//===- ADT/SCCIterator.h - Strongly Connected Comp. Iter. -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// /// This builds on the llvm/ADT/GraphTraits.h file to find the strongly /// connected components (SCCs) of a graph in O(N+E) time using Tarjan's DFS /// algorithm. /// /// The SCC iterator has the important property that if a node in SCC S1 has an /// edge to a node in SCC S2, then it visits S1 *after* S2. /// /// To visit S1 *before* S2, use the scc_iterator on the Inverse graph. (NOTE: /// This requires some simple wrappers and is not supported yet.) /// //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_SCCITERATOR_H #define LLVM_ADT_SCCITERATOR_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/iterator.h" #include <cassert> #include <cstddef> #include <iterator> #include <vector> namespace llvm { /// Enumerate the SCCs of a directed graph in reverse topological order /// of the SCC DAG. /// /// This is implemented using Tarjan's DFS algorithm using an internal stack to /// build up a vector of nodes in a particular SCC. Note that it is a forward /// iterator and thus you cannot backtrack or re-visit nodes. template <class GraphT, class GT = GraphTraits<GraphT>> class scc_iterator : public iterator_facade_base< scc_iterator<GraphT, GT>, std::forward_iterator_tag, const std::vector<typename GT::NodeRef>, ptrdiff_t> { using NodeRef = typename GT::NodeRef; using ChildItTy = typename GT::ChildIteratorType; using SccTy = std::vector<NodeRef>; using reference = typename scc_iterator::reference; /// Element of VisitStack during DFS. struct StackElement { NodeRef Node; ///< The current node pointer. ChildItTy NextChild; ///< The next child, modified inplace during DFS. unsigned MinVisited; ///< Minimum uplink value of all children of Node. StackElement(NodeRef Node, const ChildItTy &Child, unsigned Min) : Node(Node), NextChild(Child), MinVisited(Min) {} bool operator==(const StackElement &Other) const { return Node == Other.Node && NextChild == Other.NextChild && MinVisited == Other.MinVisited; } }; /// The visit counters used to detect when a complete SCC is on the stack. /// visitNum is the global counter. /// /// nodeVisitNumbers are per-node visit numbers, also used as DFS flags. unsigned visitNum; DenseMap<NodeRef, unsigned> nodeVisitNumbers; /// Stack holding nodes of the SCC. std::vector<NodeRef> SCCNodeStack; /// The current SCC, retrieved using operator*(). SccTy CurrentSCC; /// DFS stack, Used to maintain the ordering. The top contains the current /// node, the next child to visit, and the minimum uplink value of all child std::vector<StackElement> VisitStack; /// A single "visit" within the non-recursive DFS traversal. void DFSVisitOne(NodeRef N); /// The stack-based DFS traversal; defined below. void DFSVisitChildren(); /// Compute the next SCC using the DFS traversal. void GetNextSCC(); scc_iterator(NodeRef entryN) : visitNum(0) { DFSVisitOne(entryN); GetNextSCC(); } /// End is when the DFS stack is empty. scc_iterator() = default; public: static scc_iterator begin(const GraphT &G) { return scc_iterator(GT::getEntryNode(G)); } static scc_iterator end(const GraphT &) { return scc_iterator(); } /// Direct loop termination test which is more efficient than /// comparison with \c end(). bool isAtEnd() const { assert(!CurrentSCC.empty() || VisitStack.empty()); return CurrentSCC.empty(); } bool operator==(const scc_iterator &x) const { return VisitStack == x.VisitStack && CurrentSCC == x.CurrentSCC; } scc_iterator &operator++() { GetNextSCC(); return *this; } reference operator*() const { assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!"); return CurrentSCC; } /// Test if the current SCC has a loop. /// /// If the SCC has more than one node, this is trivially true. If not, it may /// still contain a loop if the node has an edge back to itself. bool hasLoop() const; /// This informs the \c scc_iterator that the specified \c Old node /// has been deleted, and \c New is to be used in its place. void ReplaceNode(NodeRef Old, NodeRef New) { assert(nodeVisitNumbers.count(Old) && "Old not in scc_iterator?"); nodeVisitNumbers[New] = nodeVisitNumbers[Old]; nodeVisitNumbers.erase(Old); } }; template <class GraphT, class GT> void scc_iterator<GraphT, GT>::DFSVisitOne(NodeRef N) { ++visitNum; nodeVisitNumbers[N] = visitNum; SCCNodeStack.push_back(N); VisitStack.push_back(StackElement(N, GT::child_begin(N), visitNum)); #if 0 // Enable if needed when debugging. dbgs() << "TarjanSCC: Node " << N << " : visitNum = " << visitNum << "\n"; #endif } template <class GraphT, class GT> void scc_iterator<GraphT, GT>::DFSVisitChildren() { assert(!VisitStack.empty()); while (VisitStack.back().NextChild != GT::child_end(VisitStack.back().Node)) { // TOS has at least one more child so continue DFS NodeRef childN = *VisitStack.back().NextChild++; typename DenseMap<NodeRef, unsigned>::iterator Visited = nodeVisitNumbers.find(childN); if (Visited == nodeVisitNumbers.end()) { // this node has never been seen. DFSVisitOne(childN); continue; } unsigned childNum = Visited->second; if (VisitStack.back().MinVisited > childNum) VisitStack.back().MinVisited = childNum; } } template <class GraphT, class GT> void scc_iterator<GraphT, GT>::GetNextSCC() { CurrentSCC.clear(); // Prepare to compute the next SCC while (!VisitStack.empty()) { DFSVisitChildren(); // Pop the leaf on top of the VisitStack. NodeRef visitingN = VisitStack.back().Node; unsigned minVisitNum = VisitStack.back().MinVisited; assert(VisitStack.back().NextChild == GT::child_end(visitingN)); VisitStack.pop_back(); // Propagate MinVisitNum to parent so we can detect the SCC starting node. if (!VisitStack.empty() && VisitStack.back().MinVisited > minVisitNum) VisitStack.back().MinVisited = minVisitNum; #if 0 // Enable if needed when debugging. dbgs() << "TarjanSCC: Popped node " << visitingN << " : minVisitNum = " << minVisitNum << "; Node visit num = " << nodeVisitNumbers[visitingN] << "\n"; #endif if (minVisitNum != nodeVisitNumbers[visitingN]) continue; // A full SCC is on the SCCNodeStack! It includes all nodes below // visitingN on the stack. Copy those nodes to CurrentSCC, // reset their minVisit values, and return (this suspends // the DFS traversal till the next ++). do { CurrentSCC.push_back(SCCNodeStack.back()); SCCNodeStack.pop_back(); nodeVisitNumbers[CurrentSCC.back()] = ~0U; } while (CurrentSCC.back() != visitingN); return; } } template <class GraphT, class GT> bool scc_iterator<GraphT, GT>::hasLoop() const { assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!"); if (CurrentSCC.size() > 1) return true; NodeRef N = CurrentSCC.front(); for (ChildItTy CI = GT::child_begin(N), CE = GT::child_end(N); CI != CE; ++CI) if (*CI == N) return true; return false; } /// Construct the begin iterator for a deduced graph type T. template <class T> scc_iterator<T> scc_begin(const T &G) { return scc_iterator<T>::begin(G); } /// Construct the end iterator for a deduced graph type T. template <class T> scc_iterator<T> scc_end(const T &G) { return scc_iterator<T>::end(G); } } // end namespace llvm #endif // LLVM_ADT_SCCITERATOR_H