//===- Graph.h - PBQP Graph -------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // PBQP Graph class. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_PBQP_GRAPH_H #define LLVM_CODEGEN_PBQP_GRAPH_H #include "llvm/ADT/STLExtras.h" #include <algorithm> #include <cassert> #include <iterator> #include <limits> #include <vector> namespace llvm { namespace PBQP { class GraphBase { public: using NodeId = unsigned; using EdgeId = unsigned; /// Returns a value representing an invalid (non-existent) node. static NodeId invalidNodeId() { return std::numeric_limits<NodeId>::max(); } /// Returns a value representing an invalid (non-existent) edge. static EdgeId invalidEdgeId() { return std::numeric_limits<EdgeId>::max(); } }; /// PBQP Graph class. /// Instances of this class describe PBQP problems. /// template <typename SolverT> class Graph : public GraphBase { private: using CostAllocator = typename SolverT::CostAllocator; public: using RawVector = typename SolverT::RawVector; using RawMatrix = typename SolverT::RawMatrix; using Vector = typename SolverT::Vector; using Matrix = typename SolverT::Matrix; using VectorPtr = typename CostAllocator::VectorPtr; using MatrixPtr = typename CostAllocator::MatrixPtr; using NodeMetadata = typename SolverT::NodeMetadata; using EdgeMetadata = typename SolverT::EdgeMetadata; using GraphMetadata = typename SolverT::GraphMetadata; private: class NodeEntry { public: using AdjEdgeList = std::vector<EdgeId>; using AdjEdgeIdx = AdjEdgeList::size_type; using AdjEdgeItr = AdjEdgeList::const_iterator; NodeEntry(VectorPtr Costs) : Costs(std::move(Costs)) {} static AdjEdgeIdx getInvalidAdjEdgeIdx() { return std::numeric_limits<AdjEdgeIdx>::max(); } AdjEdgeIdx addAdjEdgeId(EdgeId EId) { AdjEdgeIdx Idx = AdjEdgeIds.size(); AdjEdgeIds.push_back(EId); return Idx; } void removeAdjEdgeId(Graph &G, NodeId ThisNId, AdjEdgeIdx Idx) { // Swap-and-pop for fast removal. // 1) Update the adj index of the edge currently at back(). // 2) Move last Edge down to Idx. // 3) pop_back() // If Idx == size() - 1 then the setAdjEdgeIdx and swap are // redundant, but both operations are cheap. G.getEdge(AdjEdgeIds.back()).setAdjEdgeIdx(ThisNId, Idx); AdjEdgeIds[Idx] = AdjEdgeIds.back(); AdjEdgeIds.pop_back(); } const AdjEdgeList& getAdjEdgeIds() const { return AdjEdgeIds; } VectorPtr Costs; NodeMetadata Metadata; private: AdjEdgeList AdjEdgeIds; }; class EdgeEntry { public: EdgeEntry(NodeId N1Id, NodeId N2Id, MatrixPtr Costs) : Costs(std::move(Costs)) { NIds[0] = N1Id; NIds[1] = N2Id; ThisEdgeAdjIdxs[0] = NodeEntry::getInvalidAdjEdgeIdx(); ThisEdgeAdjIdxs[1] = NodeEntry::getInvalidAdjEdgeIdx(); } void connectToN(Graph &G, EdgeId ThisEdgeId, unsigned NIdx) { assert(ThisEdgeAdjIdxs[NIdx] == NodeEntry::getInvalidAdjEdgeIdx() && "Edge already connected to NIds[NIdx]."); NodeEntry &N = G.getNode(NIds[NIdx]); ThisEdgeAdjIdxs[NIdx] = N.addAdjEdgeId(ThisEdgeId); } void connect(Graph &G, EdgeId ThisEdgeId) { connectToN(G, ThisEdgeId, 0); connectToN(G, ThisEdgeId, 1); } void setAdjEdgeIdx(NodeId NId, typename NodeEntry::AdjEdgeIdx NewIdx) { if (NId == NIds[0]) ThisEdgeAdjIdxs[0] = NewIdx; else { assert(NId == NIds[1] && "Edge not connected to NId"); ThisEdgeAdjIdxs[1] = NewIdx; } } void disconnectFromN(Graph &G, unsigned NIdx) { assert(ThisEdgeAdjIdxs[NIdx] != NodeEntry::getInvalidAdjEdgeIdx() && "Edge not connected to NIds[NIdx]."); NodeEntry &N = G.getNode(NIds[NIdx]); N.removeAdjEdgeId(G, NIds[NIdx], ThisEdgeAdjIdxs[NIdx]); ThisEdgeAdjIdxs[NIdx] = NodeEntry::getInvalidAdjEdgeIdx(); } void disconnectFrom(Graph &G, NodeId NId) { if (NId == NIds[0]) disconnectFromN(G, 0); else { assert(NId == NIds[1] && "Edge does not connect NId"); disconnectFromN(G, 1); } } NodeId getN1Id() const { return NIds[0]; } NodeId getN2Id() const { return NIds[1]; } MatrixPtr Costs; EdgeMetadata Metadata; private: NodeId NIds[2]; typename NodeEntry::AdjEdgeIdx ThisEdgeAdjIdxs[2]; }; // ----- MEMBERS ----- GraphMetadata Metadata; CostAllocator CostAlloc; SolverT *Solver = nullptr; using NodeVector = std::vector<NodeEntry>; using FreeNodeVector = std::vector<NodeId>; NodeVector Nodes; FreeNodeVector FreeNodeIds; using EdgeVector = std::vector<EdgeEntry>; using FreeEdgeVector = std::vector<EdgeId>; EdgeVector Edges; FreeEdgeVector FreeEdgeIds; Graph(const Graph &Other) {} // ----- INTERNAL METHODS ----- NodeEntry &getNode(NodeId NId) { assert(NId < Nodes.size() && "Out of bound NodeId"); return Nodes[NId]; } const NodeEntry &getNode(NodeId NId) const { assert(NId < Nodes.size() && "Out of bound NodeId"); return Nodes[NId]; } EdgeEntry& getEdge(EdgeId EId) { return Edges[EId]; } const EdgeEntry& getEdge(EdgeId EId) const { return Edges[EId]; } NodeId addConstructedNode(NodeEntry N) { NodeId NId = 0; if (!FreeNodeIds.empty()) { NId = FreeNodeIds.back(); FreeNodeIds.pop_back(); Nodes[NId] = std::move(N); } else { NId = Nodes.size(); Nodes.push_back(std::move(N)); } return NId; } EdgeId addConstructedEdge(EdgeEntry E) { assert(findEdge(E.getN1Id(), E.getN2Id()) == invalidEdgeId() && "Attempt to add duplicate edge."); EdgeId EId = 0; if (!FreeEdgeIds.empty()) { EId = FreeEdgeIds.back(); FreeEdgeIds.pop_back(); Edges[EId] = std::move(E); } else { EId = Edges.size(); Edges.push_back(std::move(E)); } EdgeEntry &NE = getEdge(EId); // Add the edge to the adjacency sets of its nodes. NE.connect(*this, EId); return EId; } void operator=(const Graph &Other) {} public: using AdjEdgeItr = typename NodeEntry::AdjEdgeItr; class NodeItr { public: using iterator_category = std::forward_iterator_tag; using value_type = NodeId; using difference_type = int; using pointer = NodeId *; using reference = NodeId &; NodeItr(NodeId CurNId, const Graph &G) : CurNId(CurNId), EndNId(G.Nodes.size()), FreeNodeIds(G.FreeNodeIds) { this->CurNId = findNextInUse(CurNId); // Move to first in-use node id } bool operator==(const NodeItr &O) const { return CurNId == O.CurNId; } bool operator!=(const NodeItr &O) const { return !(*this == O); } NodeItr& operator++() { CurNId = findNextInUse(++CurNId); return *this; } NodeId operator*() const { return CurNId; } private: NodeId findNextInUse(NodeId NId) const { while (NId < EndNId && is_contained(FreeNodeIds, NId)) { ++NId; } return NId; } NodeId CurNId, EndNId; const FreeNodeVector &FreeNodeIds; }; class EdgeItr { public: EdgeItr(EdgeId CurEId, const Graph &G) : CurEId(CurEId), EndEId(G.Edges.size()), FreeEdgeIds(G.FreeEdgeIds) { this->CurEId = findNextInUse(CurEId); // Move to first in-use edge id } bool operator==(const EdgeItr &O) const { return CurEId == O.CurEId; } bool operator!=(const EdgeItr &O) const { return !(*this == O); } EdgeItr& operator++() { CurEId = findNextInUse(++CurEId); return *this; } EdgeId operator*() const { return CurEId; } private: EdgeId findNextInUse(EdgeId EId) const { while (EId < EndEId && is_contained(FreeEdgeIds, EId)) { ++EId; } return EId; } EdgeId CurEId, EndEId; const FreeEdgeVector &FreeEdgeIds; }; class NodeIdSet { public: NodeIdSet(const Graph &G) : G(G) {} NodeItr begin() const { return NodeItr(0, G); } NodeItr end() const { return NodeItr(G.Nodes.size(), G); } bool empty() const { return G.Nodes.empty(); } typename NodeVector::size_type size() const { return G.Nodes.size() - G.FreeNodeIds.size(); } private: const Graph& G; }; class EdgeIdSet { public: EdgeIdSet(const Graph &G) : G(G) {} EdgeItr begin() const { return EdgeItr(0, G); } EdgeItr end() const { return EdgeItr(G.Edges.size(), G); } bool empty() const { return G.Edges.empty(); } typename NodeVector::size_type size() const { return G.Edges.size() - G.FreeEdgeIds.size(); } private: const Graph& G; }; class AdjEdgeIdSet { public: AdjEdgeIdSet(const NodeEntry &NE) : NE(NE) {} typename NodeEntry::AdjEdgeItr begin() const { return NE.getAdjEdgeIds().begin(); } typename NodeEntry::AdjEdgeItr end() const { return NE.getAdjEdgeIds().end(); } bool empty() const { return NE.getAdjEdgeIds().empty(); } typename NodeEntry::AdjEdgeList::size_type size() const { return NE.getAdjEdgeIds().size(); } private: const NodeEntry &NE; }; /// Construct an empty PBQP graph. Graph() = default; /// Construct an empty PBQP graph with the given graph metadata. Graph(GraphMetadata Metadata) : Metadata(std::move(Metadata)) {} /// Get a reference to the graph metadata. GraphMetadata& getMetadata() { return Metadata; } /// Get a const-reference to the graph metadata. const GraphMetadata& getMetadata() const { return Metadata; } /// Lock this graph to the given solver instance in preparation /// for running the solver. This method will call solver.handleAddNode for /// each node in the graph, and handleAddEdge for each edge, to give the /// solver an opportunity to set up any requried metadata. void setSolver(SolverT &S) { assert(!Solver && "Solver already set. Call unsetSolver()."); Solver = &S; for (auto NId : nodeIds()) Solver->handleAddNode(NId); for (auto EId : edgeIds()) Solver->handleAddEdge(EId); } /// Release from solver instance. void unsetSolver() { assert(Solver && "Solver not set."); Solver = nullptr; } /// Add a node with the given costs. /// @param Costs Cost vector for the new node. /// @return Node iterator for the added node. template <typename OtherVectorT> NodeId addNode(OtherVectorT Costs) { // Get cost vector from the problem domain VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs)); NodeId NId = addConstructedNode(NodeEntry(AllocatedCosts)); if (Solver) Solver->handleAddNode(NId); return NId; } /// Add a node bypassing the cost allocator. /// @param Costs Cost vector ptr for the new node (must be convertible to /// VectorPtr). /// @return Node iterator for the added node. /// /// This method allows for fast addition of a node whose costs don't need /// to be passed through the cost allocator. The most common use case for /// this is when duplicating costs from an existing node (when using a /// pooling allocator). These have already been uniqued, so we can avoid /// re-constructing and re-uniquing them by attaching them directly to the /// new node. template <typename OtherVectorPtrT> NodeId addNodeBypassingCostAllocator(OtherVectorPtrT Costs) { NodeId NId = addConstructedNode(NodeEntry(Costs)); if (Solver) Solver->handleAddNode(NId); return NId; } /// Add an edge between the given nodes with the given costs. /// @param N1Id First node. /// @param N2Id Second node. /// @param Costs Cost matrix for new edge. /// @return Edge iterator for the added edge. template <typename OtherVectorT> EdgeId addEdge(NodeId N1Id, NodeId N2Id, OtherVectorT Costs) { assert(getNodeCosts(N1Id).getLength() == Costs.getRows() && getNodeCosts(N2Id).getLength() == Costs.getCols() && "Matrix dimensions mismatch."); // Get cost matrix from the problem domain. MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs)); EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, AllocatedCosts)); if (Solver) Solver->handleAddEdge(EId); return EId; } /// Add an edge bypassing the cost allocator. /// @param N1Id First node. /// @param N2Id Second node. /// @param Costs Cost matrix for new edge. /// @return Edge iterator for the added edge. /// /// This method allows for fast addition of an edge whose costs don't need /// to be passed through the cost allocator. The most common use case for /// this is when duplicating costs from an existing edge (when using a /// pooling allocator). These have already been uniqued, so we can avoid /// re-constructing and re-uniquing them by attaching them directly to the /// new edge. template <typename OtherMatrixPtrT> NodeId addEdgeBypassingCostAllocator(NodeId N1Id, NodeId N2Id, OtherMatrixPtrT Costs) { assert(getNodeCosts(N1Id).getLength() == Costs->getRows() && getNodeCosts(N2Id).getLength() == Costs->getCols() && "Matrix dimensions mismatch."); // Get cost matrix from the problem domain. EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, Costs)); if (Solver) Solver->handleAddEdge(EId); return EId; } /// Returns true if the graph is empty. bool empty() const { return NodeIdSet(*this).empty(); } NodeIdSet nodeIds() const { return NodeIdSet(*this); } EdgeIdSet edgeIds() const { return EdgeIdSet(*this); } AdjEdgeIdSet adjEdgeIds(NodeId NId) { return AdjEdgeIdSet(getNode(NId)); } /// Get the number of nodes in the graph. /// @return Number of nodes in the graph. unsigned getNumNodes() const { return NodeIdSet(*this).size(); } /// Get the number of edges in the graph. /// @return Number of edges in the graph. unsigned getNumEdges() const { return EdgeIdSet(*this).size(); } /// Set a node's cost vector. /// @param NId Node to update. /// @param Costs New costs to set. template <typename OtherVectorT> void setNodeCosts(NodeId NId, OtherVectorT Costs) { VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs)); if (Solver) Solver->handleSetNodeCosts(NId, *AllocatedCosts); getNode(NId).Costs = AllocatedCosts; } /// Get a VectorPtr to a node's cost vector. Rarely useful - use /// getNodeCosts where possible. /// @param NId Node id. /// @return VectorPtr to node cost vector. /// /// This method is primarily useful for duplicating costs quickly by /// bypassing the cost allocator. See addNodeBypassingCostAllocator. Prefer /// getNodeCosts when dealing with node cost values. const VectorPtr& getNodeCostsPtr(NodeId NId) const { return getNode(NId).Costs; } /// Get a node's cost vector. /// @param NId Node id. /// @return Node cost vector. const Vector& getNodeCosts(NodeId NId) const { return *getNodeCostsPtr(NId); } NodeMetadata& getNodeMetadata(NodeId NId) { return getNode(NId).Metadata; } const NodeMetadata& getNodeMetadata(NodeId NId) const { return getNode(NId).Metadata; } typename NodeEntry::AdjEdgeList::size_type getNodeDegree(NodeId NId) const { return getNode(NId).getAdjEdgeIds().size(); } /// Update an edge's cost matrix. /// @param EId Edge id. /// @param Costs New cost matrix. template <typename OtherMatrixT> void updateEdgeCosts(EdgeId EId, OtherMatrixT Costs) { MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs)); if (Solver) Solver->handleUpdateCosts(EId, *AllocatedCosts); getEdge(EId).Costs = AllocatedCosts; } /// Get a MatrixPtr to a node's cost matrix. Rarely useful - use /// getEdgeCosts where possible. /// @param EId Edge id. /// @return MatrixPtr to edge cost matrix. /// /// This method is primarily useful for duplicating costs quickly by /// bypassing the cost allocator. See addNodeBypassingCostAllocator. Prefer /// getEdgeCosts when dealing with edge cost values. const MatrixPtr& getEdgeCostsPtr(EdgeId EId) const { return getEdge(EId).Costs; } /// Get an edge's cost matrix. /// @param EId Edge id. /// @return Edge cost matrix. const Matrix& getEdgeCosts(EdgeId EId) const { return *getEdge(EId).Costs; } EdgeMetadata& getEdgeMetadata(EdgeId EId) { return getEdge(EId).Metadata; } const EdgeMetadata& getEdgeMetadata(EdgeId EId) const { return getEdge(EId).Metadata; } /// Get the first node connected to this edge. /// @param EId Edge id. /// @return The first node connected to the given edge. NodeId getEdgeNode1Id(EdgeId EId) const { return getEdge(EId).getN1Id(); } /// Get the second node connected to this edge. /// @param EId Edge id. /// @return The second node connected to the given edge. NodeId getEdgeNode2Id(EdgeId EId) const { return getEdge(EId).getN2Id(); } /// Get the "other" node connected to this edge. /// @param EId Edge id. /// @param NId Node id for the "given" node. /// @return The iterator for the "other" node connected to this edge. NodeId getEdgeOtherNodeId(EdgeId EId, NodeId NId) { EdgeEntry &E = getEdge(EId); if (E.getN1Id() == NId) { return E.getN2Id(); } // else return E.getN1Id(); } /// Get the edge connecting two nodes. /// @param N1Id First node id. /// @param N2Id Second node id. /// @return An id for edge (N1Id, N2Id) if such an edge exists, /// otherwise returns an invalid edge id. EdgeId findEdge(NodeId N1Id, NodeId N2Id) { for (auto AEId : adjEdgeIds(N1Id)) { if ((getEdgeNode1Id(AEId) == N2Id) || (getEdgeNode2Id(AEId) == N2Id)) { return AEId; } } return invalidEdgeId(); } /// Remove a node from the graph. /// @param NId Node id. void removeNode(NodeId NId) { if (Solver) Solver->handleRemoveNode(NId); NodeEntry &N = getNode(NId); // TODO: Can this be for-each'd? for (AdjEdgeItr AEItr = N.adjEdgesBegin(), AEEnd = N.adjEdgesEnd(); AEItr != AEEnd;) { EdgeId EId = *AEItr; ++AEItr; removeEdge(EId); } FreeNodeIds.push_back(NId); } /// Disconnect an edge from the given node. /// /// Removes the given edge from the adjacency list of the given node. /// This operation leaves the edge in an 'asymmetric' state: It will no /// longer appear in an iteration over the given node's (NId's) edges, but /// will appear in an iteration over the 'other', unnamed node's edges. /// /// This does not correspond to any normal graph operation, but exists to /// support efficient PBQP graph-reduction based solvers. It is used to /// 'effectively' remove the unnamed node from the graph while the solver /// is performing the reduction. The solver will later call reconnectNode /// to restore the edge in the named node's adjacency list. /// /// Since the degree of a node is the number of connected edges, /// disconnecting an edge from a node 'u' will cause the degree of 'u' to /// drop by 1. /// /// A disconnected edge WILL still appear in an iteration over the graph /// edges. /// /// A disconnected edge should not be removed from the graph, it should be /// reconnected first. /// /// A disconnected edge can be reconnected by calling the reconnectEdge /// method. void disconnectEdge(EdgeId EId, NodeId NId) { if (Solver) Solver->handleDisconnectEdge(EId, NId); EdgeEntry &E = getEdge(EId); E.disconnectFrom(*this, NId); } /// Convenience method to disconnect all neighbours from the given /// node. void disconnectAllNeighborsFromNode(NodeId NId) { for (auto AEId : adjEdgeIds(NId)) disconnectEdge(AEId, getEdgeOtherNodeId(AEId, NId)); } /// Re-attach an edge to its nodes. /// /// Adds an edge that had been previously disconnected back into the /// adjacency set of the nodes that the edge connects. void reconnectEdge(EdgeId EId, NodeId NId) { EdgeEntry &E = getEdge(EId); E.connectTo(*this, EId, NId); if (Solver) Solver->handleReconnectEdge(EId, NId); } /// Remove an edge from the graph. /// @param EId Edge id. void removeEdge(EdgeId EId) { if (Solver) Solver->handleRemoveEdge(EId); EdgeEntry &E = getEdge(EId); E.disconnect(); FreeEdgeIds.push_back(EId); Edges[EId].invalidate(); } /// Remove all nodes and edges from the graph. void clear() { Nodes.clear(); FreeNodeIds.clear(); Edges.clear(); FreeEdgeIds.clear(); } }; } // end namespace PBQP } // end namespace llvm #endif // LLVM_CODEGEN_PBQP_GRAPH_HPP