//===- llvm/CodeGen/LiveInterval.h - Interval representation ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LiveRange and LiveInterval classes. Given some // numbering of each the machine instructions an interval [i, j) is said to be a // live range for register v if there is no instruction with number j' >= j // such that v is live at j' and there is no instruction with number i' < i such // that v is live at i'. In this implementation ranges can have holes, // i.e. a range might look like [1,20), [50,65), [1000,1001). Each // individual segment is represented as an instance of LiveRange::Segment, // and the whole range is represented as an instance of LiveRange. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_LIVEINTERVAL_H #define LLVM_CODEGEN_LIVEINTERVAL_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/IntEqClasses.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/iterator_range.h" #include "llvm/CodeGen/SlotIndexes.h" #include "llvm/MC/LaneBitmask.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/MathExtras.h" #include <algorithm> #include <cassert> #include <cstddef> #include <functional> #include <memory> #include <set> #include <tuple> #include <utility> namespace llvm { class CoalescerPair; class LiveIntervals; class MachineRegisterInfo; class raw_ostream; /// VNInfo - Value Number Information. /// This class holds information about a machine level values, including /// definition and use points. /// class VNInfo { public: using Allocator = BumpPtrAllocator; /// The ID number of this value. unsigned id; /// The index of the defining instruction. SlotIndex def; /// VNInfo constructor. VNInfo(unsigned i, SlotIndex d) : id(i), def(d) {} /// VNInfo constructor, copies values from orig, except for the value number. VNInfo(unsigned i, const VNInfo &orig) : id(i), def(orig.def) {} /// Copy from the parameter into this VNInfo. void copyFrom(VNInfo &src) { def = src.def; } /// Returns true if this value is defined by a PHI instruction (or was, /// PHI instructions may have been eliminated). /// PHI-defs begin at a block boundary, all other defs begin at register or /// EC slots. bool isPHIDef() const { return def.isBlock(); } /// Returns true if this value is unused. bool isUnused() const { return !def.isValid(); } /// Mark this value as unused. void markUnused() { def = SlotIndex(); } }; /// Result of a LiveRange query. This class hides the implementation details /// of live ranges, and it should be used as the primary interface for /// examining live ranges around instructions. class LiveQueryResult { VNInfo *const EarlyVal; VNInfo *const LateVal; const SlotIndex EndPoint; const bool Kill; public: LiveQueryResult(VNInfo *EarlyVal, VNInfo *LateVal, SlotIndex EndPoint, bool Kill) : EarlyVal(EarlyVal), LateVal(LateVal), EndPoint(EndPoint), Kill(Kill) {} /// Return the value that is live-in to the instruction. This is the value /// that will be read by the instruction's use operands. Return NULL if no /// value is live-in. VNInfo *valueIn() const { return EarlyVal; } /// Return true if the live-in value is killed by this instruction. This /// means that either the live range ends at the instruction, or it changes /// value. bool isKill() const { return Kill; } /// Return true if this instruction has a dead def. bool isDeadDef() const { return EndPoint.isDead(); } /// Return the value leaving the instruction, if any. This can be a /// live-through value, or a live def. A dead def returns NULL. VNInfo *valueOut() const { return isDeadDef() ? nullptr : LateVal; } /// Returns the value alive at the end of the instruction, if any. This can /// be a live-through value, a live def or a dead def. VNInfo *valueOutOrDead() const { return LateVal; } /// Return the value defined by this instruction, if any. This includes /// dead defs, it is the value created by the instruction's def operands. VNInfo *valueDefined() const { return EarlyVal == LateVal ? nullptr : LateVal; } /// Return the end point of the last live range segment to interact with /// the instruction, if any. /// /// The end point is an invalid SlotIndex only if the live range doesn't /// intersect the instruction at all. /// /// The end point may be at or past the end of the instruction's basic /// block. That means the value was live out of the block. SlotIndex endPoint() const { return EndPoint; } }; /// This class represents the liveness of a register, stack slot, etc. /// It manages an ordered list of Segment objects. /// The Segments are organized in a static single assignment form: At places /// where a new value is defined or different values reach a CFG join a new /// segment with a new value number is used. class LiveRange { public: /// This represents a simple continuous liveness interval for a value. /// The start point is inclusive, the end point exclusive. These intervals /// are rendered as [start,end). struct Segment { SlotIndex start; // Start point of the interval (inclusive) SlotIndex end; // End point of the interval (exclusive) VNInfo *valno = nullptr; // identifier for the value contained in this // segment. Segment() = default; Segment(SlotIndex S, SlotIndex E, VNInfo *V) : start(S), end(E), valno(V) { assert(S < E && "Cannot create empty or backwards segment"); } /// Return true if the index is covered by this segment. bool contains(SlotIndex I) const { return start <= I && I < end; } /// Return true if the given interval, [S, E), is covered by this segment. bool containsInterval(SlotIndex S, SlotIndex E) const { assert((S < E) && "Backwards interval?"); return (start <= S && S < end) && (start < E && E <= end); } bool operator<(const Segment &Other) const { return std::tie(start, end) < std::tie(Other.start, Other.end); } bool operator==(const Segment &Other) const { return start == Other.start && end == Other.end; } void dump() const; }; using Segments = SmallVector<Segment, 2>; using VNInfoList = SmallVector<VNInfo *, 2>; Segments segments; // the liveness segments VNInfoList valnos; // value#'s // The segment set is used temporarily to accelerate initial computation // of live ranges of physical registers in computeRegUnitRange. // After that the set is flushed to the segment vector and deleted. using SegmentSet = std::set<Segment>; std::unique_ptr<SegmentSet> segmentSet; using iterator = Segments::iterator; using const_iterator = Segments::const_iterator; iterator begin() { return segments.begin(); } iterator end() { return segments.end(); } const_iterator begin() const { return segments.begin(); } const_iterator end() const { return segments.end(); } using vni_iterator = VNInfoList::iterator; using const_vni_iterator = VNInfoList::const_iterator; vni_iterator vni_begin() { return valnos.begin(); } vni_iterator vni_end() { return valnos.end(); } const_vni_iterator vni_begin() const { return valnos.begin(); } const_vni_iterator vni_end() const { return valnos.end(); } /// Constructs a new LiveRange object. LiveRange(bool UseSegmentSet = false) : segmentSet(UseSegmentSet ? llvm::make_unique<SegmentSet>() : nullptr) {} /// Constructs a new LiveRange object by copying segments and valnos from /// another LiveRange. LiveRange(const LiveRange &Other, BumpPtrAllocator &Allocator) { assert(Other.segmentSet == nullptr && "Copying of LiveRanges with active SegmentSets is not supported"); assign(Other, Allocator); } /// Copies values numbers and live segments from \p Other into this range. void assign(const LiveRange &Other, BumpPtrAllocator &Allocator) { if (this == &Other) return; assert(Other.segmentSet == nullptr && "Copying of LiveRanges with active SegmentSets is not supported"); // Duplicate valnos. for (const VNInfo *VNI : Other.valnos) createValueCopy(VNI, Allocator); // Now we can copy segments and remap their valnos. for (const Segment &S : Other.segments) segments.push_back(Segment(S.start, S.end, valnos[S.valno->id])); } /// advanceTo - Advance the specified iterator to point to the Segment /// containing the specified position, or end() if the position is past the /// end of the range. If no Segment contains this position, but the /// position is in a hole, this method returns an iterator pointing to the /// Segment immediately after the hole. iterator advanceTo(iterator I, SlotIndex Pos) { assert(I != end()); if (Pos >= endIndex()) return end(); while (I->end <= Pos) ++I; return I; } const_iterator advanceTo(const_iterator I, SlotIndex Pos) const { assert(I != end()); if (Pos >= endIndex()) return end(); while (I->end <= Pos) ++I; return I; } /// find - Return an iterator pointing to the first segment that ends after /// Pos, or end(). This is the same as advanceTo(begin(), Pos), but faster /// when searching large ranges. /// /// If Pos is contained in a Segment, that segment is returned. /// If Pos is in a hole, the following Segment is returned. /// If Pos is beyond endIndex, end() is returned. iterator find(SlotIndex Pos); const_iterator find(SlotIndex Pos) const { return const_cast<LiveRange*>(this)->find(Pos); } void clear() { valnos.clear(); segments.clear(); } size_t size() const { return segments.size(); } bool hasAtLeastOneValue() const { return !valnos.empty(); } bool containsOneValue() const { return valnos.size() == 1; } unsigned getNumValNums() const { return (unsigned)valnos.size(); } /// getValNumInfo - Returns pointer to the specified val#. /// inline VNInfo *getValNumInfo(unsigned ValNo) { return valnos[ValNo]; } inline const VNInfo *getValNumInfo(unsigned ValNo) const { return valnos[ValNo]; } /// containsValue - Returns true if VNI belongs to this range. bool containsValue(const VNInfo *VNI) const { return VNI && VNI->id < getNumValNums() && VNI == getValNumInfo(VNI->id); } /// getNextValue - Create a new value number and return it. MIIdx specifies /// the instruction that defines the value number. VNInfo *getNextValue(SlotIndex def, VNInfo::Allocator &VNInfoAllocator) { VNInfo *VNI = new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), def); valnos.push_back(VNI); return VNI; } /// createDeadDef - Make sure the range has a value defined at Def. /// If one already exists, return it. Otherwise allocate a new value and /// add liveness for a dead def. VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc); /// Create a def of value @p VNI. Return @p VNI. If there already exists /// a definition at VNI->def, the value defined there must be @p VNI. VNInfo *createDeadDef(VNInfo *VNI); /// Create a copy of the given value. The new value will be identical except /// for the Value number. VNInfo *createValueCopy(const VNInfo *orig, VNInfo::Allocator &VNInfoAllocator) { VNInfo *VNI = new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), *orig); valnos.push_back(VNI); return VNI; } /// RenumberValues - Renumber all values in order of appearance and remove /// unused values. void RenumberValues(); /// MergeValueNumberInto - This method is called when two value numbers /// are found to be equivalent. This eliminates V1, replacing all /// segments with the V1 value number with the V2 value number. This can /// cause merging of V1/V2 values numbers and compaction of the value space. VNInfo* MergeValueNumberInto(VNInfo *V1, VNInfo *V2); /// Merge all of the live segments of a specific val# in RHS into this live /// range as the specified value number. The segments in RHS are allowed /// to overlap with segments in the current range, it will replace the /// value numbers of the overlaped live segments with the specified value /// number. void MergeSegmentsInAsValue(const LiveRange &RHS, VNInfo *LHSValNo); /// MergeValueInAsValue - Merge all of the segments of a specific val# /// in RHS into this live range as the specified value number. /// The segments in RHS are allowed to overlap with segments in the /// current range, but only if the overlapping segments have the /// specified value number. void MergeValueInAsValue(const LiveRange &RHS, const VNInfo *RHSValNo, VNInfo *LHSValNo); bool empty() const { return segments.empty(); } /// beginIndex - Return the lowest numbered slot covered. SlotIndex beginIndex() const { assert(!empty() && "Call to beginIndex() on empty range."); return segments.front().start; } /// endNumber - return the maximum point of the range of the whole, /// exclusive. SlotIndex endIndex() const { assert(!empty() && "Call to endIndex() on empty range."); return segments.back().end; } bool expiredAt(SlotIndex index) const { return index >= endIndex(); } bool liveAt(SlotIndex index) const { const_iterator r = find(index); return r != end() && r->start <= index; } /// Return the segment that contains the specified index, or null if there /// is none. const Segment *getSegmentContaining(SlotIndex Idx) const { const_iterator I = FindSegmentContaining(Idx); return I == end() ? nullptr : &*I; } /// Return the live segment that contains the specified index, or null if /// there is none. Segment *getSegmentContaining(SlotIndex Idx) { iterator I = FindSegmentContaining(Idx); return I == end() ? nullptr : &*I; } /// getVNInfoAt - Return the VNInfo that is live at Idx, or NULL. VNInfo *getVNInfoAt(SlotIndex Idx) const { const_iterator I = FindSegmentContaining(Idx); return I == end() ? nullptr : I->valno; } /// getVNInfoBefore - Return the VNInfo that is live up to but not /// necessarilly including Idx, or NULL. Use this to find the reaching def /// used by an instruction at this SlotIndex position. VNInfo *getVNInfoBefore(SlotIndex Idx) const { const_iterator I = FindSegmentContaining(Idx.getPrevSlot()); return I == end() ? nullptr : I->valno; } /// Return an iterator to the segment that contains the specified index, or /// end() if there is none. iterator FindSegmentContaining(SlotIndex Idx) { iterator I = find(Idx); return I != end() && I->start <= Idx ? I : end(); } const_iterator FindSegmentContaining(SlotIndex Idx) const { const_iterator I = find(Idx); return I != end() && I->start <= Idx ? I : end(); } /// overlaps - Return true if the intersection of the two live ranges is /// not empty. bool overlaps(const LiveRange &other) const { if (other.empty()) return false; return overlapsFrom(other, other.begin()); } /// overlaps - Return true if the two ranges have overlapping segments /// that are not coalescable according to CP. /// /// Overlapping segments where one range is defined by a coalescable /// copy are allowed. bool overlaps(const LiveRange &Other, const CoalescerPair &CP, const SlotIndexes&) const; /// overlaps - Return true if the live range overlaps an interval specified /// by [Start, End). bool overlaps(SlotIndex Start, SlotIndex End) const; /// overlapsFrom - Return true if the intersection of the two live ranges /// is not empty. The specified iterator is a hint that we can begin /// scanning the Other range starting at I. bool overlapsFrom(const LiveRange &Other, const_iterator StartPos) const; /// Returns true if all segments of the @p Other live range are completely /// covered by this live range. /// Adjacent live ranges do not affect the covering:the liverange /// [1,5](5,10] covers (3,7]. bool covers(const LiveRange &Other) const; /// Add the specified Segment to this range, merging segments as /// appropriate. This returns an iterator to the inserted segment (which /// may have grown since it was inserted). iterator addSegment(Segment S); /// Attempt to extend a value defined after @p StartIdx to include @p Use. /// Both @p StartIdx and @p Use should be in the same basic block. In case /// of subranges, an extension could be prevented by an explicit "undef" /// caused by a <def,read-undef> on a non-overlapping lane. The list of /// location of such "undefs" should be provided in @p Undefs. /// The return value is a pair: the first element is VNInfo of the value /// that was extended (possibly nullptr), the second is a boolean value /// indicating whether an "undef" was encountered. /// If this range is live before @p Use in the basic block that starts at /// @p StartIdx, and there is no intervening "undef", extend it to be live /// up to @p Use, and return the pair {value, false}. If there is no /// segment before @p Use and there is no "undef" between @p StartIdx and /// @p Use, return {nullptr, false}. If there is an "undef" before @p Use, /// return {nullptr, true}. std::pair<VNInfo*,bool> extendInBlock(ArrayRef<SlotIndex> Undefs, SlotIndex StartIdx, SlotIndex Kill); /// Simplified version of the above "extendInBlock", which assumes that /// no register lanes are undefined by <def,read-undef> operands. /// If this range is live before @p Use in the basic block that starts /// at @p StartIdx, extend it to be live up to @p Use, and return the /// value. If there is no segment before @p Use, return nullptr. VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Kill); /// join - Join two live ranges (this, and other) together. This applies /// mappings to the value numbers in the LHS/RHS ranges as specified. If /// the ranges are not joinable, this aborts. void join(LiveRange &Other, const int *ValNoAssignments, const int *RHSValNoAssignments, SmallVectorImpl<VNInfo *> &NewVNInfo); /// True iff this segment is a single segment that lies between the /// specified boundaries, exclusively. Vregs live across a backedge are not /// considered local. The boundaries are expected to lie within an extended /// basic block, so vregs that are not live out should contain no holes. bool isLocal(SlotIndex Start, SlotIndex End) const { return beginIndex() > Start.getBaseIndex() && endIndex() < End.getBoundaryIndex(); } /// Remove the specified segment from this range. Note that the segment /// must be a single Segment in its entirety. void removeSegment(SlotIndex Start, SlotIndex End, bool RemoveDeadValNo = false); void removeSegment(Segment S, bool RemoveDeadValNo = false) { removeSegment(S.start, S.end, RemoveDeadValNo); } /// Remove segment pointed to by iterator @p I from this range. This does /// not remove dead value numbers. iterator removeSegment(iterator I) { return segments.erase(I); } /// Query Liveness at Idx. /// The sub-instruction slot of Idx doesn't matter, only the instruction /// it refers to is considered. LiveQueryResult Query(SlotIndex Idx) const { // Find the segment that enters the instruction. const_iterator I = find(Idx.getBaseIndex()); const_iterator E = end(); if (I == E) return LiveQueryResult(nullptr, nullptr, SlotIndex(), false); // Is this an instruction live-in segment? // If Idx is the start index of a basic block, include live-in segments // that start at Idx.getBaseIndex(). VNInfo *EarlyVal = nullptr; VNInfo *LateVal = nullptr; SlotIndex EndPoint; bool Kill = false; if (I->start <= Idx.getBaseIndex()) { EarlyVal = I->valno; EndPoint = I->end; // Move to the potentially live-out segment. if (SlotIndex::isSameInstr(Idx, I->end)) { Kill = true; if (++I == E) return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill); } // Special case: A PHIDef value can have its def in the middle of a // segment if the value happens to be live out of the layout // predecessor. // Such a value is not live-in. if (EarlyVal->def == Idx.getBaseIndex()) EarlyVal = nullptr; } // I now points to the segment that may be live-through, or defined by // this instr. Ignore segments starting after the current instr. if (!SlotIndex::isEarlierInstr(Idx, I->start)) { LateVal = I->valno; EndPoint = I->end; } return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill); } /// removeValNo - Remove all the segments defined by the specified value#. /// Also remove the value# from value# list. void removeValNo(VNInfo *ValNo); /// Returns true if the live range is zero length, i.e. no live segments /// span instructions. It doesn't pay to spill such a range. bool isZeroLength(SlotIndexes *Indexes) const { for (const Segment &S : segments) if (Indexes->getNextNonNullIndex(S.start).getBaseIndex() < S.end.getBaseIndex()) return false; return true; } // Returns true if any segment in the live range contains any of the // provided slot indexes. Slots which occur in holes between // segments will not cause the function to return true. bool isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const; bool operator<(const LiveRange& other) const { const SlotIndex &thisIndex = beginIndex(); const SlotIndex &otherIndex = other.beginIndex(); return thisIndex < otherIndex; } /// Returns true if there is an explicit "undef" between @p Begin /// @p End. bool isUndefIn(ArrayRef<SlotIndex> Undefs, SlotIndex Begin, SlotIndex End) const { return std::any_of(Undefs.begin(), Undefs.end(), [Begin,End] (SlotIndex Idx) -> bool { return Begin <= Idx && Idx < End; }); } /// Flush segment set into the regular segment vector. /// The method is to be called after the live range /// has been created, if use of the segment set was /// activated in the constructor of the live range. void flushSegmentSet(); void print(raw_ostream &OS) const; void dump() const; /// Walk the range and assert if any invariants fail to hold. /// /// Note that this is a no-op when asserts are disabled. #ifdef NDEBUG void verify() const {} #else void verify() const; #endif protected: /// Append a segment to the list of segments. void append(const LiveRange::Segment S); private: friend class LiveRangeUpdater; void addSegmentToSet(Segment S); void markValNoForDeletion(VNInfo *V); }; inline raw_ostream &operator<<(raw_ostream &OS, const LiveRange &LR) { LR.print(OS); return OS; } /// LiveInterval - This class represents the liveness of a register, /// or stack slot. class LiveInterval : public LiveRange { public: using super = LiveRange; /// A live range for subregisters. The LaneMask specifies which parts of the /// super register are covered by the interval. /// (@sa TargetRegisterInfo::getSubRegIndexLaneMask()). class SubRange : public LiveRange { public: SubRange *Next = nullptr; LaneBitmask LaneMask; /// Constructs a new SubRange object. SubRange(LaneBitmask LaneMask) : LaneMask(LaneMask) {} /// Constructs a new SubRange object by copying liveness from @p Other. SubRange(LaneBitmask LaneMask, const LiveRange &Other, BumpPtrAllocator &Allocator) : LiveRange(Other, Allocator), LaneMask(LaneMask) {} void print(raw_ostream &OS) const; void dump() const; }; private: SubRange *SubRanges = nullptr; ///< Single linked list of subregister live /// ranges. public: const unsigned reg; // the register or stack slot of this interval. float weight; // weight of this interval LiveInterval(unsigned Reg, float Weight) : reg(Reg), weight(Weight) {} ~LiveInterval() { clearSubRanges(); } template<typename T> class SingleLinkedListIterator { T *P; public: SingleLinkedListIterator<T>(T *P) : P(P) {} SingleLinkedListIterator<T> &operator++() { P = P->Next; return *this; } SingleLinkedListIterator<T> operator++(int) { SingleLinkedListIterator res = *this; ++*this; return res; } bool operator!=(const SingleLinkedListIterator<T> &Other) { return P != Other.operator->(); } bool operator==(const SingleLinkedListIterator<T> &Other) { return P == Other.operator->(); } T &operator*() const { return *P; } T *operator->() const { return P; } }; using subrange_iterator = SingleLinkedListIterator<SubRange>; using const_subrange_iterator = SingleLinkedListIterator<const SubRange>; subrange_iterator subrange_begin() { return subrange_iterator(SubRanges); } subrange_iterator subrange_end() { return subrange_iterator(nullptr); } const_subrange_iterator subrange_begin() const { return const_subrange_iterator(SubRanges); } const_subrange_iterator subrange_end() const { return const_subrange_iterator(nullptr); } iterator_range<subrange_iterator> subranges() { return make_range(subrange_begin(), subrange_end()); } iterator_range<const_subrange_iterator> subranges() const { return make_range(subrange_begin(), subrange_end()); } /// Creates a new empty subregister live range. The range is added at the /// beginning of the subrange list; subrange iterators stay valid. SubRange *createSubRange(BumpPtrAllocator &Allocator, LaneBitmask LaneMask) { SubRange *Range = new (Allocator) SubRange(LaneMask); appendSubRange(Range); return Range; } /// Like createSubRange() but the new range is filled with a copy of the /// liveness information in @p CopyFrom. SubRange *createSubRangeFrom(BumpPtrAllocator &Allocator, LaneBitmask LaneMask, const LiveRange &CopyFrom) { SubRange *Range = new (Allocator) SubRange(LaneMask, CopyFrom, Allocator); appendSubRange(Range); return Range; } /// Returns true if subregister liveness information is available. bool hasSubRanges() const { return SubRanges != nullptr; } /// Removes all subregister liveness information. void clearSubRanges(); /// Removes all subranges without any segments (subranges without segments /// are not considered valid and should only exist temporarily). void removeEmptySubRanges(); /// getSize - Returns the sum of sizes of all the LiveRange's. /// unsigned getSize() const; /// isSpillable - Can this interval be spilled? bool isSpillable() const { return weight != huge_valf; } /// markNotSpillable - Mark interval as not spillable void markNotSpillable() { weight = huge_valf; } /// For a given lane mask @p LaneMask, compute indexes at which the /// lane is marked undefined by subregister <def,read-undef> definitions. void computeSubRangeUndefs(SmallVectorImpl<SlotIndex> &Undefs, LaneBitmask LaneMask, const MachineRegisterInfo &MRI, const SlotIndexes &Indexes) const; /// Refines the subranges to support \p LaneMask. This may only be called /// for LI.hasSubrange()==true. Subregister ranges are split or created /// until \p LaneMask can be matched exactly. \p Mod is executed on the /// matching subranges. /// /// Example: /// Given an interval with subranges with lanemasks L0F00, L00F0 and /// L000F, refining for mask L0018. Will split the L00F0 lane into /// L00E0 and L0010 and the L000F lane into L0007 and L0008. The Mod /// function will be applied to the L0010 and L0008 subranges. void refineSubRanges(BumpPtrAllocator &Allocator, LaneBitmask LaneMask, std::function<void(LiveInterval::SubRange&)> Apply); bool operator<(const LiveInterval& other) const { const SlotIndex &thisIndex = beginIndex(); const SlotIndex &otherIndex = other.beginIndex(); return std::tie(thisIndex, reg) < std::tie(otherIndex, other.reg); } void print(raw_ostream &OS) const; void dump() const; /// Walks the interval and assert if any invariants fail to hold. /// /// Note that this is a no-op when asserts are disabled. #ifdef NDEBUG void verify(const MachineRegisterInfo *MRI = nullptr) const {} #else void verify(const MachineRegisterInfo *MRI = nullptr) const; #endif private: /// Appends @p Range to SubRanges list. void appendSubRange(SubRange *Range) { Range->Next = SubRanges; SubRanges = Range; } /// Free memory held by SubRange. void freeSubRange(SubRange *S); }; inline raw_ostream &operator<<(raw_ostream &OS, const LiveInterval::SubRange &SR) { SR.print(OS); return OS; } inline raw_ostream &operator<<(raw_ostream &OS, const LiveInterval &LI) { LI.print(OS); return OS; } raw_ostream &operator<<(raw_ostream &OS, const LiveRange::Segment &S); inline bool operator<(SlotIndex V, const LiveRange::Segment &S) { return V < S.start; } inline bool operator<(const LiveRange::Segment &S, SlotIndex V) { return S.start < V; } /// Helper class for performant LiveRange bulk updates. /// /// Calling LiveRange::addSegment() repeatedly can be expensive on large /// live ranges because segments after the insertion point may need to be /// shifted. The LiveRangeUpdater class can defer the shifting when adding /// many segments in order. /// /// The LiveRange will be in an invalid state until flush() is called. class LiveRangeUpdater { LiveRange *LR; SlotIndex LastStart; LiveRange::iterator WriteI; LiveRange::iterator ReadI; SmallVector<LiveRange::Segment, 16> Spills; void mergeSpills(); public: /// Create a LiveRangeUpdater for adding segments to LR. /// LR will temporarily be in an invalid state until flush() is called. LiveRangeUpdater(LiveRange *lr = nullptr) : LR(lr) {} ~LiveRangeUpdater() { flush(); } /// Add a segment to LR and coalesce when possible, just like /// LR.addSegment(). Segments should be added in increasing start order for /// best performance. void add(LiveRange::Segment); void add(SlotIndex Start, SlotIndex End, VNInfo *VNI) { add(LiveRange::Segment(Start, End, VNI)); } /// Return true if the LR is currently in an invalid state, and flush() /// needs to be called. bool isDirty() const { return LastStart.isValid(); } /// Flush the updater state to LR so it is valid and contains all added /// segments. void flush(); /// Select a different destination live range. void setDest(LiveRange *lr) { if (LR != lr && isDirty()) flush(); LR = lr; } /// Get the current destination live range. LiveRange *getDest() const { return LR; } void dump() const; void print(raw_ostream&) const; }; inline raw_ostream &operator<<(raw_ostream &OS, const LiveRangeUpdater &X) { X.print(OS); return OS; } /// ConnectedVNInfoEqClasses - Helper class that can divide VNInfos in a /// LiveInterval into equivalence clases of connected components. A /// LiveInterval that has multiple connected components can be broken into /// multiple LiveIntervals. /// /// Given a LiveInterval that may have multiple connected components, run: /// /// unsigned numComps = ConEQ.Classify(LI); /// if (numComps > 1) { /// // allocate numComps-1 new LiveIntervals into LIS[1..] /// ConEQ.Distribute(LIS); /// } class ConnectedVNInfoEqClasses { LiveIntervals &LIS; IntEqClasses EqClass; public: explicit ConnectedVNInfoEqClasses(LiveIntervals &lis) : LIS(lis) {} /// Classify the values in \p LR into connected components. /// Returns the number of connected components. unsigned Classify(const LiveRange &LR); /// getEqClass - Classify creates equivalence classes numbered 0..N. Return /// the equivalence class assigned the VNI. unsigned getEqClass(const VNInfo *VNI) const { return EqClass[VNI->id]; } /// Distribute values in \p LI into a separate LiveIntervals /// for each connected component. LIV must have an empty LiveInterval for /// each additional connected component. The first connected component is /// left in \p LI. void Distribute(LiveInterval &LI, LiveInterval *LIV[], MachineRegisterInfo &MRI); }; } // end namespace llvm #endif // LLVM_CODEGEN_LIVEINTERVAL_H