopCount(MachineBasicBlock &MBB, MachineInstr *IndVar, MachineInstr &Cmp, SmallVectorImpl<MachineOperand> &Cond, SmallVectorImpl<MachineInstr *> &PrevInsts, unsigned Iter, unsigned MaxIter) const { llvm_unreachable("Target didn't implement ReduceLoopCount"); } /// Delete the instruction OldInst and everything after it, replacing it with /// an unconditional branch to NewDest. This is used by the tail merging pass. virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, MachineBasicBlock *NewDest) const; /// Return true if it's legal to split the given basic /// block at the specified instruction (i.e. instruction would be the start /// of a new basic block). virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { return true; } /// Return true if it's profitable to predicate /// instructions with accumulated instruction latency of "NumCycles" /// of the specified basic block, where the probability of the instructions /// being executed is given by Probability, and Confidence is a measure /// of our confidence that it will be properly predicted. virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, unsigned ExtraPredCycles, BranchProbability Probability) const { return false; } /// Second variant of isProfitableToIfCvt. This one /// checks for the case where two basic blocks from true and false path /// of a if-then-else (diamond) are predicated on mutally exclusive /// predicates, where the probability of the true path being taken is given /// by Probability, and Confidence is a measure of our confidence that it /// will be properly predicted. virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB, unsigned NumFCycles, unsigned ExtraFCycles, BranchProbability Probability) const { return false; } /// Return true if it's profitable for if-converter to duplicate instructions /// of specified accumulated instruction latencies in the specified MBB to /// enable if-conversion. /// The probability of the instructions being executed is given by /// Probability, and Confidence is a measure of our confidence that it /// will be properly predicted. virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, BranchProbability Probability) const { return false; } /// Return true if it's profitable to unpredicate /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually /// exclusive predicates. /// e.g. /// subeq r0, r1, #1 /// addne r0, r1, #1 /// => /// sub r0, r1, #1 /// addne r0, r1, #1 /// /// This may be profitable is conditional instructions are always executed. virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB, MachineBasicBlock &FMBB) const { return false; } /// Return true if it is possible to insert a select /// instruction that chooses between TrueReg and FalseReg based on the /// condition code in Cond. /// /// When successful, also return the latency in cycles from TrueReg, /// FalseReg, and Cond to the destination register. In most cases, a select /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1 /// /// Some x86 implementations have 2-cycle cmov instructions. /// /// @param MBB Block where select instruction would be inserted. /// @param Cond Condition returned by AnalyzeBranch. /// @param TrueReg Virtual register to select when Cond is true. /// @param FalseReg Virtual register to select when Cond is false. /// @param CondCycles Latency from Cond+Branch to select output. /// @param TrueCycles Latency from TrueReg to select output. /// @param FalseCycles Latency from FalseReg to select output. virtual bool canInsertSelect(const MachineBasicBlock &MBB, ArrayRef<MachineOperand> Cond, unsigned TrueReg, unsigned FalseReg, int &CondCycles, int &TrueCycles, int &FalseCycles) const { return false; } /// Insert a select instruction into MBB before I that will copy TrueReg to /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false. /// /// This function can only be called after canInsertSelect() returned true. /// The condition in Cond comes from AnalyzeBranch, and it can be assumed /// that the same flags or registers required by Cond are available at the /// insertion point. /// /// @param MBB Block where select instruction should be inserted. /// @param I Insertion point. /// @param DL Source location for debugging. /// @param DstReg Virtual register to be defined by select instruction. /// @param Cond Condition as computed by AnalyzeBranch. /// @param TrueReg Virtual register to copy when Cond is true. /// @param FalseReg Virtual register to copy when Cons is false. virtual void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, unsigned DstReg, ArrayRef<MachineOperand> Cond, unsigned TrueReg, unsigned FalseReg) const { llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!"); } /// Analyze the given select instruction, returning true if /// it cannot be understood. It is assumed that MI->isSelect() is true. /// /// When successful, return the controlling condition and the operands that /// determine the true and false result values. /// /// Result = SELECT Cond, TrueOp, FalseOp /// /// Some targets can optimize select instructions, for example by predicating /// the instruction defining one of the operands. Such targets should set /// Optimizable. /// /// @param MI Select instruction to analyze. /// @param Cond Condition controlling the select. /// @param TrueOp Operand number of the value selected when Cond is true. /// @param FalseOp Operand number of the value selected when Cond is false. /// @param Optimizable Returned as true if MI is optimizable. /// @returns False on success. virtual bool analyzeSelect(const MachineInstr &MI, SmallVectorImpl<MachineOperand> &Cond, unsigned &TrueOp, unsigned &FalseOp, bool &Optimizable) const { assert(MI.getDesc().isSelect() && "MI must be a select instruction"); return true; } /// Given a select instruction that was understood by /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by /// merging it with one of its operands. Returns NULL on failure. /// /// When successful, returns the new select instruction. The client is /// responsible for deleting MI. /// /// If both sides of the select can be optimized, PreferFalse is used to pick /// a side. /// /// @param MI Optimizable select instruction. /// @param NewMIs Set that record all MIs in the basic block up to \p /// MI. Has to be updated with any newly created MI or deleted ones. /// @param PreferFalse Try to optimize FalseOp instead of TrueOp. /// @returns Optimized instruction or NULL. virtual MachineInstr *optimizeSelect(MachineInstr &MI, SmallPtrSetImpl<MachineInstr *> &NewMIs, bool PreferFalse = false) const { // This function must be implemented if Optimizable is ever set. llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!"); } /// Emit instructions to copy a pair of physical registers. /// /// This function should support copies within any legal register class as /// well as any cross-class copies created during instruction selection. /// /// The source and destination registers may overlap, which may require a /// careful implementation when multiple copy instructions are required for /// large registers. See for example the ARM target. virtual void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const DebugLoc &DL, unsigned DestReg, unsigned SrcReg, bool KillSrc) const { llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!"); } /// Store the specified register of the given register class to the specified /// stack frame index. The store instruction is to be added to the given /// machine basic block before the specified machine instruction. If isKill /// is true, the register operand is the last use and must be marked kill. virtual void storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { llvm_unreachable("Target didn't implement " "TargetInstrInfo::storeRegToStackSlot!"); } /// Load the specified register of the given register class from the specified /// stack frame index. The load instruction is to be added to the given /// machine basic block before the specified machine instruction. virtual void loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { llvm_unreachable("Target didn't implement " "TargetInstrInfo::loadRegFromStackSlot!"); } /// This function is called for all pseudo instructions /// that remain after register allocation. Many pseudo instructions are /// created to help register allocation. This is the place to convert them /// into real instructions. The target can edit MI in place, or it can insert /// new instructions and erase MI. The function should return true if /// anything was changed. virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; } /// Check whether the target can fold a load that feeds a subreg operand /// (or a subreg operand that feeds a store). /// For example, X86 may want to return true if it can fold /// movl (%esp), %eax /// subb, %al, ... /// Into: /// subb (%esp), ... /// /// Ideally, we'd like the target implementation of foldMemoryOperand() to /// reject subregs - but since this behavior used to be enforced in the /// target-independent code, moving this responsibility to the targets /// has the potential of causing nasty silent breakage in out-of-tree targets. virtual bool isSubregFoldable() const { return false; } /// Attempt to fold a load or store of the specified stack /// slot into the specified machine instruction for the specified operand(s). /// If this is possible, a new instruction is returned with the specified /// operand folded, otherwise NULL is returned. /// The new instruction is inserted before MI, and the client is responsible /// for removing the old instruction. MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops, int FrameIndex, LiveIntervals *LIS = nullptr) const; /// Same as the previous version except it allows folding of any load and /// store from / to any address, not just from a specific stack slot. MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops, MachineInstr &LoadMI, LiveIntervals *LIS = nullptr) const; /// Return true when there is potentially a faster code sequence /// for an instruction chain ending in \p Root. All potential patterns are /// returned in the \p Pattern vector. Pattern should be sorted in priority /// order since the pattern evaluator stops checking as soon as it finds a /// faster sequence. /// \param Root - Instruction that could be combined with one of its operands /// \param Patterns - Vector of possible combination patterns virtual bool getMachineCombinerPatterns( MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns) const; /// Return true when a code sequence can improve throughput. It /// should be called only for instructions in loops. /// \param Pattern - combiner pattern virtual bool isThroughputPattern(MachineCombinerPattern Pattern) const; /// Return true if the input \P Inst is part of a chain of dependent ops /// that are suitable for reassociation, otherwise return false. /// If the instruction's operands must be commuted to have a previous /// instruction of the same type define the first source operand, \P Commuted /// will be set to true. bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const; /// Return true when \P Inst is both associative and commutative. virtual bool isAssociativeAndCommutative(const MachineInstr &Inst) const { return false; } /// Return true when \P Inst has reassociable operands in the same \P MBB. virtual bool hasReassociableOperands(const MachineInstr &Inst, const MachineBasicBlock *MBB) const; /// Return true when \P Inst has reassociable sibling. bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const; /// When getMachineCombinerPatterns() finds patterns, this function generates /// the instructions that could replace the original code sequence. The client /// has to decide whether the actual replacement is beneficial or not. /// \param Root - Instruction that could be combined with one of its operands /// \param Pattern - Combination pattern for Root /// \param InsInstrs - Vector of new instructions that implement P /// \param DelInstrs - Old instructions, including Root, that could be /// replaced by InsInstr /// \param InstrIdxForVirtReg - map of virtual register to instruction in /// InsInstr that defines it virtual void genAlternativeCodeSequence( MachineInstr &Root, MachineCombinerPattern Pattern, SmallVectorImpl<MachineInstr *> &InsInstrs, SmallVectorImpl<MachineInstr *> &DelInstrs, DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const; /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to /// reduce critical path length. void reassociateOps(MachineInstr &Root, MachineInstr &Prev, MachineCombinerPattern Pattern, SmallVectorImpl<MachineInstr *> &InsInstrs, SmallVectorImpl<MachineInstr *> &DelInstrs, DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const; /// This is an architecture-specific helper function of reassociateOps. /// Set special operand attributes for new instructions after reassociation. virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2, MachineInstr &NewMI1, MachineInstr &NewMI2) const {} /// Return true when a target supports MachineCombiner. virtual bool useMachineCombiner() const { return false; } /// Return true if the given SDNode can be copied during scheduling /// even if it has glue. virtual bool canCopyGluedNodeDuringSchedule(SDNode *N) const { return false; } /// Remember what registers the specified instruction uses and modifies. virtual void trackRegDefsUses(const MachineInstr &MI, BitVector &ModifiedRegs, BitVector &UsedRegs, const TargetRegisterInfo *TRI) const; protected: /// Target-dependent implementation for foldMemoryOperand. /// Target-independent code in foldMemoryOperand will /// take care of adding a MachineMemOperand to the newly created instruction. /// The instruction and any auxiliary instructions necessary will be inserted /// at InsertPt. virtual MachineInstr * foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS = nullptr) const { return nullptr; } /// Target-dependent implementation for foldMemoryOperand. /// Target-independent code in foldMemoryOperand will /// take care of adding a MachineMemOperand to the newly created instruction. /// The instruction and any auxiliary instructions necessary will be inserted /// at InsertPt. virtual MachineInstr *foldMemoryOperandImpl( MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, LiveIntervals *LIS = nullptr) const { return nullptr; } /// \brief Target-dependent implementation of getRegSequenceInputs. /// /// \returns true if it is possible to build the equivalent /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise. /// /// \pre MI.isRegSequenceLike(). /// /// \see TargetInstrInfo::getRegSequenceInputs. virtual bool getRegSequenceLikeInputs( const MachineInstr &MI, unsigned DefIdx, SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { return false; } /// \brief Target-dependent implementation of getExtractSubregInputs. /// /// \returns true if it is possible to build the equivalent /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise. /// /// \pre MI.isExtractSubregLike(). /// /// \see TargetInstrInfo::getExtractSubregInputs. virtual bool getExtractSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx, RegSubRegPairAndIdx &InputReg) const { return false; } /// \brief Target-dependent implementation of getInsertSubregInputs. /// /// \returns true if it is possible to build the equivalent /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise. /// /// \pre MI.isInsertSubregLike(). /// /// \see TargetInstrInfo::getInsertSubregInputs. virtual bool getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const { return false; } public: /// getAddressSpaceForPseudoSourceKind - Given the kind of memory /// (e.g. stack) the target returns the corresponding address space. virtual unsigned getAddressSpaceForPseudoSourceKind(PseudoSourceValue::PSVKind Kind) const { return 0; } /// unfoldMemoryOperand - Separate a single instruction which folded a load or /// a store or a load and a store into two or more instruction. If this is /// possible, returns true as well as the new instructions by reference. virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad, bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const { return false; } virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, SmallVectorImpl<SDNode *> &NewNodes) const { return false; } /// Returns the opcode of the would be new /// instruction after load / store are unfolded from an instruction of the /// specified opcode. It returns zero if the specified unfolding is not /// possible. If LoadRegIndex is non-null, it is filled in with the operand /// index of the operand which will hold the register holding the loaded /// value. virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore, unsigned *LoadRegIndex = nullptr) const { return 0; } /// This is used by the pre-regalloc scheduler to determine if two loads are /// loading from the same base address. It should only return true if the base /// pointers are the same and the only differences between the two addresses /// are the offset. It also returns the offsets by reference. virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1, int64_t &Offset2) const { return false; } /// This is a used by the pre-regalloc scheduler to determine (in conjunction /// with areLoadsFromSameBasePtr) if two loads should be scheduled together. /// On some targets if two loads are loading from /// addresses in the same cache line, it's better if they are scheduled /// together. This function takes two integers that represent the load offsets /// from the common base address. It returns true if it decides it's desirable /// to schedule the two loads together. "NumLoads" is the number of loads that /// have already been scheduled after Load1. virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, int64_t Offset1, int64_t Offset2, unsigned NumLoads) const { return false; } /// Get the base register and byte offset of an instruction that reads/writes /// memory. virtual bool getMemOpBaseRegImmOfs(MachineInstr &MemOp, unsigned &BaseReg, int64_t &Offset, const TargetRegisterInfo *TRI) const { return false; } /// Return true if the instruction contains a base register and offset. If /// true, the function also sets the operand position in the instruction /// for the base register and offset. virtual bool getBaseAndOffsetPosition(const MachineInstr &MI, unsigned &BasePos, unsigned &OffsetPos) const { return false; } /// If the instruction is an increment of a constant value, return the amount. virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const { return false; } /// Returns true if the two given memory operations should be scheduled /// adjacent. Note that you have to add: /// DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); /// or /// DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); /// to TargetPassConfig::createMachineScheduler() to have an effect. virtual bool shouldClusterMemOps(MachineInstr &FirstLdSt, unsigned BaseReg1, MachineInstr &SecondLdSt, unsigned BaseReg2, unsigned NumLoads) const { llvm_unreachable("target did not implement shouldClusterMemOps()"); } /// Reverses the branch condition of the specified condition list, /// returning false on success and true if it cannot be reversed. virtual bool reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { return true; } /// Insert a noop into the instruction stream at the specified point. virtual void insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const; /// Return the noop instruction to use for a noop. virtual void getNoop(MCInst &NopInst) const; /// Return true for post-incremented instructions. virtual bool isPostIncrement(const MachineInstr &MI) const { return false; } /// Returns true if the instruction is already predicated. virtual bool isPredicated(const MachineInstr &MI) const { return false; } /// Returns true if the instruction is a /// terminator instruction that has not been predicated. virtual bool isUnpredicatedTerminator(const MachineInstr &MI) const; /// Returns true if MI is an unconditional tail call. virtual bool isUnconditionalTailCall(const MachineInstr &MI) const { return false; } /// Returns true if the tail call can be made conditional on BranchCond. virtual bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond, const MachineInstr &TailCall) const { return false; } /// Replace the conditional branch in MBB with a conditional tail call. virtual void replaceBranchWithTailCall(MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &Cond, const MachineInstr &TailCall) const { llvm_unreachable("Target didn't implement replaceBranchWithTailCall!"); } /// Convert the instruction into a predicated instruction. /// It returns true if the operation was successful. virtual bool PredicateInstruction(MachineInstr &MI, ArrayRef<MachineOperand> Pred) const; /// Returns true if the first specified predicate /// subsumes the second, e.g. GE subsumes GT. virtual bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1, ArrayRef<MachineOperand> Pred2) const { return false; } /// If the specified instruction defines any predicate /// or condition code register(s) used for predication, returns true as well /// as the definition predicate(s) by reference. virtual bool DefinesPredicate(MachineInstr &MI, std::vector<MachineOperand> &Pred) const { return false; } /// Return true if the specified instruction can be predicated. /// By default, this returns true for every instruction with a /// PredicateOperand. virtual bool isPredicable(const MachineInstr &MI) const { return MI.getDesc().isPredicable(); } /// Return true if it's safe to move a machine /// instruction that defines the specified register class. virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { return true; } /// Test if the given instruction should be considered a scheduling boundary. /// This primarily includes labels and terminators. virtual bool isSchedulingBoundary(const MachineInstr &MI, const MachineBasicBlock *MBB, const MachineFunction &MF) const; /// Measure the specified inline asm to determine an approximation of its /// length. virtual unsigned getInlineAsmLength(const char *Str, const MCAsmInfo &MAI) const; /// Allocate and return a hazard recognizer to use for this target when /// scheduling the machine instructions before register allocation. virtual ScheduleHazardRecognizer * CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, const ScheduleDAG *DAG) const; /// Allocate and return a hazard recognizer to use for this target when /// scheduling the machine instructions before register allocation. virtual ScheduleHazardRecognizer * CreateTargetMIHazardRecognizer(const InstrItineraryData *, const ScheduleDAG *DAG) const; /// Allocate and return a hazard recognizer to use for this target when /// scheduling the machine instructions after register allocation. virtual ScheduleHazardRecognizer * CreateTargetPostRAHazardRecognizer(const InstrItineraryData *, const ScheduleDAG *DAG) const; /// Allocate and return a hazard recognizer to use for by non-scheduling /// passes. virtual ScheduleHazardRecognizer * CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const { return nullptr; } /// Provide a global flag for disabling the PreRA hazard recognizer that /// targets may choose to honor. bool usePreRAHazardRecognizer() const; /// For a comparison instruction, return the source registers /// in SrcReg and SrcReg2 if having two register operands, and the value it /// compares against in CmpValue. Return true if the comparison instruction /// can be analyzed. virtual bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, unsigned &SrcReg2, int &Mask, int &Value) const { return false; } /// See if the comparison instruction can be converted /// into something more efficient. E.g., on ARM most instructions can set the /// flags register, obviating the need for a separate CMP. virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, unsigned SrcReg2, int Mask, int Value, const MachineRegisterInfo *MRI) const { return false; } virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; } /// Try to remove the load by folding it to a register operand at the use. /// We fold the load instructions if and only if the /// def and use are in the same BB. We only look at one load and see /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register /// defined by the load we are trying to fold. DefMI returns the machine /// instruction that defines FoldAsLoadDefReg, and the function returns /// the machine instruction generated due to folding. virtual MachineInstr *optimizeLoadInstr(MachineInstr &MI, const MachineRegisterInfo *MRI, unsigned &FoldAsLoadDefReg, MachineInstr *&DefMI) const { return nullptr; } /// 'Reg' is known to be defined by a move immediate instruction, /// try to fold the immediate into the use instruction. /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true, /// then the caller may assume that DefMI has been erased from its parent /// block. The caller may assume that it will not be erased by this /// function otherwise. virtual bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, unsigned Reg, MachineRegisterInfo *MRI) const { return false; } /// Return the number of u-operations the given machine /// instruction will be decoded to on the target cpu. The itinerary's /// IssueWidth is the number of microops that can be dispatched each /// cycle. An instruction with zero microops takes no dispatch resources. virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData, const MachineInstr &MI) const; /// Return true for pseudo instructions that don't consume any /// machine resources in their current form. These are common cases that the /// scheduler should consider free, rather than conservatively handling them /// as instructions with no itinerary. bool isZeroCost(unsigned Opcode) const { return Opcode <= TargetOpcode::COPY; } virtual int getOperandLatency(const InstrItineraryData *ItinData, SDNode *DefNode, unsigned DefIdx, SDNode *UseNode, unsigned UseIdx) const; /// Compute and return the use operand latency of a given pair of def and use. /// In most cases, the static scheduling itinerary was enough to determine the /// operand latency. But it may not be possible for instructions with variable /// number of defs / uses. /// /// This is a raw interface to the itinerary that may be directly overridden /// by a target. Use computeOperandLatency to get the best estimate of /// latency. virtual int getOperandLatency(const InstrItineraryData *ItinData, const MachineInstr &DefMI, unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const; /// Compute the instruction latency of a given instruction. /// If the instruction has higher cost when predicated, it's returned via /// PredCost. virtual unsigned getInstrLatency(const InstrItineraryData *ItinData, const MachineInstr &MI, unsigned *PredCost = nullptr) const; virtual unsigned getPredicationCost(const MachineInstr &MI) const; virtual int getInstrLatency(const InstrItineraryData *ItinData, SDNode *Node) const; /// Return the default expected latency for a def based on its opcode. unsigned defaultDefLatency(const MCSchedModel &SchedModel, const MachineInstr &DefMI) const; int computeDefOperandLatency(const InstrItineraryData *ItinData, const MachineInstr &DefMI) const; /// Return true if this opcode has high latency to its result. virtual bool isHighLatencyDef(int opc) const { return false; } /// Compute operand latency between a def of 'Reg' /// and a use in the current loop. Return true if the target considered /// it 'high'. This is used by optimization passes such as machine LICM to /// determine whether it makes sense to hoist an instruction out even in a /// high register pressure situation. virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel, const MachineRegisterInfo *MRI, const MachineInstr &DefMI, unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const { return false; } /// Compute operand latency of a def of 'Reg'. Return true /// if the target considered it 'low'. virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel, const MachineInstr &DefMI, unsigned DefIdx) const; /// Perform target-specific instruction verification. virtual bool verifyInstruction(const MachineInstr &MI, StringRef &ErrInfo) const { return true; } /// Return the current execution domain and bit mask of /// possible domains for instruction. /// /// Some micro-architectures have multiple execution domains, and multiple /// opcodes that perform the same operation in different domains. For /// example, the x86 architecture provides the por, orps, and orpd /// instructions that all do the same thing. There is a latency penalty if a /// register is written in one domain and read in another. /// /// This function returns a pair (domain, mask) containing the execution /// domain of MI, and a bit mask of possible domains. The setExecutionDomain /// function can be used to change the opcode to one of the domains in the /// bit mask. Instructions whose execution domain can't be changed should /// return a 0 mask. /// /// The execution domain numbers don't have any special meaning except domain /// 0 is used for instructions that are not associated with any interesting /// execution domain. /// virtual std::pair<uint16_t, uint16_t> getExecutionDomain(const MachineInstr &MI) const { return std::make_pair(0, 0); } /// Change the opcode of MI to execute in Domain. /// /// The bit (1 << Domain) must be set in the mask returned from /// getExecutionDomain(MI). virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {} /// Returns the preferred minimum clearance /// before an instruction with an unwanted partial register update. /// /// Some instructions only write part of a register, and implicitly need to /// read the other parts of the register. This may cause unwanted stalls /// preventing otherwise unrelated instructions from executing in parallel in /// an out-of-order CPU. /// /// For example, the x86 instruction cvtsi2ss writes its result to bits /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so /// the instruction needs to wait for the old value of the register to become /// available: /// /// addps %xmm1, %xmm0 /// movaps %xmm0, (%rax) /// cvtsi2ss %rbx, %xmm0 /// /// In the code above, the cvtsi2ss instruction needs to wait for the addps /// instruction before it can issue, even though the high bits of %xmm0 /// probably aren't needed. /// /// This hook returns the preferred clearance before MI, measured in /// instructions. Other defs of MI's operand OpNum are avoided in the last N /// instructions before MI. It should only return a positive value for /// unwanted dependencies. If the old bits of the defined register have /// useful values, or if MI is determined to otherwise read the dependency, /// the hook should return 0. /// /// The unwanted dependency may be handled by: /// /// 1. Allocating the same register for an MI def and use. That makes the /// unwanted dependency identical to a required dependency. /// /// 2. Allocating a register for the def that has no defs in the previous N /// instructions. /// /// 3. Calling breakPartialRegDependency() with the same arguments. This /// allows the target to insert a dependency breaking instruction. /// virtual unsigned getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { // The default implementation returns 0 for no partial register dependency. return 0; } /// \brief Return the minimum clearance before an instruction that reads an /// unused register. /// /// For example, AVX instructions may copy part of a register operand into /// the unused high bits of the destination register. /// /// vcvtsi2sdq %rax, undef %xmm0, %xmm14 /// /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a /// false dependence on any previous write to %xmm0. /// /// This hook works similarly to getPartialRegUpdateClearance, except that it /// does not take an operand index. Instead sets \p OpNum to the index of the /// unused register. virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum, const TargetRegisterInfo *TRI) const { // The default implementation returns 0 for no undef register dependency. return 0; } /// Insert a dependency-breaking instruction /// before MI to eliminate an unwanted dependency on OpNum. /// /// If it wasn't possible to avoid a def in the last N instructions before MI /// (see getPartialRegUpdateClearance), this hook will be called to break the /// unwanted dependency. /// /// On x86, an xorps instruction can be used as a dependency breaker: /// /// addps %xmm1, %xmm0 /// movaps %xmm0, (%rax) /// xorps %xmm0, %xmm0 /// cvtsi2ss %rbx, %xmm0 /// /// An <imp-kill> operand should be added to MI if an instruction was /// inserted. This ties the instructions together in the post-ra scheduler. /// virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {} /// Create machine specific model for scheduling. virtual DFAPacketizer * CreateTargetScheduleState(const TargetSubtargetInfo &) const { return nullptr; } /// Sometimes, it is possible for the target /// to tell, even without aliasing information, that two MIs access different /// memory addresses. This function returns true if two MIs access different /// memory addresses and false otherwise. /// /// Assumes any physical registers used to compute addresses have the same /// value for both instructions. (This is the most useful assumption for /// post-RA scheduling.) /// /// See also MachineInstr::mayAlias, which is implemented on top of this /// function. virtual bool areMemAccessesTriviallyDisjoint(MachineInstr &MIa, MachineInstr &MIb, AliasAnalysis *AA = nullptr) const { assert((MIa.mayLoad() || MIa.mayStore()) && "MIa must load from or modify a memory location"); assert((MIb.mayLoad() || MIb.mayStore()) && "MIb must load from or modify a memory location"); return false; } /// \brief Return the value to use for the MachineCSE's LookAheadLimit, /// which is a heuristic used for CSE'ing phys reg defs. virtual unsigned getMachineCSELookAheadLimit() const { // The default lookahead is small to prevent unprofitable quadratic // behavior. return 5; } /// Return an array that contains the ids of the target indices (used for the /// TargetIndex machine operand) and their names. /// /// MIR Serialization is able to serialize only the target indices that are /// defined by this method. virtual ArrayRef<std::pair<int, const char *>> getSerializableTargetIndices() const { return None; } /// Decompose the machine operand's target flags into two values - the direct /// target flag value and any of bit flags that are applied. virtual std::pair<unsigned, unsigned> decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const { return std::make_pair(0u, 0u); } /// Return an array that contains the direct target flag values and their /// names. /// /// MIR Serialization is able to serialize only the target flags that are /// defined by this method. virtual ArrayRef<std::pair<unsigned, const char *>> getSerializableDirectMachineOperandTargetFlags() const { return None; } /// Return an array that contains the bitmask target flag values and their /// names. /// /// MIR Serialization is able to serialize only the target flags that are /// defined by this method. virtual ArrayRef<std::pair<unsigned, const char *>> getSerializableBitmaskMachineOperandTargetFlags() const { return None; } /// Return an array that contains the MMO target flag values and their /// names. /// /// MIR Serialization is able to serialize only the MMO target flags that are /// defined by this method. virtual ArrayRef<std::pair<MachineMemOperand::Flags, const char *>> getSerializableMachineMemOperandTargetFlags() const { return None; } /// Determines whether \p Inst is a tail call instruction. Override this /// method on targets that do not properly set MCID::Return and MCID::Call on /// tail call instructions." virtual bool isTailCall(const MachineInstr &Inst) const { return Inst.isReturn() && Inst.isCall(); } /// True if the instruction is bound to the top of its basic block and no /// other instructions shall be inserted before it. This can be implemented /// to prevent register allocator to insert spills before such instructions. virtual bool isBasicBlockPrologue(const MachineInstr &MI) const { return false; } /// \brief Describes the number of instructions that it will take to call and /// construct a frame for a given outlining candidate. struct MachineOutlinerInfo { /// Number of instructions to call an outlined function for this candidate. unsigned CallOverhead; /// \brief Number of instructions to construct an outlined function frame /// for this candidate. unsigned FrameOverhead; /// \brief Represents the specific instructions that must be emitted to /// construct a call to this candidate. unsigned CallConstructionID; /// \brief Represents the specific instructions that must be emitted to /// construct a frame for this candidate's outlined function. unsigned FrameConstructionID; MachineOutlinerInfo() {} MachineOutlinerInfo(unsigned CallOverhead, unsigned FrameOverhead, unsigned CallConstructionID, unsigned FrameConstructionID) : CallOverhead(CallOverhead), FrameOverhead(FrameOverhead), CallConstructionID(CallConstructionID), FrameConstructionID(FrameConstructionID) {} }; /// \brief Returns a \p MachineOutlinerInfo struct containing target-specific /// information for a set of outlining candidates. virtual MachineOutlinerInfo getOutlininingCandidateInfo( std::vector< std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>> &RepeatedSequenceLocs) const { llvm_unreachable( "Target didn't implement TargetInstrInfo::getOutliningOverhead!"); } /// Represents how an instruction should be mapped by the outliner. /// \p Legal instructions are those which are safe to outline. /// \p Illegal instructions are those which cannot be outlined. /// \p Invisible instructions are instructions which can be outlined, but /// shouldn't actually impact the outlining result. enum MachineOutlinerInstrType { Legal, Illegal, Invisible }; /// Returns how or if \p MI should be outlined. virtual MachineOutlinerInstrType getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const { llvm_unreachable( "Target didn't implement TargetInstrInfo::getOutliningType!"); } /// \brief Returns target-defined flags defining properties of the MBB for /// the outliner. virtual unsigned getMachineOutlinerMBBFlags(MachineBasicBlock &MBB) const { return 0x0; } /// Insert a custom epilogue for outlined functions. /// This may be empty, in which case no epilogue or return statement will be /// emitted. virtual void insertOutlinerEpilogue(MachineBasicBlock &MBB, MachineFunction &MF, const MachineOutlinerInfo &MInfo) const { llvm_unreachable( "Target didn't implement TargetInstrInfo::insertOutlinerEpilogue!"); } /// Insert a call to an outlined function into the program. /// Returns an iterator to the spot where we inserted the call. This must be /// implemented by the target. virtual MachineBasicBlock::iterator insertOutlinedCall(Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It, MachineFunction &MF, const MachineOutlinerInfo &MInfo) const { llvm_unreachable( "Target didn't implement TargetInstrInfo::insertOutlinedCall!"); } /// Insert a custom prologue for outlined functions. /// This may be empty, in which case no prologue will be emitted. virtual void insertOutlinerPrologue(MachineBasicBlock &MBB, MachineFunction &MF, const MachineOutlinerInfo &MInfo) const { llvm_unreachable( "Target didn't implement TargetInstrInfo::insertOutlinerPrologue!"); } /// Return true if the function can safely be outlined from. /// A function \p MF is considered safe for outlining if an outlined function /// produced from instructions in F will produce a program which produces the /// same output for any set of given inputs. virtual bool isFunctionSafeToOutlineFrom(MachineFunction &MF, bool OutlineFromLinkOnceODRs) const { llvm_unreachable("Target didn't implement " "TargetInstrInfo::isFunctionSafeToOutlineFrom!"); } private: unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode; unsigned CatchRetOpcode; unsigned ReturnOpcode; }; /// \brief Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair. template <> struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> { using RegInfo = DenseMapInfo<unsigned>; static inline TargetInstrInfo::RegSubRegPair getEmptyKey() { return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(), RegInfo::getEmptyKey()); } static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() { return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(), RegInfo::getTombstoneKey()); } /// \brief Reuse getHashValue implementation from /// std::pair<unsigned, unsigned>. static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) { std::pair<unsigned, unsigned> PairVal = std::make_pair(Val.Reg, Val.SubReg); return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal); } static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS, const TargetInstrInfo::RegSubRegPair &RHS) { return RegInfo::isEqual(LHS.Reg, RHS.Reg) && RegInfo::isEqual(LHS.SubReg, RHS.SubReg); } }; } // end namespace llvm #endif // LLVM_TARGET_TARGETINSTRINFO_H