//===- llvm/CodeGen/SlotIndexes.h - Slot indexes representation -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements SlotIndex and related classes. The purpose of SlotIndex // is to describe a position at which a register can become live, or cease to // be live. // // SlotIndex is mostly a proxy for entries of the SlotIndexList, a class which // is held is LiveIntervals and provides the real numbering. This allows // LiveIntervals to perform largely transparent renumbering. //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_SLOTINDEXES_H #define LLVM_CODEGEN_SLOTINDEXES_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/IntervalMap.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/ilist.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBundle.h" #include "llvm/Pass.h" #include "llvm/Support/Allocator.h" #include <algorithm> #include <cassert> #include <iterator> #include <utility> namespace llvm { class raw_ostream; /// This class represents an entry in the slot index list held in the /// SlotIndexes pass. It should not be used directly. See the /// SlotIndex & SlotIndexes classes for the public interface to this /// information. class IndexListEntry : public ilist_node<IndexListEntry> { MachineInstr *mi; unsigned index; public: IndexListEntry(MachineInstr *mi, unsigned index) : mi(mi), index(index) {} MachineInstr* getInstr() const { return mi; } void setInstr(MachineInstr *mi) { this->mi = mi; } unsigned getIndex() const { return index; } void setIndex(unsigned index) { this->index = index; } #ifdef EXPENSIVE_CHECKS // When EXPENSIVE_CHECKS is defined, "erased" index list entries will // actually be moved to a "graveyard" list, and have their pointers // poisoned, so that dangling SlotIndex access can be reliably detected. void setPoison() { intptr_t tmp = reinterpret_cast<intptr_t>(mi); assert(((tmp & 0x1) == 0x0) && "Pointer already poisoned?"); tmp |= 0x1; mi = reinterpret_cast<MachineInstr*>(tmp); } bool isPoisoned() const { return (reinterpret_cast<intptr_t>(mi) & 0x1) == 0x1; } #endif // EXPENSIVE_CHECKS }; template <> struct ilist_alloc_traits<IndexListEntry> : public ilist_noalloc_traits<IndexListEntry> {}; /// SlotIndex - An opaque wrapper around machine indexes. class SlotIndex { friend class SlotIndexes; enum Slot { /// Basic block boundary. Used for live ranges entering and leaving a /// block without being live in the layout neighbor. Also used as the /// def slot of PHI-defs. Slot_Block, /// Early-clobber register use/def slot. A live range defined at /// Slot_EarlyClobber interferes with normal live ranges killed at /// Slot_Register. Also used as the kill slot for live ranges tied to an /// early-clobber def. Slot_EarlyClobber, /// Normal register use/def slot. Normal instructions kill and define /// register live ranges at this slot. Slot_Register, /// Dead def kill point. Kill slot for a live range that is defined by /// the same instruction (Slot_Register or Slot_EarlyClobber), but isn't /// used anywhere. Slot_Dead, Slot_Count }; PointerIntPair<IndexListEntry*, 2, unsigned> lie; SlotIndex(IndexListEntry *entry, unsigned slot) : lie(entry, slot) {} IndexListEntry* listEntry() const { assert(isValid() && "Attempt to compare reserved index."); #ifdef EXPENSIVE_CHECKS assert(!lie.getPointer()->isPoisoned() && "Attempt to access deleted list-entry."); #endif // EXPENSIVE_CHECKS return lie.getPointer(); } unsigned getIndex() const { return listEntry()->getIndex() | getSlot(); } /// Returns the slot for this SlotIndex. Slot getSlot() const { return static_cast<Slot>(lie.getInt()); } public: enum { /// The default distance between instructions as returned by distance(). /// This may vary as instructions are inserted and removed. InstrDist = 4 * Slot_Count }; /// Construct an invalid index. SlotIndex() = default; // Construct a new slot index from the given one, and set the slot. SlotIndex(const SlotIndex &li, Slot s) : lie(li.listEntry(), unsigned(s)) { assert(lie.getPointer() != nullptr && "Attempt to construct index with 0 pointer."); } /// Returns true if this is a valid index. Invalid indices do /// not point into an index table, and cannot be compared. bool isValid() const { return lie.getPointer(); } /// Return true for a valid index. explicit operator bool() const { return isValid(); } /// Print this index to the given raw_ostream. void print(raw_ostream &os) const; /// Dump this index to stderr. void dump() const; /// Compare two SlotIndex objects for equality. bool operator==(SlotIndex other) const { return lie == other.lie; } /// Compare two SlotIndex objects for inequality. bool operator!=(SlotIndex other) const { return lie != other.lie; } /// Compare two SlotIndex objects. Return true if the first index /// is strictly lower than the second. bool operator<(SlotIndex other) const { return getIndex() < other.getIndex(); } /// Compare two SlotIndex objects. Return true if the first index /// is lower than, or equal to, the second. bool operator<=(SlotIndex other) const { return getIndex() <= other.getIndex(); } /// Compare two SlotIndex objects. Return true if the first index /// is greater than the second. bool operator>(SlotIndex other) const { return getIndex() > other.getIndex(); } /// Compare two SlotIndex objects. Return true if the first index /// is greater than, or equal to, the second. bool operator>=(SlotIndex other) const { return getIndex() >= other.getIndex(); } /// isSameInstr - Return true if A and B refer to the same instruction. static bool isSameInstr(SlotIndex A, SlotIndex B) { return A.lie.getPointer() == B.lie.getPointer(); } /// isEarlierInstr - Return true if A refers to an instruction earlier than /// B. This is equivalent to A < B && !isSameInstr(A, B). static bool isEarlierInstr(SlotIndex A, SlotIndex B) { return A.listEntry()->getIndex() < B.listEntry()->getIndex(); } /// Return true if A refers to the same instruction as B or an earlier one. /// This is equivalent to !isEarlierInstr(B, A). static bool isEarlierEqualInstr(SlotIndex A, SlotIndex B) { return !isEarlierInstr(B, A); } /// Return the distance from this index to the given one. int distance(SlotIndex other) const { return other.getIndex() - getIndex(); } /// Return the scaled distance from this index to the given one, where all /// slots on the same instruction have zero distance. int getInstrDistance(SlotIndex other) const { return (other.listEntry()->getIndex() - listEntry()->getIndex()) / Slot_Count; } /// isBlock - Returns true if this is a block boundary slot. bool isBlock() const { return getSlot() == Slot_Block; } /// isEarlyClobber - Returns true if this is an early-clobber slot. bool isEarlyClobber() const { return getSlot() == Slot_EarlyClobber; } /// isRegister - Returns true if this is a normal register use/def slot. /// Note that early-clobber slots may also be used for uses and defs. bool isRegister() const { return getSlot() == Slot_Register; } /// isDead - Returns true if this is a dead def kill slot. bool isDead() const { return getSlot() == Slot_Dead; } /// Returns the base index for associated with this index. The base index /// is the one associated with the Slot_Block slot for the instruction /// pointed to by this index. SlotIndex getBaseIndex() const { return SlotIndex(listEntry(), Slot_Block); } /// Returns the boundary index for associated with this index. The boundary /// index is the one associated with the Slot_Block slot for the instruction /// pointed to by this index. SlotIndex getBoundaryIndex() const { return SlotIndex(listEntry(), Slot_Dead); } /// Returns the register use/def slot in the current instruction for a /// normal or early-clobber def. SlotIndex getRegSlot(bool EC = false) const { return SlotIndex(listEntry(), EC ? Slot_EarlyClobber : Slot_Register); } /// Returns the dead def kill slot for the current instruction. SlotIndex getDeadSlot() const { return SlotIndex(listEntry(), Slot_Dead); } /// Returns the next slot in the index list. This could be either the /// next slot for the instruction pointed to by this index or, if this /// index is a STORE, the first slot for the next instruction. /// WARNING: This method is considerably more expensive than the methods /// that return specific slots (getUseIndex(), etc). If you can - please /// use one of those methods. SlotIndex getNextSlot() const { Slot s = getSlot(); if (s == Slot_Dead) { return SlotIndex(&*++listEntry()->getIterator(), Slot_Block); } return SlotIndex(listEntry(), s + 1); } /// Returns the next index. This is the index corresponding to the this /// index's slot, but for the next instruction. SlotIndex getNextIndex() const { return SlotIndex(&*++listEntry()->getIterator(), getSlot()); } /// Returns the previous slot in the index list. This could be either the /// previous slot for the instruction pointed to by this index or, if this /// index is a Slot_Block, the last slot for the previous instruction. /// WARNING: This method is considerably more expensive than the methods /// that return specific slots (getUseIndex(), etc). If you can - please /// use one of those methods. SlotIndex getPrevSlot() const { Slot s = getSlot(); if (s == Slot_Block) { return SlotIndex(&*--listEntry()->getIterator(), Slot_Dead); } return SlotIndex(listEntry(), s - 1); } /// Returns the previous index. This is the index corresponding to this /// index's slot, but for the previous instruction. SlotIndex getPrevIndex() const { return SlotIndex(&*--listEntry()->getIterator(), getSlot()); } }; template <> struct isPodLike<SlotIndex> { static const bool value = true; }; inline raw_ostream& operator<<(raw_ostream &os, SlotIndex li) { li.print(os); return os; } using IdxMBBPair = std::pair<SlotIndex, MachineBasicBlock *>; inline bool operator<(SlotIndex V, const IdxMBBPair &IM) { return V < IM.first; } inline bool operator<(const IdxMBBPair &IM, SlotIndex V) { return IM.first < V; } struct Idx2MBBCompare { bool operator()(const IdxMBBPair &LHS, const IdxMBBPair &RHS) const { return LHS.first < RHS.first; } }; /// SlotIndexes pass. /// /// This pass assigns indexes to each instruction. class SlotIndexes : public MachineFunctionPass { private: // IndexListEntry allocator. BumpPtrAllocator ileAllocator; using IndexList = ilist<IndexListEntry>; IndexList indexList; #ifdef EXPENSIVE_CHECKS IndexList graveyardList; #endif // EXPENSIVE_CHECKS MachineFunction *mf; using Mi2IndexMap = DenseMap<const MachineInstr *, SlotIndex>; Mi2IndexMap mi2iMap; /// MBBRanges - Map MBB number to (start, stop) indexes. SmallVector<std::pair<SlotIndex, SlotIndex>, 8> MBBRanges; /// Idx2MBBMap - Sorted list of pairs of index of first instruction /// and MBB id. SmallVector<IdxMBBPair, 8> idx2MBBMap; IndexListEntry* createEntry(MachineInstr *mi, unsigned index) { IndexListEntry *entry = static_cast<IndexListEntry *>(ileAllocator.Allocate( sizeof(IndexListEntry), alignof(IndexListEntry))); new (entry) IndexListEntry(mi, index); return entry; } /// Renumber locally after inserting curItr. void renumberIndexes(IndexList::iterator curItr); public: static char ID; SlotIndexes() : MachineFunctionPass(ID) { initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); } ~SlotIndexes() override { // The indexList's nodes are all allocated in the BumpPtrAllocator. indexList.clearAndLeakNodesUnsafely(); } void getAnalysisUsage(AnalysisUsage &au) const override; void releaseMemory() override; bool runOnMachineFunction(MachineFunction &fn) override; /// Dump the indexes. void dump() const; /// Renumber the index list, providing space for new instructions. void renumberIndexes(); /// Repair indexes after adding and removing instructions. void repairIndexesInRange(MachineBasicBlock *MBB, MachineBasicBlock::iterator Begin, MachineBasicBlock::iterator End); /// Returns the zero index for this analysis. SlotIndex getZeroIndex() { assert(indexList.front().getIndex() == 0 && "First index is not 0?"); return SlotIndex(&indexList.front(), 0); } /// Returns the base index of the last slot in this analysis. SlotIndex getLastIndex() { return SlotIndex(&indexList.back(), 0); } /// Returns true if the given machine instr is mapped to an index, /// otherwise returns false. bool hasIndex(const MachineInstr &instr) const { return mi2iMap.count(&instr); } /// Returns the base index for the given instruction. SlotIndex getInstructionIndex(const MachineInstr &MI) const { // Instructions inside a bundle have the same number as the bundle itself. auto BundleStart = getBundleStart(MI.getIterator()); auto BundleEnd = getBundleEnd(MI.getIterator()); // Use the first non-debug instruction in the bundle to get SlotIndex. const MachineInstr &BundleNonDebug = *skipDebugInstructionsForward(BundleStart, BundleEnd); assert(!BundleNonDebug.isDebugInstr() && "Could not use a debug instruction to query mi2iMap."); Mi2IndexMap::const_iterator itr = mi2iMap.find(&BundleNonDebug); assert(itr != mi2iMap.end() && "Instruction not found in maps."); return itr->second; } /// Returns the instruction for the given index, or null if the given /// index has no instruction associated with it. MachineInstr* getInstructionFromIndex(SlotIndex index) const { return index.isValid() ? index.listEntry()->getInstr() : nullptr; } /// Returns the next non-null index, if one exists. /// Otherwise returns getLastIndex(). SlotIndex getNextNonNullIndex(SlotIndex Index) { IndexList::iterator I = Index.listEntry()->getIterator(); IndexList::iterator E = indexList.end(); while (++I != E) if (I->getInstr()) return SlotIndex(&*I, Index.getSlot()); // We reached the end of the function. return getLastIndex(); } /// getIndexBefore - Returns the index of the last indexed instruction /// before MI, or the start index of its basic block. /// MI is not required to have an index. SlotIndex getIndexBefore(const MachineInstr &MI) const { const MachineBasicBlock *MBB = MI.getParent(); assert(MBB && "MI must be inserted in a basic block"); MachineBasicBlock::const_iterator I = MI, B = MBB->begin(); while (true) { if (I == B) return getMBBStartIdx(MBB); --I; Mi2IndexMap::const_iterator MapItr = mi2iMap.find(&*I); if (MapItr != mi2iMap.end()) return MapItr->second; } } /// getIndexAfter - Returns the index of the first indexed instruction /// after MI, or the end index of its basic block. /// MI is not required to have an index. SlotIndex getIndexAfter(const MachineInstr &MI) const { const MachineBasicBlock *MBB = MI.getParent(); assert(MBB && "MI must be inserted in a basic block"); MachineBasicBlock::const_iterator I = MI, E = MBB->end(); while (true) { ++I; if (I == E) return getMBBEndIdx(MBB); Mi2IndexMap::const_iterator MapItr = mi2iMap.find(&*I); if (MapItr != mi2iMap.end()) return MapItr->second; } } /// Return the (start,end) range of the given basic block number. const std::pair<SlotIndex, SlotIndex> & getMBBRange(unsigned Num) const { return MBBRanges[Num]; } /// Return the (start,end) range of the given basic block. const std::pair<SlotIndex, SlotIndex> & getMBBRange(const MachineBasicBlock *MBB) const { return getMBBRange(MBB->getNumber()); } /// Returns the first index in the given basic block number. SlotIndex getMBBStartIdx(unsigned Num) const { return getMBBRange(Num).first; } /// Returns the first index in the given basic block. SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const { return getMBBRange(mbb).first; } /// Returns the last index in the given basic block number. SlotIndex getMBBEndIdx(unsigned Num) const { return getMBBRange(Num).second; } /// Returns the last index in the given basic block. SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const { return getMBBRange(mbb).second; } /// Iterator over the idx2MBBMap (sorted pairs of slot index of basic block /// begin and basic block) using MBBIndexIterator = SmallVectorImpl<IdxMBBPair>::const_iterator; /// Move iterator to the next IdxMBBPair where the SlotIndex is greater or /// equal to \p To. MBBIndexIterator advanceMBBIndex(MBBIndexIterator I, SlotIndex To) const { return std::lower_bound(I, idx2MBBMap.end(), To); } /// Get an iterator pointing to the IdxMBBPair with the biggest SlotIndex /// that is greater or equal to \p Idx. MBBIndexIterator findMBBIndex(SlotIndex Idx) const { return advanceMBBIndex(idx2MBBMap.begin(), Idx); } /// Returns an iterator for the begin of the idx2MBBMap. MBBIndexIterator MBBIndexBegin() const { return idx2MBBMap.begin(); } /// Return an iterator for the end of the idx2MBBMap. MBBIndexIterator MBBIndexEnd() const { return idx2MBBMap.end(); } /// Returns the basic block which the given index falls in. MachineBasicBlock* getMBBFromIndex(SlotIndex index) const { if (MachineInstr *MI = getInstructionFromIndex(index)) return MI->getParent(); MBBIndexIterator I = findMBBIndex(index); // Take the pair containing the index MBBIndexIterator J = ((I != MBBIndexEnd() && I->first > index) || (I == MBBIndexEnd() && !idx2MBBMap.empty())) ? std::prev(I) : I; assert(J != MBBIndexEnd() && J->first <= index && index < getMBBEndIdx(J->second) && "index does not correspond to an MBB"); return J->second; } /// Returns the MBB covering the given range, or null if the range covers /// more than one basic block. MachineBasicBlock* getMBBCoveringRange(SlotIndex start, SlotIndex end) const { assert(start < end && "Backwards ranges not allowed."); MBBIndexIterator itr = findMBBIndex(start); if (itr == MBBIndexEnd()) { itr = std::prev(itr); return itr->second; } // Check that we don't cross the boundary into this block. if (itr->first < end) return nullptr; itr = std::prev(itr); if (itr->first <= start) return itr->second; return nullptr; } /// Insert the given machine instruction into the mapping. Returns the /// assigned index. /// If Late is set and there are null indexes between mi's neighboring /// instructions, create the new index after the null indexes instead of /// before them. SlotIndex insertMachineInstrInMaps(MachineInstr &MI, bool Late = false) { assert(!MI.isInsideBundle() && "Instructions inside bundles should use bundle start's slot."); assert(mi2iMap.find(&MI) == mi2iMap.end() && "Instr already indexed."); // Numbering debug instructions could cause code generation to be // affected by debug information. assert(!MI.isDebugInstr() && "Cannot number debug instructions."); assert(MI.getParent() != nullptr && "Instr must be added to function."); // Get the entries where MI should be inserted. IndexList::iterator prevItr, nextItr; if (Late) { // Insert MI's index immediately before the following instruction. nextItr = getIndexAfter(MI).listEntry()->getIterator(); prevItr = std::prev(nextItr); } else { // Insert MI's index immediately after the preceding instruction. prevItr = getIndexBefore(MI).listEntry()->getIterator(); nextItr = std::next(prevItr); } // Get a number for the new instr, or 0 if there's no room currently. // In the latter case we'll force a renumber later. unsigned dist = ((nextItr->getIndex() - prevItr->getIndex())/2) & ~3u; unsigned newNumber = prevItr->getIndex() + dist; // Insert a new list entry for MI. IndexList::iterator newItr = indexList.insert(nextItr, createEntry(&MI, newNumber)); // Renumber locally if we need to. if (dist == 0) renumberIndexes(newItr); SlotIndex newIndex(&*newItr, SlotIndex::Slot_Block); mi2iMap.insert(std::make_pair(&MI, newIndex)); return newIndex; } /// Removes machine instruction (bundle) \p MI from the mapping. /// This should be called before MachineInstr::eraseFromParent() is used to /// remove a whole bundle or an unbundled instruction. void removeMachineInstrFromMaps(MachineInstr &MI); /// Removes a single machine instruction \p MI from the mapping. /// This should be called before MachineInstr::eraseFromBundle() is used to /// remove a single instruction (out of a bundle). void removeSingleMachineInstrFromMaps(MachineInstr &MI); /// ReplaceMachineInstrInMaps - Replacing a machine instr with a new one in /// maps used by register allocator. \returns the index where the new /// instruction was inserted. SlotIndex replaceMachineInstrInMaps(MachineInstr &MI, MachineInstr &NewMI) { Mi2IndexMap::iterator mi2iItr = mi2iMap.find(&MI); if (mi2iItr == mi2iMap.end()) return SlotIndex(); SlotIndex replaceBaseIndex = mi2iItr->second; IndexListEntry *miEntry(replaceBaseIndex.listEntry()); assert(miEntry->getInstr() == &MI && "Mismatched instruction in index tables."); miEntry->setInstr(&NewMI); mi2iMap.erase(mi2iItr); mi2iMap.insert(std::make_pair(&NewMI, replaceBaseIndex)); return replaceBaseIndex; } /// Add the given MachineBasicBlock into the maps. void insertMBBInMaps(MachineBasicBlock *mbb) { MachineFunction::iterator nextMBB = std::next(MachineFunction::iterator(mbb)); IndexListEntry *startEntry = nullptr; IndexListEntry *endEntry = nullptr; IndexList::iterator newItr; if (nextMBB == mbb->getParent()->end()) { startEntry = &indexList.back(); endEntry = createEntry(nullptr, 0); newItr = indexList.insertAfter(startEntry->getIterator(), endEntry); } else { startEntry = createEntry(nullptr, 0); endEntry = getMBBStartIdx(&*nextMBB).listEntry(); newItr = indexList.insert(endEntry->getIterator(), startEntry); } SlotIndex startIdx(startEntry, SlotIndex::Slot_Block); SlotIndex endIdx(endEntry, SlotIndex::Slot_Block); MachineFunction::iterator prevMBB(mbb); assert(prevMBB != mbb->getParent()->end() && "Can't insert a new block at the beginning of a function."); --prevMBB; MBBRanges[prevMBB->getNumber()].second = startIdx; assert(unsigned(mbb->getNumber()) == MBBRanges.size() && "Blocks must be added in order"); MBBRanges.push_back(std::make_pair(startIdx, endIdx)); idx2MBBMap.push_back(IdxMBBPair(startIdx, mbb)); renumberIndexes(newItr); llvm::sort(idx2MBBMap, Idx2MBBCompare()); } /// Free the resources that were required to maintain a SlotIndex. /// /// Once an index is no longer needed (for instance because the instruction /// at that index has been moved), the resources required to maintain the /// index can be relinquished to reduce memory use and improve renumbering /// performance. Any remaining SlotIndex objects that point to the same /// index are left 'dangling' (much the same as a dangling pointer to a /// freed object) and should not be accessed, except to destruct them. /// /// Like dangling pointers, access to dangling SlotIndexes can cause /// painful-to-track-down bugs, especially if the memory for the index /// previously pointed to has been re-used. To detect dangling SlotIndex /// bugs, build with EXPENSIVE_CHECKS=1. This will cause "erased" indexes to /// be retained in a graveyard instead of being freed. Operations on indexes /// in the graveyard will trigger an assertion. void eraseIndex(SlotIndex index) { IndexListEntry *entry = index.listEntry(); #ifdef EXPENSIVE_CHECKS indexList.remove(entry); graveyardList.push_back(entry); entry->setPoison(); #else indexList.erase(entry); #endif } }; // Specialize IntervalMapInfo for half-open slot index intervals. template <> struct IntervalMapInfo<SlotIndex> : IntervalMapHalfOpenInfo<SlotIndex> { }; } // end namespace llvm #endif // LLVM_CODEGEN_SLOTINDEXES_H