//===- ConstantRange.h - Represent a range ----------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Represent a range of possible values that may occur when the program is run // for an integral value. This keeps track of a lower and upper bound for the // constant, which MAY wrap around the end of the numeric range. To do this, it // keeps track of a [lower, upper) bound, which specifies an interval just like // STL iterators. When used with boolean values, the following are important // ranges: : // // [F, F) = {} = Empty set // [T, F) = {T} // [F, T) = {F} // [T, T) = {F, T} = Full set // // The other integral ranges use min/max values for special range values. For // example, for 8-bit types, it uses: // [0, 0) = {} = Empty set // [255, 255) = {0..255} = Full Set // // Note that ConstantRange can be used to represent either signed or // unsigned ranges. // //===----------------------------------------------------------------------===// #ifndef LLVM_IR_CONSTANTRANGE_H #define LLVM_IR_CONSTANTRANGE_H #include "llvm/ADT/APInt.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/Support/Compiler.h" #include <cstdint> namespace llvm { class MDNode; class raw_ostream; /// This class represents a range of values. class LLVM_NODISCARD ConstantRange { APInt Lower, Upper; public: /// Initialize a full (the default) or empty set for the specified bit width. explicit ConstantRange(uint32_t BitWidth, bool isFullSet = true); /// Initialize a range to hold the single specified value. ConstantRange(APInt Value); /// @brief Initialize a range of values explicitly. This will assert out if /// Lower==Upper and Lower != Min or Max value for its type. It will also /// assert out if the two APInt's are not the same bit width. ConstantRange(APInt Lower, APInt Upper); /// Produce the smallest range such that all values that may satisfy the given /// predicate with any value contained within Other is contained in the /// returned range. Formally, this returns a superset of /// 'union over all y in Other . { x : icmp op x y is true }'. If the exact /// answer is not representable as a ConstantRange, the return value will be a /// proper superset of the above. /// /// Example: Pred = ult and Other = i8 [2, 5) returns Result = [0, 4) static ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred, const ConstantRange &Other); /// Produce the largest range such that all values in the returned range /// satisfy the given predicate with all values contained within Other. /// Formally, this returns a subset of /// 'intersection over all y in Other . { x : icmp op x y is true }'. If the /// exact answer is not representable as a ConstantRange, the return value /// will be a proper subset of the above. /// /// Example: Pred = ult and Other = i8 [2, 5) returns [0, 2) static ConstantRange makeSatisfyingICmpRegion(CmpInst::Predicate Pred, const ConstantRange &Other); /// Produce the exact range such that all values in the returned range satisfy /// the given predicate with any value contained within Other. Formally, this /// returns the exact answer when the superset of 'union over all y in Other /// is exactly same as the subset of intersection over all y in Other. /// { x : icmp op x y is true}'. /// /// Example: Pred = ult and Other = i8 3 returns [0, 3) static ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other); /// Return the largest range containing all X such that "X BinOpC Y" is /// guaranteed not to wrap (overflow) for all Y in Other. /// /// NB! The returned set does *not* contain **all** possible values of X for /// which "X BinOpC Y" does not wrap -- some viable values of X may be /// missing, so you cannot use this to constrain X's range. E.g. in the /// fourth example, "(-2) + 1" is both nsw and nuw (so the "X" could be -2), /// but (-2) is not in the set returned. /// /// Examples: /// typedef OverflowingBinaryOperator OBO; /// #define MGNR makeGuaranteedNoWrapRegion /// MGNR(Add, [i8 1, 2), OBO::NoSignedWrap) == [-128, 127) /// MGNR(Add, [i8 1, 2), OBO::NoUnsignedWrap) == [0, -1) /// MGNR(Add, [i8 0, 1), OBO::NoUnsignedWrap) == Full Set /// MGNR(Add, [i8 1, 2), OBO::NoUnsignedWrap | OBO::NoSignedWrap) /// == [0,INT_MAX) /// MGNR(Add, [i8 -1, 6), OBO::NoSignedWrap) == [INT_MIN+1, INT_MAX-4) /// MGNR(Sub, [i8 1, 2), OBO::NoSignedWrap) == [-127, 128) /// MGNR(Sub, [i8 1, 2), OBO::NoUnsignedWrap) == [1, 0) /// MGNR(Sub, [i8 1, 2), OBO::NoUnsignedWrap | OBO::NoSignedWrap) /// == [1,INT_MAX) static ConstantRange makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp, const ConstantRange &Other, unsigned NoWrapKind); /// Set up \p Pred and \p RHS such that /// ConstantRange::makeExactICmpRegion(Pred, RHS) == *this. Return true if /// successful. bool getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS) const; /// Return the lower value for this range. const APInt &getLower() const { return Lower; } /// Return the upper value for this range. const APInt &getUpper() const { return Upper; } /// Get the bit width of this ConstantRange. uint32_t getBitWidth() const { return Lower.getBitWidth(); } /// Return true if this set contains all of the elements possible /// for this data-type. bool isFullSet() const; /// Return true if this set contains no members. bool isEmptySet() const; /// Return true if this set wraps around the top of the range. /// For example: [100, 8). bool isWrappedSet() const; /// Return true if this set wraps around the INT_MIN of /// its bitwidth. For example: i8 [120, 140). bool isSignWrappedSet() const; /// Return true if the specified value is in the set. bool contains(const APInt &Val) const; /// Return true if the other range is a subset of this one. bool contains(const ConstantRange &CR) const; /// If this set contains a single element, return it, otherwise return null. const APInt *getSingleElement() const { if (Upper == Lower + 1) return &Lower; return nullptr; } /// If this set contains all but a single element, return it, otherwise return /// null. const APInt *getSingleMissingElement() const { if (Lower == Upper + 1) return &Upper; return nullptr; } /// Return true if this set contains exactly one member. bool isSingleElement() const { return getSingleElement() != nullptr; } /// Return the number of elements in this set. APInt getSetSize() const; /// Compare set size of this range with the range CR. bool isSizeStrictlySmallerThan(const ConstantRange &CR) const; // Compare set size of this range with Value. bool isSizeLargerThan(uint64_t MaxSize) const; /// Return the largest unsigned value contained in the ConstantRange. APInt getUnsignedMax() const; /// Return the smallest unsigned value contained in the ConstantRange. APInt getUnsignedMin() const; /// Return the largest signed value contained in the ConstantRange. APInt getSignedMax() const; /// Return the smallest signed value contained in the ConstantRange. APInt getSignedMin() const; /// Return true if this range is equal to another range. bool operator==(const ConstantRange &CR) const { return Lower == CR.Lower && Upper == CR.Upper; } bool operator!=(const ConstantRange &CR) const { return !operator==(CR); } /// Subtract the specified constant from the endpoints of this constant range. ConstantRange subtract(const APInt &CI) const; /// Subtract the specified range from this range (aka relative complement of /// the sets). ConstantRange difference(const ConstantRange &CR) const; /// Return the range that results from the intersection of /// this range with another range. The resultant range is guaranteed to /// include all elements contained in both input ranges, and to have the /// smallest possible set size that does so. Because there may be two /// intersections with the same set size, A.intersectWith(B) might not /// be equal to B.intersectWith(A). ConstantRange intersectWith(const ConstantRange &CR) const; /// Return the range that results from the union of this range /// with another range. The resultant range is guaranteed to include the /// elements of both sets, but may contain more. For example, [3, 9) union /// [12,15) is [3, 15), which includes 9, 10, and 11, which were not included /// in either set before. ConstantRange unionWith(const ConstantRange &CR) const; /// Return a new range representing the possible values resulting /// from an application of the specified cast operator to this range. \p /// BitWidth is the target bitwidth of the cast. For casts which don't /// change bitwidth, it must be the same as the source bitwidth. For casts /// which do change bitwidth, the bitwidth must be consistent with the /// requested cast and source bitwidth. ConstantRange castOp(Instruction::CastOps CastOp, uint32_t BitWidth) const; /// Return a new range in the specified integer type, which must /// be strictly larger than the current type. The returned range will /// correspond to the possible range of values if the source range had been /// zero extended to BitWidth. ConstantRange zeroExtend(uint32_t BitWidth) const; /// Return a new range in the specified integer type, which must /// be strictly larger than the current type. The returned range will /// correspond to the possible range of values if the source range had been /// sign extended to BitWidth. ConstantRange signExtend(uint32_t BitWidth) const; /// Return a new range in the specified integer type, which must be /// strictly smaller than the current type. The returned range will /// correspond to the possible range of values if the source range had been /// truncated to the specified type. ConstantRange truncate(uint32_t BitWidth) const; /// Make this range have the bit width given by \p BitWidth. The /// value is zero extended, truncated, or left alone to make it that width. ConstantRange zextOrTrunc(uint32_t BitWidth) const; /// Make this range have the bit width given by \p BitWidth. The /// value is sign extended, truncated, or left alone to make it that width. ConstantRange sextOrTrunc(uint32_t BitWidth) const; /// Return a new range representing the possible values resulting /// from an application of the specified binary operator to an left hand side /// of this range and a right hand side of \p Other. ConstantRange binaryOp(Instruction::BinaryOps BinOp, const ConstantRange &Other) const; /// Return a new range representing the possible values resulting /// from an addition of a value in this range and a value in \p Other. ConstantRange add(const ConstantRange &Other) const; /// Return a new range representing the possible values resulting from a /// known NSW addition of a value in this range and \p Other constant. ConstantRange addWithNoSignedWrap(const APInt &Other) const; /// Return a new range representing the possible values resulting /// from a subtraction of a value in this range and a value in \p Other. ConstantRange sub(const ConstantRange &Other) const; /// Return a new range representing the possible values resulting /// from a multiplication of a value in this range and a value in \p Other, /// treating both this and \p Other as unsigned ranges. ConstantRange multiply(const ConstantRange &Other) const; /// Return a new range representing the possible values resulting /// from a signed maximum of a value in this range and a value in \p Other. ConstantRange smax(const ConstantRange &Other) const; /// Return a new range representing the possible values resulting /// from an unsigned maximum of a value in this range and a value in \p Other. ConstantRange umax(const ConstantRange &Other) const; /// Return a new range representing the possible values resulting /// from a signed minimum of a value in this range and a value in \p Other. ConstantRange smin(const ConstantRange &Other) const; /// Return a new range representing the possible values resulting /// from an unsigned minimum of a value in this range and a value in \p Other. ConstantRange umin(const ConstantRange &Other) const; /// Return a new range representing the possible values resulting /// from an unsigned division of a value in this range and a value in /// \p Other. ConstantRange udiv(const ConstantRange &Other) const; /// Return a new range representing the possible values resulting /// from a binary-and of a value in this range by a value in \p Other. ConstantRange binaryAnd(const ConstantRange &Other) const; /// Return a new range representing the possible values resulting /// from a binary-or of a value in this range by a value in \p Other. ConstantRange binaryOr(const ConstantRange &Other) const; /// Return a new range representing the possible values resulting /// from a left shift of a value in this range by a value in \p Other. /// TODO: This isn't fully implemented yet. ConstantRange shl(const ConstantRange &Other) const; /// Return a new range representing the possible values resulting from a /// logical right shift of a value in this range and a value in \p Other. ConstantRange lshr(const ConstantRange &Other) const; /// Return a new range representing the possible values resulting from a /// arithmetic right shift of a value in this range and a value in \p Other. ConstantRange ashr(const ConstantRange &Other) const; /// Return a new range that is the logical not of the current set. ConstantRange inverse() const; /// Print out the bounds to a stream. void print(raw_ostream &OS) const; /// Allow printing from a debugger easily. void dump() const; }; inline raw_ostream &operator<<(raw_ostream &OS, const ConstantRange &CR) { CR.print(OS); return OS; } /// Parse out a conservative ConstantRange from !range metadata. /// /// E.g. if RangeMD is !{i32 0, i32 10, i32 15, i32 20} then return [0, 20). ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD); } // end namespace llvm #endif // LLVM_IR_CONSTANTRANGE_H