//===- llvm/CodeGen/TargetSchedule.h - Sched Machine Model ------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a wrapper around MCSchedModel that allows the interface to // benefit from information currently only available in TargetInstrInfo. // Ideally, the scheduling interface would be fully defined in the MC layer. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_TARGETSCHEDULE_H #define LLVM_CODEGEN_TARGETSCHEDULE_H #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/Config/llvm-config.h" #include "llvm/MC/MCInstrItineraries.h" #include "llvm/MC/MCSchedule.h" namespace llvm { class MachineInstr; class TargetInstrInfo; /// Provide an instruction scheduling machine model to CodeGen passes. class TargetSchedModel { // For efficiency, hold a copy of the statically defined MCSchedModel for this // processor. MCSchedModel SchedModel; InstrItineraryData InstrItins; const TargetSubtargetInfo *STI = nullptr; const TargetInstrInfo *TII = nullptr; SmallVector<unsigned, 16> ResourceFactors; unsigned MicroOpFactor; // Multiply to normalize microops to resource units. unsigned ResourceLCM; // Resource units per cycle. Latency normalization factor. unsigned computeInstrLatency(const MCSchedClassDesc &SCDesc) const; public: TargetSchedModel() : SchedModel(MCSchedModel::GetDefaultSchedModel()) {} /// Initialize the machine model for instruction scheduling. /// /// The machine model API keeps a copy of the top-level MCSchedModel table /// indices and may query TargetSubtargetInfo and TargetInstrInfo to resolve /// dynamic properties. void init(const TargetSubtargetInfo *TSInfo); /// Return the MCSchedClassDesc for this instruction. const MCSchedClassDesc *resolveSchedClass(const MachineInstr *MI) const; /// TargetSubtargetInfo getter. const TargetSubtargetInfo *getSubtargetInfo() const { return STI; } /// TargetInstrInfo getter. const TargetInstrInfo *getInstrInfo() const { return TII; } /// Return true if this machine model includes an instruction-level /// scheduling model. /// /// This is more detailed than the course grain IssueWidth and default /// latency properties, but separate from the per-cycle itinerary data. bool hasInstrSchedModel() const; const MCSchedModel *getMCSchedModel() const { return &SchedModel; } /// Return true if this machine model includes cycle-to-cycle itinerary /// data. /// /// This models scheduling at each stage in the processor pipeline. bool hasInstrItineraries() const; const InstrItineraryData *getInstrItineraries() const { if (hasInstrItineraries()) return &InstrItins; return nullptr; } /// Return true if this machine model includes an instruction-level /// scheduling model or cycle-to-cycle itinerary data. bool hasInstrSchedModelOrItineraries() const { return hasInstrSchedModel() || hasInstrItineraries(); } /// Identify the processor corresponding to the current subtarget. unsigned getProcessorID() const { return SchedModel.getProcessorID(); } /// Maximum number of micro-ops that may be scheduled per cycle. unsigned getIssueWidth() const { return SchedModel.IssueWidth; } /// Return true if new group must begin. bool mustBeginGroup(const MachineInstr *MI, const MCSchedClassDesc *SC = nullptr) const; /// Return true if current group must end. bool mustEndGroup(const MachineInstr *MI, const MCSchedClassDesc *SC = nullptr) const; /// Return the number of issue slots required for this MI. unsigned getNumMicroOps(const MachineInstr *MI, const MCSchedClassDesc *SC = nullptr) const; /// Get the number of kinds of resources for this target. unsigned getNumProcResourceKinds() const { return SchedModel.getNumProcResourceKinds(); } /// Get a processor resource by ID for convenience. const MCProcResourceDesc *getProcResource(unsigned PIdx) const { return SchedModel.getProcResource(PIdx); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) const char *getResourceName(unsigned PIdx) const { if (!PIdx) return "MOps"; return SchedModel.getProcResource(PIdx)->Name; } #endif using ProcResIter = const MCWriteProcResEntry *; // Get an iterator into the processor resources consumed by this // scheduling class. ProcResIter getWriteProcResBegin(const MCSchedClassDesc *SC) const { // The subtarget holds a single resource table for all processors. return STI->getWriteProcResBegin(SC); } ProcResIter getWriteProcResEnd(const MCSchedClassDesc *SC) const { return STI->getWriteProcResEnd(SC); } /// Multiply the number of units consumed for a resource by this factor /// to normalize it relative to other resources. unsigned getResourceFactor(unsigned ResIdx) const { return ResourceFactors[ResIdx]; } /// Multiply number of micro-ops by this factor to normalize it /// relative to other resources. unsigned getMicroOpFactor() const { return MicroOpFactor; } /// Multiply cycle count by this factor to normalize it relative to /// other resources. This is the number of resource units per cycle. unsigned getLatencyFactor() const { return ResourceLCM; } /// Number of micro-ops that may be buffered for OOO execution. unsigned getMicroOpBufferSize() const { return SchedModel.MicroOpBufferSize; } /// Number of resource units that may be buffered for OOO execution. /// \return The buffer size in resource units or -1 for unlimited. int getResourceBufferSize(unsigned PIdx) const { return SchedModel.getProcResource(PIdx)->BufferSize; } /// Compute operand latency based on the available machine model. /// /// Compute and return the latency of the given data dependent def and use /// when the operand indices are already known. UseMI may be NULL for an /// unknown user. unsigned computeOperandLatency(const MachineInstr *DefMI, unsigned DefOperIdx, const MachineInstr *UseMI, unsigned UseOperIdx) const; /// Compute the instruction latency based on the available machine /// model. /// /// Compute and return the expected latency of this instruction independent of /// a particular use. computeOperandLatency is the preferred API, but this is /// occasionally useful to help estimate instruction cost. /// /// If UseDefaultDefLatency is false and no new machine sched model is /// present this method falls back to TII->getInstrLatency with an empty /// instruction itinerary (this is so we preserve the previous behavior of the /// if converter after moving it to TargetSchedModel). unsigned computeInstrLatency(const MachineInstr *MI, bool UseDefaultDefLatency = true) const; unsigned computeInstrLatency(const MCInst &Inst) const; unsigned computeInstrLatency(unsigned Opcode) const; /// Output dependency latency of a pair of defs of the same register. /// /// This is typically one cycle. unsigned computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx, const MachineInstr *DepMI) const; /// Compute the reciprocal throughput of the given instruction. double computeReciprocalThroughput(const MachineInstr *MI) const; double computeReciprocalThroughput(const MCInst &MI) const; double computeReciprocalThroughput(unsigned Opcode) const; }; } // end namespace llvm #endif // LLVM_CODEGEN_TARGETSCHEDULE_H