//===- llvm/Attributes.h - Container for Attributes -------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// This file contains the simple types necessary to represent the /// attributes associated with functions and their calls. // //===----------------------------------------------------------------------===// #ifndef LLVM_IR_ATTRIBUTES_H #define LLVM_IR_ATTRIBUTES_H #include "llvm-c/Types.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Config/llvm-config.h" #include "llvm/Support/PointerLikeTypeTraits.h" #include <bitset> #include <cassert> #include <cstdint> #include <map> #include <string> #include <utility> namespace llvm { class AttrBuilder; class AttributeImpl; class AttributeListImpl; class AttributeSetNode; template<typename T> struct DenseMapInfo; class Function; class LLVMContext; class Type; //===----------------------------------------------------------------------===// /// \class /// Functions, function parameters, and return types can have attributes /// to indicate how they should be treated by optimizations and code /// generation. This class represents one of those attributes. It's light-weight /// and should be passed around by-value. class Attribute { public: /// This enumeration lists the attributes that can be associated with /// parameters, function results, or the function itself. /// /// Note: The `uwtable' attribute is about the ABI or the user mandating an /// entry in the unwind table. The `nounwind' attribute is about an exception /// passing by the function. /// /// In a theoretical system that uses tables for profiling and SjLj for /// exceptions, they would be fully independent. In a normal system that uses /// tables for both, the semantics are: /// /// nil = Needs an entry because an exception might pass by. /// nounwind = No need for an entry /// uwtable = Needs an entry because the ABI says so and because /// an exception might pass by. /// uwtable + nounwind = Needs an entry because the ABI says so. enum AttrKind { // IR-Level Attributes None, ///< No attributes have been set #define GET_ATTR_ENUM #include "llvm/IR/Attributes.inc" EndAttrKinds ///< Sentinal value useful for loops }; private: AttributeImpl *pImpl = nullptr; Attribute(AttributeImpl *A) : pImpl(A) {} public: Attribute() = default; //===--------------------------------------------------------------------===// // Attribute Construction //===--------------------------------------------------------------------===// /// Return a uniquified Attribute object. static Attribute get(LLVMContext &Context, AttrKind Kind, uint64_t Val = 0); static Attribute get(LLVMContext &Context, StringRef Kind, StringRef Val = StringRef()); /// Return a uniquified Attribute object that has the specific /// alignment set. static Attribute getWithAlignment(LLVMContext &Context, uint64_t Align); static Attribute getWithStackAlignment(LLVMContext &Context, uint64_t Align); static Attribute getWithDereferenceableBytes(LLVMContext &Context, uint64_t Bytes); static Attribute getWithDereferenceableOrNullBytes(LLVMContext &Context, uint64_t Bytes); static Attribute getWithAllocSizeArgs(LLVMContext &Context, unsigned ElemSizeArg, const Optional<unsigned> &NumElemsArg); //===--------------------------------------------------------------------===// // Attribute Accessors //===--------------------------------------------------------------------===// /// Return true if the attribute is an Attribute::AttrKind type. bool isEnumAttribute() const; /// Return true if the attribute is an integer attribute. bool isIntAttribute() const; /// Return true if the attribute is a string (target-dependent) /// attribute. bool isStringAttribute() const; /// Return true if the attribute is present. bool hasAttribute(AttrKind Val) const; /// Return true if the target-dependent attribute is present. bool hasAttribute(StringRef Val) const; /// Return the attribute's kind as an enum (Attribute::AttrKind). This /// requires the attribute to be an enum or integer attribute. Attribute::AttrKind getKindAsEnum() const; /// Return the attribute's value as an integer. This requires that the /// attribute be an integer attribute. uint64_t getValueAsInt() const; /// Return the attribute's kind as a string. This requires the /// attribute to be a string attribute. StringRef getKindAsString() const; /// Return the attribute's value as a string. This requires the /// attribute to be a string attribute. StringRef getValueAsString() const; /// Returns the alignment field of an attribute as a byte alignment /// value. unsigned getAlignment() const; /// Returns the stack alignment field of an attribute as a byte /// alignment value. unsigned getStackAlignment() const; /// Returns the number of dereferenceable bytes from the /// dereferenceable attribute. uint64_t getDereferenceableBytes() const; /// Returns the number of dereferenceable_or_null bytes from the /// dereferenceable_or_null attribute. uint64_t getDereferenceableOrNullBytes() const; /// Returns the argument numbers for the allocsize attribute (or pair(0, 0) /// if not known). std::pair<unsigned, Optional<unsigned>> getAllocSizeArgs() const; /// The Attribute is converted to a string of equivalent mnemonic. This /// is, presumably, for writing out the mnemonics for the assembly writer. std::string getAsString(bool InAttrGrp = false) const; /// Equality and non-equality operators. bool operator==(Attribute A) const { return pImpl == A.pImpl; } bool operator!=(Attribute A) const { return pImpl != A.pImpl; } /// Less-than operator. Useful for sorting the attributes list. bool operator<(Attribute A) const; void Profile(FoldingSetNodeID &ID) const { ID.AddPointer(pImpl); } /// Return a raw pointer that uniquely identifies this attribute. void *getRawPointer() const { return pImpl; } /// Get an attribute from a raw pointer created by getRawPointer. static Attribute fromRawPointer(void *RawPtr) { return Attribute(reinterpret_cast<AttributeImpl*>(RawPtr)); } }; // Specialized opaque value conversions. inline LLVMAttributeRef wrap(Attribute Attr) { return reinterpret_cast<LLVMAttributeRef>(Attr.getRawPointer()); } // Specialized opaque value conversions. inline Attribute unwrap(LLVMAttributeRef Attr) { return Attribute::fromRawPointer(Attr); } //===----------------------------------------------------------------------===// /// \class /// This class holds the attributes for a particular argument, parameter, /// function, or return value. It is an immutable value type that is cheap to /// copy. Adding and removing enum attributes is intended to be fast, but adding /// and removing string or integer attributes involves a FoldingSet lookup. class AttributeSet { friend AttributeListImpl; template <typename Ty> friend struct DenseMapInfo; // TODO: Extract AvailableAttrs from AttributeSetNode and store them here. // This will allow an efficient implementation of addAttribute and // removeAttribute for enum attrs. /// Private implementation pointer. AttributeSetNode *SetNode = nullptr; private: explicit AttributeSet(AttributeSetNode *ASN) : SetNode(ASN) {} public: /// AttributeSet is a trivially copyable value type. AttributeSet() = default; AttributeSet(const AttributeSet &) = default; ~AttributeSet() = default; static AttributeSet get(LLVMContext &C, const AttrBuilder &B); static AttributeSet get(LLVMContext &C, ArrayRef<Attribute> Attrs); bool operator==(const AttributeSet &O) const { return SetNode == O.SetNode; } bool operator!=(const AttributeSet &O) const { return !(*this == O); } /// Add an argument attribute. Returns a new set because attribute sets are /// immutable. AttributeSet addAttribute(LLVMContext &C, Attribute::AttrKind Kind) const; /// Add a target-dependent attribute. Returns a new set because attribute sets /// are immutable. AttributeSet addAttribute(LLVMContext &C, StringRef Kind, StringRef Value = StringRef()) const; /// Add attributes to the attribute set. Returns a new set because attribute /// sets are immutable. AttributeSet addAttributes(LLVMContext &C, AttributeSet AS) const; /// Remove the specified attribute from this set. Returns a new set because /// attribute sets are immutable. AttributeSet removeAttribute(LLVMContext &C, Attribute::AttrKind Kind) const; /// Remove the specified attribute from this set. Returns a new set because /// attribute sets are immutable. AttributeSet removeAttribute(LLVMContext &C, StringRef Kind) const; /// Remove the specified attributes from this set. Returns a new set because /// attribute sets are immutable. AttributeSet removeAttributes(LLVMContext &C, const AttrBuilder &AttrsToRemove) const; /// Return the number of attributes in this set. unsigned getNumAttributes() const; /// Return true if attributes exists in this set. bool hasAttributes() const { return SetNode != nullptr; } /// Return true if the attribute exists in this set. bool hasAttribute(Attribute::AttrKind Kind) const; /// Return true if the attribute exists in this set. bool hasAttribute(StringRef Kind) const; /// Return the attribute object. Attribute getAttribute(Attribute::AttrKind Kind) const; /// Return the target-dependent attribute object. Attribute getAttribute(StringRef Kind) const; unsigned getAlignment() const; unsigned getStackAlignment() const; uint64_t getDereferenceableBytes() const; uint64_t getDereferenceableOrNullBytes() const; std::pair<unsigned, Optional<unsigned>> getAllocSizeArgs() const; std::string getAsString(bool InAttrGrp = false) const; using iterator = const Attribute *; iterator begin() const; iterator end() const; #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void dump() const; #endif }; //===----------------------------------------------------------------------===// /// \class /// Provide DenseMapInfo for AttributeSet. template <> struct DenseMapInfo<AttributeSet> { static AttributeSet getEmptyKey() { auto Val = static_cast<uintptr_t>(-1); Val <<= PointerLikeTypeTraits<void *>::NumLowBitsAvailable; return AttributeSet(reinterpret_cast<AttributeSetNode *>(Val)); } static AttributeSet getTombstoneKey() { auto Val = static_cast<uintptr_t>(-2); Val <<= PointerLikeTypeTraits<void *>::NumLowBitsAvailable; return AttributeSet(reinterpret_cast<AttributeSetNode *>(Val)); } static unsigned getHashValue(AttributeSet AS) { return (unsigned((uintptr_t)AS.SetNode) >> 4) ^ (unsigned((uintptr_t)AS.SetNode) >> 9); } static bool isEqual(AttributeSet LHS, AttributeSet RHS) { return LHS == RHS; } }; //===----------------------------------------------------------------------===// /// \class /// This class holds the attributes for a function, its return value, and /// its parameters. You access the attributes for each of them via an index into /// the AttributeList object. The function attributes are at index /// `AttributeList::FunctionIndex', the return value is at index /// `AttributeList::ReturnIndex', and the attributes for the parameters start at /// index `AttributeList::FirstArgIndex'. class AttributeList { public: enum AttrIndex : unsigned { ReturnIndex = 0U, FunctionIndex = ~0U, FirstArgIndex = 1, }; private: friend class AttrBuilder; friend class AttributeListImpl; friend class AttributeSet; friend class AttributeSetNode; template <typename Ty> friend struct DenseMapInfo; /// The attributes that we are managing. This can be null to represent /// the empty attributes list. AttributeListImpl *pImpl = nullptr; public: /// Create an AttributeList with the specified parameters in it. static AttributeList get(LLVMContext &C, ArrayRef<std::pair<unsigned, Attribute>> Attrs); static AttributeList get(LLVMContext &C, ArrayRef<std::pair<unsigned, AttributeSet>> Attrs); /// Create an AttributeList from attribute sets for a function, its /// return value, and all of its arguments. static AttributeList get(LLVMContext &C, AttributeSet FnAttrs, AttributeSet RetAttrs, ArrayRef<AttributeSet> ArgAttrs); private: explicit AttributeList(AttributeListImpl *LI) : pImpl(LI) {} static AttributeList getImpl(LLVMContext &C, ArrayRef<AttributeSet> AttrSets); public: AttributeList() = default; //===--------------------------------------------------------------------===// // AttributeList Construction and Mutation //===--------------------------------------------------------------------===// /// Return an AttributeList with the specified parameters in it. static AttributeList get(LLVMContext &C, ArrayRef<AttributeList> Attrs); static AttributeList get(LLVMContext &C, unsigned Index, ArrayRef<Attribute::AttrKind> Kinds); static AttributeList get(LLVMContext &C, unsigned Index, ArrayRef<StringRef> Kind); static AttributeList get(LLVMContext &C, unsigned Index, const AttrBuilder &B); /// Add an attribute to the attribute set at the given index. /// Returns a new list because attribute lists are immutable. AttributeList addAttribute(LLVMContext &C, unsigned Index, Attribute::AttrKind Kind) const; /// Add an attribute to the attribute set at the given index. /// Returns a new list because attribute lists are immutable. AttributeList addAttribute(LLVMContext &C, unsigned Index, StringRef Kind, StringRef Value = StringRef()) const; /// Add an attribute to the attribute set at the given index. /// Returns a new list because attribute lists are immutable. AttributeList addAttribute(LLVMContext &C, unsigned Index, Attribute A) const; /// Add attributes to the attribute set at the given index. /// Returns a new list because attribute lists are immutable. AttributeList addAttributes(LLVMContext &C, unsigned Index, const AttrBuilder &B) const; /// Add an argument attribute to the list. Returns a new list because /// attribute lists are immutable. AttributeList addParamAttribute(LLVMContext &C, unsigned ArgNo, Attribute::AttrKind Kind) const { return addAttribute(C, ArgNo + FirstArgIndex, Kind); } /// Add an argument attribute to the list. Returns a new list because /// attribute lists are immutable. AttributeList addParamAttribute(LLVMContext &C, unsigned ArgNo, StringRef Kind, StringRef Value = StringRef()) const { return addAttribute(C, ArgNo + FirstArgIndex, Kind, Value); } /// Add an attribute to the attribute list at the given arg indices. Returns a /// new list because attribute lists are immutable. AttributeList addParamAttribute(LLVMContext &C, ArrayRef<unsigned> ArgNos, Attribute A) const; /// Add an argument attribute to the list. Returns a new list because /// attribute lists are immutable. AttributeList addParamAttributes(LLVMContext &C, unsigned ArgNo, const AttrBuilder &B) const { return addAttributes(C, ArgNo + FirstArgIndex, B); } /// Remove the specified attribute at the specified index from this /// attribute list. Returns a new list because attribute lists are immutable. AttributeList removeAttribute(LLVMContext &C, unsigned Index, Attribute::AttrKind Kind) const; /// Remove the specified attribute at the specified index from this /// attribute list. Returns a new list because attribute lists are immutable. AttributeList removeAttribute(LLVMContext &C, unsigned Index, StringRef Kind) const; /// Remove the specified attributes at the specified index from this /// attribute list. Returns a new list because attribute lists are immutable. AttributeList removeAttributes(LLVMContext &C, unsigned Index, const AttrBuilder &AttrsToRemove) const; /// Remove all attributes at the specified index from this /// attribute list. Returns a new list because attribute lists are immutable. AttributeList removeAttributes(LLVMContext &C, unsigned Index) const; /// Remove the specified attribute at the specified arg index from this /// attribute list. Returns a new list because attribute lists are immutable. AttributeList removeParamAttribute(LLVMContext &C, unsigned ArgNo, Attribute::AttrKind Kind) const { return removeAttribute(C, ArgNo + FirstArgIndex, Kind); } /// Remove the specified attribute at the specified arg index from this /// attribute list. Returns a new list because attribute lists are immutable. AttributeList removeParamAttribute(LLVMContext &C, unsigned ArgNo, StringRef Kind) const { return removeAttribute(C, ArgNo + FirstArgIndex, Kind); } /// Remove the specified attribute at the specified arg index from this /// attribute list. Returns a new list because attribute lists are immutable. AttributeList removeParamAttributes(LLVMContext &C, unsigned ArgNo, const AttrBuilder &AttrsToRemove) const { return removeAttributes(C, ArgNo + FirstArgIndex, AttrsToRemove); } /// Remove all attributes at the specified arg index from this /// attribute list. Returns a new list because attribute lists are immutable. AttributeList removeParamAttributes(LLVMContext &C, unsigned ArgNo) const { return removeAttributes(C, ArgNo + FirstArgIndex); } /// \brief Add the dereferenceable attribute to the attribute set at the given /// index. Returns a new list because attribute lists are immutable. AttributeList addDereferenceableAttr(LLVMContext &C, unsigned Index, uint64_t Bytes) const; /// \brief Add the dereferenceable attribute to the attribute set at the given /// arg index. Returns a new list because attribute lists are immutable. AttributeList addDereferenceableParamAttr(LLVMContext &C, unsigned ArgNo, uint64_t Bytes) const { return addDereferenceableAttr(C, ArgNo + FirstArgIndex, Bytes); } /// Add the dereferenceable_or_null attribute to the attribute set at /// the given index. Returns a new list because attribute lists are immutable. AttributeList addDereferenceableOrNullAttr(LLVMContext &C, unsigned Index, uint64_t Bytes) const; /// Add the dereferenceable_or_null attribute to the attribute set at /// the given arg index. Returns a new list because attribute lists are /// immutable. AttributeList addDereferenceableOrNullParamAttr(LLVMContext &C, unsigned ArgNo, uint64_t Bytes) const { return addDereferenceableOrNullAttr(C, ArgNo + FirstArgIndex, Bytes); } /// Add the allocsize attribute to the attribute set at the given index. /// Returns a new list because attribute lists are immutable. AttributeList addAllocSizeAttr(LLVMContext &C, unsigned Index, unsigned ElemSizeArg, const Optional<unsigned> &NumElemsArg); /// Add the allocsize attribute to the attribute set at the given arg index. /// Returns a new list because attribute lists are immutable. AttributeList addAllocSizeParamAttr(LLVMContext &C, unsigned ArgNo, unsigned ElemSizeArg, const Optional<unsigned> &NumElemsArg) { return addAllocSizeAttr(C, ArgNo + FirstArgIndex, ElemSizeArg, NumElemsArg); } //===--------------------------------------------------------------------===// // AttributeList Accessors //===--------------------------------------------------------------------===// /// Retrieve the LLVM context. LLVMContext &getContext() const; /// The attributes for the specified index are returned. AttributeSet getAttributes(unsigned Index) const; /// The attributes for the argument or parameter at the given index are /// returned. AttributeSet getParamAttributes(unsigned ArgNo) const; /// The attributes for the ret value are returned. AttributeSet getRetAttributes() const; /// The function attributes are returned. AttributeSet getFnAttributes() const; /// Return true if the attribute exists at the given index. bool hasAttribute(unsigned Index, Attribute::AttrKind Kind) const; /// Return true if the attribute exists at the given index. bool hasAttribute(unsigned Index, StringRef Kind) const; /// Return true if attribute exists at the given index. bool hasAttributes(unsigned Index) const; /// Return true if the attribute exists for the given argument bool hasParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) const { return hasAttribute(ArgNo + FirstArgIndex, Kind); } /// Return true if the attribute exists for the given argument bool hasParamAttr(unsigned ArgNo, StringRef Kind) const { return hasAttribute(ArgNo + FirstArgIndex, Kind); } /// Return true if attributes exists for the given argument bool hasParamAttrs(unsigned ArgNo) const { return hasAttributes(ArgNo + FirstArgIndex); } /// Equivalent to hasAttribute(AttributeList::FunctionIndex, Kind) but /// may be faster. bool hasFnAttribute(Attribute::AttrKind Kind) const; /// Equivalent to hasAttribute(AttributeList::FunctionIndex, Kind) but /// may be faster. bool hasFnAttribute(StringRef Kind) const; /// Equivalent to hasAttribute(ArgNo + FirstArgIndex, Kind). bool hasParamAttribute(unsigned ArgNo, Attribute::AttrKind Kind) const; /// Return true if the specified attribute is set for at least one /// parameter or for the return value. If Index is not nullptr, the index /// of a parameter with the specified attribute is provided. bool hasAttrSomewhere(Attribute::AttrKind Kind, unsigned *Index = nullptr) const; /// Return the attribute object that exists at the given index. Attribute getAttribute(unsigned Index, Attribute::AttrKind Kind) const; /// Return the attribute object that exists at the given index. Attribute getAttribute(unsigned Index, StringRef Kind) const; /// Return the attribute object that exists at the arg index. Attribute getParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) const { return getAttribute(ArgNo + FirstArgIndex, Kind); } /// Return the attribute object that exists at the given index. Attribute getParamAttr(unsigned ArgNo, StringRef Kind) const { return getAttribute(ArgNo + FirstArgIndex, Kind); } /// Return the alignment of the return value. unsigned getRetAlignment() const; /// Return the alignment for the specified function parameter. unsigned getParamAlignment(unsigned ArgNo) const; /// Get the stack alignment. unsigned getStackAlignment(unsigned Index) const; /// Get the number of dereferenceable bytes (or zero if unknown). uint64_t getDereferenceableBytes(unsigned Index) const; /// Get the number of dereferenceable bytes (or zero if unknown) of an /// arg. uint64_t getParamDereferenceableBytes(unsigned ArgNo) const { return getDereferenceableBytes(ArgNo + FirstArgIndex); } /// Get the number of dereferenceable_or_null bytes (or zero if /// unknown). uint64_t getDereferenceableOrNullBytes(unsigned Index) const; /// Get the number of dereferenceable_or_null bytes (or zero if /// unknown) of an arg. uint64_t getParamDereferenceableOrNullBytes(unsigned ArgNo) const { return getDereferenceableOrNullBytes(ArgNo + FirstArgIndex); } /// Get the allocsize argument numbers (or pair(0, 0) if unknown). std::pair<unsigned, Optional<unsigned>> getAllocSizeArgs(unsigned Index) const; /// Return the attributes at the index as a string. std::string getAsString(unsigned Index, bool InAttrGrp = false) const; //===--------------------------------------------------------------------===// // AttributeList Introspection //===--------------------------------------------------------------------===// using iterator = const AttributeSet *; iterator begin() const; iterator end() const; unsigned getNumAttrSets() const; /// Use these to iterate over the valid attribute indices. unsigned index_begin() const { return AttributeList::FunctionIndex; } unsigned index_end() const { return getNumAttrSets() - 1; } /// operator==/!= - Provide equality predicates. bool operator==(const AttributeList &RHS) const { return pImpl == RHS.pImpl; } bool operator!=(const AttributeList &RHS) const { return pImpl != RHS.pImpl; } /// Return a raw pointer that uniquely identifies this attribute list. void *getRawPointer() const { return pImpl; } /// Return true if there are no attributes. bool isEmpty() const { return pImpl == nullptr; } void dump() const; }; //===----------------------------------------------------------------------===// /// \class /// Provide DenseMapInfo for AttributeList. template <> struct DenseMapInfo<AttributeList> { static AttributeList getEmptyKey() { auto Val = static_cast<uintptr_t>(-1); Val <<= PointerLikeTypeTraits<void*>::NumLowBitsAvailable; return AttributeList(reinterpret_cast<AttributeListImpl *>(Val)); } static AttributeList getTombstoneKey() { auto Val = static_cast<uintptr_t>(-2); Val <<= PointerLikeTypeTraits<void*>::NumLowBitsAvailable; return AttributeList(reinterpret_cast<AttributeListImpl *>(Val)); } static unsigned getHashValue(AttributeList AS) { return (unsigned((uintptr_t)AS.pImpl) >> 4) ^ (unsigned((uintptr_t)AS.pImpl) >> 9); } static bool isEqual(AttributeList LHS, AttributeList RHS) { return LHS == RHS; } }; //===----------------------------------------------------------------------===// /// \class /// This class is used in conjunction with the Attribute::get method to /// create an Attribute object. The object itself is uniquified. The Builder's /// value, however, is not. So this can be used as a quick way to test for /// equality, presence of attributes, etc. class AttrBuilder { std::bitset<Attribute::EndAttrKinds> Attrs; std::map<std::string, std::string> TargetDepAttrs; uint64_t Alignment = 0; uint64_t StackAlignment = 0; uint64_t DerefBytes = 0; uint64_t DerefOrNullBytes = 0; uint64_t AllocSizeArgs = 0; public: AttrBuilder() = default; AttrBuilder(const Attribute &A) { addAttribute(A); } AttrBuilder(AttributeList AS, unsigned Idx); AttrBuilder(AttributeSet AS); void clear(); /// Add an attribute to the builder. AttrBuilder &addAttribute(Attribute::AttrKind Val); /// Add the Attribute object to the builder. AttrBuilder &addAttribute(Attribute A); /// Add the target-dependent attribute to the builder. AttrBuilder &addAttribute(StringRef A, StringRef V = StringRef()); /// Remove an attribute from the builder. AttrBuilder &removeAttribute(Attribute::AttrKind Val); /// Remove the attributes from the builder. AttrBuilder &removeAttributes(AttributeList A, uint64_t WithoutIndex); /// Remove the target-dependent attribute to the builder. AttrBuilder &removeAttribute(StringRef A); /// Add the attributes from the builder. AttrBuilder &merge(const AttrBuilder &B); /// Remove the attributes from the builder. AttrBuilder &remove(const AttrBuilder &B); /// Return true if the builder has any attribute that's in the /// specified builder. bool overlaps(const AttrBuilder &B) const; /// Return true if the builder has the specified attribute. bool contains(Attribute::AttrKind A) const { assert((unsigned)A < Attribute::EndAttrKinds && "Attribute out of range!"); return Attrs[A]; } /// Return true if the builder has the specified target-dependent /// attribute. bool contains(StringRef A) const; /// Return true if the builder has IR-level attributes. bool hasAttributes() const; /// Return true if the builder has any attribute that's in the /// specified attribute. bool hasAttributes(AttributeList A, uint64_t Index) const; /// Return true if the builder has an alignment attribute. bool hasAlignmentAttr() const; /// Retrieve the alignment attribute, if it exists. uint64_t getAlignment() const { return Alignment; } /// Retrieve the stack alignment attribute, if it exists. uint64_t getStackAlignment() const { return StackAlignment; } /// Retrieve the number of dereferenceable bytes, if the /// dereferenceable attribute exists (zero is returned otherwise). uint64_t getDereferenceableBytes() const { return DerefBytes; } /// Retrieve the number of dereferenceable_or_null bytes, if the /// dereferenceable_or_null attribute exists (zero is returned otherwise). uint64_t getDereferenceableOrNullBytes() const { return DerefOrNullBytes; } /// Retrieve the allocsize args, if the allocsize attribute exists. If it /// doesn't exist, pair(0, 0) is returned. std::pair<unsigned, Optional<unsigned>> getAllocSizeArgs() const; /// This turns an int alignment (which must be a power of 2) into the /// form used internally in Attribute. AttrBuilder &addAlignmentAttr(unsigned Align); /// This turns an int stack alignment (which must be a power of 2) into /// the form used internally in Attribute. AttrBuilder &addStackAlignmentAttr(unsigned Align); /// This turns the number of dereferenceable bytes into the form used /// internally in Attribute. AttrBuilder &addDereferenceableAttr(uint64_t Bytes); /// This turns the number of dereferenceable_or_null bytes into the /// form used internally in Attribute. AttrBuilder &addDereferenceableOrNullAttr(uint64_t Bytes); /// This turns one (or two) ints into the form used internally in Attribute. AttrBuilder &addAllocSizeAttr(unsigned ElemSizeArg, const Optional<unsigned> &NumElemsArg); /// Add an allocsize attribute, using the representation returned by /// Attribute.getIntValue(). AttrBuilder &addAllocSizeAttrFromRawRepr(uint64_t RawAllocSizeRepr); /// Return true if the builder contains no target-independent /// attributes. bool empty() const { return Attrs.none(); } // Iterators for target-dependent attributes. using td_type = std::pair<std::string, std::string>; using td_iterator = std::map<std::string, std::string>::iterator; using td_const_iterator = std::map<std::string, std::string>::const_iterator; using td_range = iterator_range<td_iterator>; using td_const_range = iterator_range<td_const_iterator>; td_iterator td_begin() { return TargetDepAttrs.begin(); } td_iterator td_end() { return TargetDepAttrs.end(); } td_const_iterator td_begin() const { return TargetDepAttrs.begin(); } td_const_iterator td_end() const { return TargetDepAttrs.end(); } td_range td_attrs() { return td_range(td_begin(), td_end()); } td_const_range td_attrs() const { return td_const_range(td_begin(), td_end()); } bool td_empty() const { return TargetDepAttrs.empty(); } bool operator==(const AttrBuilder &B); bool operator!=(const AttrBuilder &B) { return !(*this == B); } }; namespace AttributeFuncs { /// Which attributes cannot be applied to a type. AttrBuilder typeIncompatible(Type *Ty); /// \returns Return true if the two functions have compatible target-independent /// attributes for inlining purposes. bool areInlineCompatible(const Function &Caller, const Function &Callee); /// Merge caller's and callee's attributes. void mergeAttributesForInlining(Function &Caller, const Function &Callee); } // end namespace AttributeFuncs } // end namespace llvm #endif // LLVM_IR_ATTRIBUTES_H