//===- llvm/DataLayout.h - Data size & alignment info -----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines layout properties related to datatype size/offset/alignment // information. It uses lazy annotations to cache information about how // structure types are laid out and used. // // This structure should be created once, filled in if the defaults are not // correct and then passed around by const&. None of the members functions // require modification to the object. // //===----------------------------------------------------------------------===// #ifndef LLVM_IR_DATALAYOUT_H #define LLVM_IR_DATALAYOUT_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Type.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include <cassert> #include <cstdint> #include <string> // This needs to be outside of the namespace, to avoid conflict with llvm-c // decl. using LLVMTargetDataRef = struct LLVMOpaqueTargetData *; namespace llvm { class GlobalVariable; class LLVMContext; class Module; class StructLayout; class Triple; class Value; /// Enum used to categorize the alignment types stored by LayoutAlignElem enum AlignTypeEnum { INVALID_ALIGN = 0, INTEGER_ALIGN = 'i', VECTOR_ALIGN = 'v', FLOAT_ALIGN = 'f', AGGREGATE_ALIGN = 'a' }; // FIXME: Currently the DataLayout string carries a "preferred alignment" // for types. As the DataLayout is module/global, this should likely be // sunk down to an FTTI element that is queried rather than a global // preference. /// Layout alignment element. /// /// Stores the alignment data associated with a given alignment type (integer, /// vector, float) and type bit width. /// /// \note The unusual order of elements in the structure attempts to reduce /// padding and make the structure slightly more cache friendly. struct LayoutAlignElem { /// Alignment type from \c AlignTypeEnum unsigned AlignType : 8; unsigned TypeBitWidth : 24; unsigned ABIAlign : 16; unsigned PrefAlign : 16; static LayoutAlignElem get(AlignTypeEnum align_type, unsigned abi_align, unsigned pref_align, uint32_t bit_width); bool operator==(const LayoutAlignElem &rhs) const; }; /// Layout pointer alignment element. /// /// Stores the alignment data associated with a given pointer and address space. /// /// \note The unusual order of elements in the structure attempts to reduce /// padding and make the structure slightly more cache friendly. struct PointerAlignElem { unsigned ABIAlign; unsigned PrefAlign; uint32_t TypeByteWidth; uint32_t AddressSpace; uint32_t IndexWidth; /// Initializer static PointerAlignElem get(uint32_t AddressSpace, unsigned ABIAlign, unsigned PrefAlign, uint32_t TypeByteWidth, uint32_t IndexWidth); bool operator==(const PointerAlignElem &rhs) const; }; /// A parsed version of the target data layout string in and methods for /// querying it. /// /// The target data layout string is specified *by the target* - a frontend /// generating LLVM IR is required to generate the right target data for the /// target being codegen'd to. class DataLayout { private: /// Defaults to false. bool BigEndian; unsigned AllocaAddrSpace; unsigned StackNaturalAlign; unsigned ProgramAddrSpace; enum ManglingModeT { MM_None, MM_ELF, MM_MachO, MM_WinCOFF, MM_WinCOFFX86, MM_Mips }; ManglingModeT ManglingMode; SmallVector<unsigned char, 8> LegalIntWidths; /// Primitive type alignment data. This is sorted by type and bit /// width during construction. using AlignmentsTy = SmallVector<LayoutAlignElem, 16>; AlignmentsTy Alignments; AlignmentsTy::const_iterator findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth) const { return const_cast<DataLayout *>(this)->findAlignmentLowerBound(AlignType, BitWidth); } AlignmentsTy::iterator findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth); /// The string representation used to create this DataLayout std::string StringRepresentation; using PointersTy = SmallVector<PointerAlignElem, 8>; PointersTy Pointers; PointersTy::const_iterator findPointerLowerBound(uint32_t AddressSpace) const { return const_cast<DataLayout *>(this)->findPointerLowerBound(AddressSpace); } PointersTy::iterator findPointerLowerBound(uint32_t AddressSpace); // The StructType -> StructLayout map. mutable void *LayoutMap = nullptr; /// Pointers in these address spaces are non-integral, and don't have a /// well-defined bitwise representation. SmallVector<unsigned, 8> NonIntegralAddressSpaces; void setAlignment(AlignTypeEnum align_type, unsigned abi_align, unsigned pref_align, uint32_t bit_width); unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width, bool ABIAlign, Type *Ty) const; void setPointerAlignment(uint32_t AddrSpace, unsigned ABIAlign, unsigned PrefAlign, uint32_t TypeByteWidth, uint32_t IndexWidth); /// Internal helper method that returns requested alignment for type. unsigned getAlignment(Type *Ty, bool abi_or_pref) const; /// Parses a target data specification string. Assert if the string is /// malformed. void parseSpecifier(StringRef LayoutDescription); // Free all internal data structures. void clear(); public: /// Constructs a DataLayout from a specification string. See reset(). explicit DataLayout(StringRef LayoutDescription) { reset(LayoutDescription); } /// Initialize target data from properties stored in the module. explicit DataLayout(const Module *M); DataLayout(const DataLayout &DL) { *this = DL; } ~DataLayout(); // Not virtual, do not subclass this class DataLayout &operator=(const DataLayout &DL) { clear(); StringRepresentation = DL.StringRepresentation; BigEndian = DL.isBigEndian(); AllocaAddrSpace = DL.AllocaAddrSpace; StackNaturalAlign = DL.StackNaturalAlign; ProgramAddrSpace = DL.ProgramAddrSpace; ManglingMode = DL.ManglingMode; LegalIntWidths = DL.LegalIntWidths; Alignments = DL.Alignments; Pointers = DL.Pointers; NonIntegralAddressSpaces = DL.NonIntegralAddressSpaces; return *this; } bool operator==(const DataLayout &Other) const; bool operator!=(const DataLayout &Other) const { return !(*this == Other); } void init(const Module *M); /// Parse a data layout string (with fallback to default values). void reset(StringRef LayoutDescription); /// Layout endianness... bool isLittleEndian() const { return !BigEndian; } bool isBigEndian() const { return BigEndian; } /// Returns the string representation of the DataLayout. /// /// This representation is in the same format accepted by the string /// constructor above. This should not be used to compare two DataLayout as /// different string can represent the same layout. const std::string &getStringRepresentation() const { return StringRepresentation; } /// Test if the DataLayout was constructed from an empty string. bool isDefault() const { return StringRepresentation.empty(); } /// Returns true if the specified type is known to be a native integer /// type supported by the CPU. /// /// For example, i64 is not native on most 32-bit CPUs and i37 is not native /// on any known one. This returns false if the integer width is not legal. /// /// The width is specified in bits. bool isLegalInteger(uint64_t Width) const { for (unsigned LegalIntWidth : LegalIntWidths) if (LegalIntWidth == Width) return true; return false; } bool isIllegalInteger(uint64_t Width) const { return !isLegalInteger(Width); } /// Returns true if the given alignment exceeds the natural stack alignment. bool exceedsNaturalStackAlignment(unsigned Align) const { return (StackNaturalAlign != 0) && (Align > StackNaturalAlign); } unsigned getStackAlignment() const { return StackNaturalAlign; } unsigned getAllocaAddrSpace() const { return AllocaAddrSpace; } unsigned getProgramAddressSpace() const { return ProgramAddrSpace; } bool hasMicrosoftFastStdCallMangling() const { return ManglingMode == MM_WinCOFFX86; } /// Returns true if symbols with leading question marks should not receive IR /// mangling. True for Windows mangling modes. bool doNotMangleLeadingQuestionMark() const { return ManglingMode == MM_WinCOFF || ManglingMode == MM_WinCOFFX86; } bool hasLinkerPrivateGlobalPrefix() const { return ManglingMode == MM_MachO; } StringRef getLinkerPrivateGlobalPrefix() const { if (ManglingMode == MM_MachO) return "l"; return ""; } char getGlobalPrefix() const { switch (ManglingMode) { case MM_None: case MM_ELF: case MM_Mips: case MM_WinCOFF: return '\0'; case MM_MachO: case MM_WinCOFFX86: return '_'; } llvm_unreachable("invalid mangling mode"); } StringRef getPrivateGlobalPrefix() const { switch (ManglingMode) { case MM_None: return ""; case MM_ELF: case MM_WinCOFF: return ".L"; case MM_Mips: return "$"; case MM_MachO: case MM_WinCOFFX86: return "L"; } llvm_unreachable("invalid mangling mode"); } static const char *getManglingComponent(const Triple &T); /// Returns true if the specified type fits in a native integer type /// supported by the CPU. /// /// For example, if the CPU only supports i32 as a native integer type, then /// i27 fits in a legal integer type but i45 does not. bool fitsInLegalInteger(unsigned Width) const { for (unsigned LegalIntWidth : LegalIntWidths) if (Width <= LegalIntWidth) return true; return false; } /// Layout pointer alignment unsigned getPointerABIAlignment(unsigned AS) const; /// Return target's alignment for stack-based pointers /// FIXME: The defaults need to be removed once all of /// the backends/clients are updated. unsigned getPointerPrefAlignment(unsigned AS = 0) const; /// Layout pointer size /// FIXME: The defaults need to be removed once all of /// the backends/clients are updated. unsigned getPointerSize(unsigned AS = 0) const; // Index size used for address calculation. unsigned getIndexSize(unsigned AS) const; /// Return the address spaces containing non-integral pointers. Pointers in /// this address space don't have a well-defined bitwise representation. ArrayRef<unsigned> getNonIntegralAddressSpaces() const { return NonIntegralAddressSpaces; } bool isNonIntegralPointerType(PointerType *PT) const { ArrayRef<unsigned> NonIntegralSpaces = getNonIntegralAddressSpaces(); return find(NonIntegralSpaces, PT->getAddressSpace()) != NonIntegralSpaces.end(); } bool isNonIntegralPointerType(Type *Ty) const { auto *PTy = dyn_cast<PointerType>(Ty); return PTy && isNonIntegralPointerType(PTy); } /// Layout pointer size, in bits /// FIXME: The defaults need to be removed once all of /// the backends/clients are updated. unsigned getPointerSizeInBits(unsigned AS = 0) const { return getPointerSize(AS) * 8; } /// Size in bits of index used for address calculation in getelementptr. unsigned getIndexSizeInBits(unsigned AS) const { return getIndexSize(AS) * 8; } /// Layout pointer size, in bits, based on the type. If this function is /// called with a pointer type, then the type size of the pointer is returned. /// If this function is called with a vector of pointers, then the type size /// of the pointer is returned. This should only be called with a pointer or /// vector of pointers. unsigned getPointerTypeSizeInBits(Type *) const; /// Layout size of the index used in GEP calculation. /// The function should be called with pointer or vector of pointers type. unsigned getIndexTypeSizeInBits(Type *Ty) const; unsigned getPointerTypeSize(Type *Ty) const { return getPointerTypeSizeInBits(Ty) / 8; } /// Size examples: /// /// Type SizeInBits StoreSizeInBits AllocSizeInBits[*] /// ---- ---------- --------------- --------------- /// i1 1 8 8 /// i8 8 8 8 /// i19 19 24 32 /// i32 32 32 32 /// i100 100 104 128 /// i128 128 128 128 /// Float 32 32 32 /// Double 64 64 64 /// X86_FP80 80 80 96 /// /// [*] The alloc size depends on the alignment, and thus on the target. /// These values are for x86-32 linux. /// Returns the number of bits necessary to hold the specified type. /// /// For example, returns 36 for i36 and 80 for x86_fp80. The type passed must /// have a size (Type::isSized() must return true). uint64_t getTypeSizeInBits(Type *Ty) const; /// Returns the maximum number of bytes that may be overwritten by /// storing the specified type. /// /// For example, returns 5 for i36 and 10 for x86_fp80. uint64_t getTypeStoreSize(Type *Ty) const { return (getTypeSizeInBits(Ty) + 7) / 8; } /// Returns the maximum number of bits that may be overwritten by /// storing the specified type; always a multiple of 8. /// /// For example, returns 40 for i36 and 80 for x86_fp80. uint64_t getTypeStoreSizeInBits(Type *Ty) const { return 8 * getTypeStoreSize(Ty); } /// Returns the offset in bytes between successive objects of the /// specified type, including alignment padding. /// /// This is the amount that alloca reserves for this type. For example, /// returns 12 or 16 for x86_fp80, depending on alignment. uint64_t getTypeAllocSize(Type *Ty) const { // Round up to the next alignment boundary. return alignTo(getTypeStoreSize(Ty), getABITypeAlignment(Ty)); } /// Returns the offset in bits between successive objects of the /// specified type, including alignment padding; always a multiple of 8. /// /// This is the amount that alloca reserves for this type. For example, /// returns 96 or 128 for x86_fp80, depending on alignment. uint64_t getTypeAllocSizeInBits(Type *Ty) const { return 8 * getTypeAllocSize(Ty); } /// Returns the minimum ABI-required alignment for the specified type. unsigned getABITypeAlignment(Type *Ty) const; /// Returns the minimum ABI-required alignment for an integer type of /// the specified bitwidth. unsigned getABIIntegerTypeAlignment(unsigned BitWidth) const; /// Returns the preferred stack/global alignment for the specified /// type. /// /// This is always at least as good as the ABI alignment. unsigned getPrefTypeAlignment(Type *Ty) const; /// Returns the preferred alignment for the specified type, returned as /// log2 of the value (a shift amount). unsigned getPreferredTypeAlignmentShift(Type *Ty) const; /// Returns an integer type with size at least as big as that of a /// pointer in the given address space. IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const; /// Returns an integer (vector of integer) type with size at least as /// big as that of a pointer of the given pointer (vector of pointer) type. Type *getIntPtrType(Type *) const; /// Returns the smallest integer type with size at least as big as /// Width bits. Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const; /// Returns the largest legal integer type, or null if none are set. Type *getLargestLegalIntType(LLVMContext &C) const { unsigned LargestSize = getLargestLegalIntTypeSizeInBits(); return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize); } /// Returns the size of largest legal integer type size, or 0 if none /// are set. unsigned getLargestLegalIntTypeSizeInBits() const; /// Returns the type of a GEP index. /// If it was not specified explicitly, it will be the integer type of the /// pointer width - IntPtrType. Type *getIndexType(Type *PtrTy) const; /// Returns the offset from the beginning of the type for the specified /// indices. /// /// Note that this takes the element type, not the pointer type. /// This is used to implement getelementptr. int64_t getIndexedOffsetInType(Type *ElemTy, ArrayRef<Value *> Indices) const; /// Returns a StructLayout object, indicating the alignment of the /// struct, its size, and the offsets of its fields. /// /// Note that this information is lazily cached. const StructLayout *getStructLayout(StructType *Ty) const; /// Returns the preferred alignment of the specified global. /// /// This includes an explicitly requested alignment (if the global has one). unsigned getPreferredAlignment(const GlobalVariable *GV) const; /// Returns the preferred alignment of the specified global, returned /// in log form. /// /// This includes an explicitly requested alignment (if the global has one). unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const; }; inline DataLayout *unwrap(LLVMTargetDataRef P) { return reinterpret_cast<DataLayout *>(P); } inline LLVMTargetDataRef wrap(const DataLayout *P) { return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout *>(P)); } /// Used to lazily calculate structure layout information for a target machine, /// based on the DataLayout structure. class StructLayout { uint64_t StructSize; unsigned StructAlignment; unsigned IsPadded : 1; unsigned NumElements : 31; uint64_t MemberOffsets[1]; // variable sized array! public: uint64_t getSizeInBytes() const { return StructSize; } uint64_t getSizeInBits() const { return 8 * StructSize; } unsigned getAlignment() const { return StructAlignment; } /// Returns whether the struct has padding or not between its fields. /// NB: Padding in nested element is not taken into account. bool hasPadding() const { return IsPadded; } /// Given a valid byte offset into the structure, returns the structure /// index that contains it. unsigned getElementContainingOffset(uint64_t Offset) const; uint64_t getElementOffset(unsigned Idx) const { assert(Idx < NumElements && "Invalid element idx!"); return MemberOffsets[Idx]; } uint64_t getElementOffsetInBits(unsigned Idx) const { return getElementOffset(Idx) * 8; } private: friend class DataLayout; // Only DataLayout can create this class StructLayout(StructType *ST, const DataLayout &DL); }; // The implementation of this method is provided inline as it is particularly // well suited to constant folding when called on a specific Type subclass. inline uint64_t DataLayout::getTypeSizeInBits(Type *Ty) const { assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); switch (Ty->getTypeID()) { case Type::LabelTyID: return getPointerSizeInBits(0); case Type::PointerTyID: return getPointerSizeInBits(Ty->getPointerAddressSpace()); case Type::ArrayTyID: { ArrayType *ATy = cast<ArrayType>(Ty); return ATy->getNumElements() * getTypeAllocSizeInBits(ATy->getElementType()); } case Type::StructTyID: // Get the layout annotation... which is lazily created on demand. return getStructLayout(cast<StructType>(Ty))->getSizeInBits(); case Type::IntegerTyID: return Ty->getIntegerBitWidth(); case Type::HalfTyID: return 16; case Type::FloatTyID: return 32; case Type::DoubleTyID: case Type::X86_MMXTyID: return 64; case Type::PPC_FP128TyID: case Type::FP128TyID: return 128; // In memory objects this is always aligned to a higher boundary, but // only 80 bits contain information. case Type::X86_FP80TyID: return 80; case Type::VectorTyID: { VectorType *VTy = cast<VectorType>(Ty); return VTy->getNumElements() * getTypeSizeInBits(VTy->getElementType()); } default: llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type"); } } } // end namespace llvm #endif // LLVM_IR_DATALAYOUT_H