//===-LTO.h - LLVM Link Time Optimizer ------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file declares functions and classes used to support LTO. It is intended // to be used both by LTO classes as well as by clients (gold-plugin) that // don't utilize the LTO code generator interfaces. // //===----------------------------------------------------------------------===// #ifndef LLVM_LTO_LTO_H #define LLVM_LTO_LTO_H #include "llvm/ADT/MapVector.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringSet.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/ModuleSummaryIndex.h" #include "llvm/LTO/Config.h" #include "llvm/Linker/IRMover.h" #include "llvm/Object/IRSymtab.h" #include "llvm/Support/Error.h" #include "llvm/Support/ToolOutputFile.h" #include "llvm/Support/thread.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Transforms/IPO/FunctionImport.h" namespace llvm { class BitcodeModule; class Error; class LLVMContext; class MemoryBufferRef; class Module; class Target; class raw_pwrite_stream; /// Resolve linkage for prevailing symbols in the \p Index. Linkage changes /// recorded in the index and the ThinLTO backends must apply the changes to /// the module via thinLTOResolvePrevailingInModule. /// /// This is done for correctness (if value exported, ensure we always /// emit a copy), and compile-time optimization (allow drop of duplicates). void thinLTOResolvePrevailingInIndex( ModuleSummaryIndex &Index, function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> isPrevailing, function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> recordNewLinkage); /// Update the linkages in the given \p Index to mark exported values /// as external and non-exported values as internal. The ThinLTO backends /// must apply the changes to the Module via thinLTOInternalizeModule. void thinLTOInternalizeAndPromoteInIndex( ModuleSummaryIndex &Index, function_ref<bool(StringRef, GlobalValue::GUID)> isExported); namespace lto { /// Given the original \p Path to an output file, replace any path /// prefix matching \p OldPrefix with \p NewPrefix. Also, create the /// resulting directory if it does not yet exist. std::string getThinLTOOutputFile(const std::string &Path, const std::string &OldPrefix, const std::string &NewPrefix); /// Setup optimization remarks. Expected<std::unique_ptr<ToolOutputFile>> setupOptimizationRemarks(LLVMContext &Context, StringRef LTORemarksFilename, bool LTOPassRemarksWithHotness, int Count = -1); class LTO; struct SymbolResolution; class ThinBackendProc; /// An input file. This is a symbol table wrapper that only exposes the /// information that an LTO client should need in order to do symbol resolution. class InputFile { public: class Symbol; private: // FIXME: Remove LTO class friendship once we have bitcode symbol tables. friend LTO; InputFile() = default; std::vector<BitcodeModule> Mods; SmallVector<char, 0> Strtab; std::vector<Symbol> Symbols; // [begin, end) for each module std::vector<std::pair<size_t, size_t>> ModuleSymIndices; StringRef TargetTriple, SourceFileName, COFFLinkerOpts; std::vector<StringRef> ComdatTable; public: ~InputFile(); /// Create an InputFile. static Expected<std::unique_ptr<InputFile>> create(MemoryBufferRef Object); /// The purpose of this class is to only expose the symbol information that an /// LTO client should need in order to do symbol resolution. class Symbol : irsymtab::Symbol { friend LTO; public: Symbol(const irsymtab::Symbol &S) : irsymtab::Symbol(S) {} using irsymtab::Symbol::isUndefined; using irsymtab::Symbol::isCommon; using irsymtab::Symbol::isWeak; using irsymtab::Symbol::isIndirect; using irsymtab::Symbol::getName; using irsymtab::Symbol::getVisibility; using irsymtab::Symbol::canBeOmittedFromSymbolTable; using irsymtab::Symbol::isTLS; using irsymtab::Symbol::getComdatIndex; using irsymtab::Symbol::getCommonSize; using irsymtab::Symbol::getCommonAlignment; using irsymtab::Symbol::getCOFFWeakExternalFallback; using irsymtab::Symbol::getSectionName; using irsymtab::Symbol::isExecutable; }; /// A range over the symbols in this InputFile. ArrayRef<Symbol> symbols() const { return Symbols; } /// Returns linker options specified in the input file. StringRef getCOFFLinkerOpts() const { return COFFLinkerOpts; } /// Returns the path to the InputFile. StringRef getName() const; /// Returns the input file's target triple. StringRef getTargetTriple() const { return TargetTriple; } /// Returns the source file path specified at compile time. StringRef getSourceFileName() const { return SourceFileName; } // Returns a table with all the comdats used by this file. ArrayRef<StringRef> getComdatTable() const { return ComdatTable; } private: ArrayRef<Symbol> module_symbols(unsigned I) const { const auto &Indices = ModuleSymIndices[I]; return {Symbols.data() + Indices.first, Symbols.data() + Indices.second}; } }; /// This class wraps an output stream for a native object. Most clients should /// just be able to return an instance of this base class from the stream /// callback, but if a client needs to perform some action after the stream is /// written to, that can be done by deriving from this class and overriding the /// destructor. class NativeObjectStream { public: NativeObjectStream(std::unique_ptr<raw_pwrite_stream> OS) : OS(std::move(OS)) {} std::unique_ptr<raw_pwrite_stream> OS; virtual ~NativeObjectStream() = default; }; /// This type defines the callback to add a native object that is generated on /// the fly. /// /// Stream callbacks must be thread safe. typedef std::function<std::unique_ptr<NativeObjectStream>(unsigned Task)> AddStreamFn; /// This is the type of a native object cache. To request an item from the /// cache, pass a unique string as the Key. For hits, the cached file will be /// added to the link and this function will return AddStreamFn(). For misses, /// the cache will return a stream callback which must be called at most once to /// produce content for the stream. The native object stream produced by the /// stream callback will add the file to the link after the stream is written /// to. /// /// Clients generally look like this: /// /// if (AddStreamFn AddStream = Cache(Task, Key)) /// ProduceContent(AddStream); typedef std::function<AddStreamFn(unsigned Task, StringRef Key)> NativeObjectCache; /// A ThinBackend defines what happens after the thin-link phase during ThinLTO. /// The details of this type definition aren't important; clients can only /// create a ThinBackend using one of the create*ThinBackend() functions below. typedef std::function<std::unique_ptr<ThinBackendProc>( Config &C, ModuleSummaryIndex &CombinedIndex, StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, AddStreamFn AddStream, NativeObjectCache Cache)> ThinBackend; /// This ThinBackend runs the individual backend jobs in-process. ThinBackend createInProcessThinBackend(unsigned ParallelismLevel); /// This ThinBackend writes individual module indexes to files, instead of /// running the individual backend jobs. This backend is for distributed builds /// where separate processes will invoke the real backends. /// /// To find the path to write the index to, the backend checks if the path has a /// prefix of OldPrefix; if so, it replaces that prefix with NewPrefix. It then /// appends ".thinlto.bc" and writes the index to that path. If /// ShouldEmitImportsFiles is true it also writes a list of imported files to a /// similar path with ".imports" appended instead. /// LinkedObjectsFile is an output stream to write the list of object files for /// the final ThinLTO linking. Can be nullptr. /// OnWrite is callback which receives module identifier and notifies LTO user /// that index file for the module (and optionally imports file) was created. using IndexWriteCallback = std::function<void(const std::string &)>; ThinBackend createWriteIndexesThinBackend(std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles, raw_fd_ostream *LinkedObjectsFile, IndexWriteCallback OnWrite); /// This class implements a resolution-based interface to LLVM's LTO /// functionality. It supports regular LTO, parallel LTO code generation and /// ThinLTO. You can use it from a linker in the following way: /// - Set hooks and code generation options (see lto::Config struct defined in /// Config.h), and use the lto::Config object to create an lto::LTO object. /// - Create lto::InputFile objects using lto::InputFile::create(), then use /// the symbols() function to enumerate its symbols and compute a resolution /// for each symbol (see SymbolResolution below). /// - After the linker has visited each input file (and each regular object /// file) and computed a resolution for each symbol, take each lto::InputFile /// and pass it and an array of symbol resolutions to the add() function. /// - Call the getMaxTasks() function to get an upper bound on the number of /// native object files that LTO may add to the link. /// - Call the run() function. This function will use the supplied AddStream /// and Cache functions to add up to getMaxTasks() native object files to /// the link. class LTO { friend InputFile; public: /// Create an LTO object. A default constructed LTO object has a reasonable /// production configuration, but you can customize it by passing arguments to /// this constructor. /// FIXME: We do currently require the DiagHandler field to be set in Conf. /// Until that is fixed, a Config argument is required. LTO(Config Conf, ThinBackend Backend = nullptr, unsigned ParallelCodeGenParallelismLevel = 1); ~LTO(); /// Add an input file to the LTO link, using the provided symbol resolutions. /// The symbol resolutions must appear in the enumeration order given by /// InputFile::symbols(). Error add(std::unique_ptr<InputFile> Obj, ArrayRef<SymbolResolution> Res); /// Returns an upper bound on the number of tasks that the client may expect. /// This may only be called after all IR object files have been added. For a /// full description of tasks see LTOBackend.h. unsigned getMaxTasks() const; /// Runs the LTO pipeline. This function calls the supplied AddStream /// function to add native object files to the link. /// /// The Cache parameter is optional. If supplied, it will be used to cache /// native object files and add them to the link. /// /// The client will receive at most one callback (via either AddStream or /// Cache) for each task identifier. Error run(AddStreamFn AddStream, NativeObjectCache Cache = nullptr); private: Config Conf; struct RegularLTOState { RegularLTOState(unsigned ParallelCodeGenParallelismLevel, Config &Conf); struct CommonResolution { uint64_t Size = 0; unsigned Align = 0; /// Record if at least one instance of the common was marked as prevailing bool Prevailing = false; }; std::map<std::string, CommonResolution> Commons; unsigned ParallelCodeGenParallelismLevel; LTOLLVMContext Ctx; std::unique_ptr<Module> CombinedModule; std::unique_ptr<IRMover> Mover; // This stores the information about a regular LTO module that we have added // to the link. It will either be linked immediately (for modules without // summaries) or after summary-based dead stripping (for modules with // summaries). struct AddedModule { std::unique_ptr<Module> M; std::vector<GlobalValue *> Keep; }; std::vector<AddedModule> ModsWithSummaries; } RegularLTO; struct ThinLTOState { ThinLTOState(ThinBackend Backend); ThinBackend Backend; ModuleSummaryIndex CombinedIndex; MapVector<StringRef, BitcodeModule> ModuleMap; DenseMap<GlobalValue::GUID, StringRef> PrevailingModuleForGUID; } ThinLTO; // The global resolution for a particular (mangled) symbol name. This is in // particular necessary to track whether each symbol can be internalized. // Because any input file may introduce a new cross-partition reference, we // cannot make any final internalization decisions until all input files have // been added and the client has called run(). During run() we apply // internalization decisions either directly to the module (for regular LTO) // or to the combined index (for ThinLTO). struct GlobalResolution { /// The unmangled name of the global. std::string IRName; /// Keep track if the symbol is visible outside of a module with a summary /// (i.e. in either a regular object or a regular LTO module without a /// summary). bool VisibleOutsideSummary = false; bool UnnamedAddr = true; /// True if module contains the prevailing definition. bool Prevailing = false; /// Returns true if module contains the prevailing definition and symbol is /// an IR symbol. For example when module-level inline asm block is used, /// symbol can be prevailing in module but have no IR name. bool isPrevailingIRSymbol() const { return Prevailing && !IRName.empty(); } /// This field keeps track of the partition number of this global. The /// regular LTO object is partition 0, while each ThinLTO object has its own /// partition number from 1 onwards. /// /// Any global that is defined or used by more than one partition, or that /// is referenced externally, may not be internalized. /// /// Partitions generally have a one-to-one correspondence with tasks, except /// that we use partition 0 for all parallel LTO code generation partitions. /// Any partitioning of the combined LTO object is done internally by the /// LTO backend. unsigned Partition = Unknown; /// Special partition numbers. enum : unsigned { /// A partition number has not yet been assigned to this global. Unknown = -1u, /// This global is either used by more than one partition or has an /// external reference, and therefore cannot be internalized. External = -2u, /// The RegularLTO partition RegularLTO = 0, }; }; // Global mapping from mangled symbol names to resolutions. StringMap<GlobalResolution> GlobalResolutions; void addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms, ArrayRef<SymbolResolution> Res, unsigned Partition, bool InSummary); // These functions take a range of symbol resolutions [ResI, ResE) and consume // the resolutions used by a single input module by incrementing ResI. After // these functions return, [ResI, ResE) will refer to the resolution range for // the remaining modules in the InputFile. Error addModule(InputFile &Input, unsigned ModI, const SymbolResolution *&ResI, const SymbolResolution *ResE); Expected<RegularLTOState::AddedModule> addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, const SymbolResolution *&ResI, const SymbolResolution *ResE); Error linkRegularLTO(RegularLTOState::AddedModule Mod, bool LivenessFromIndex); Error addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, const SymbolResolution *&ResI, const SymbolResolution *ResE); Error runRegularLTO(AddStreamFn AddStream); Error runThinLTO(AddStreamFn AddStream, NativeObjectCache Cache); mutable bool CalledGetMaxTasks = false; }; /// The resolution for a symbol. The linker must provide a SymbolResolution for /// each global symbol based on its internal resolution of that symbol. struct SymbolResolution { SymbolResolution() : Prevailing(0), FinalDefinitionInLinkageUnit(0), VisibleToRegularObj(0), LinkerRedefined(0) {} /// The linker has chosen this definition of the symbol. unsigned Prevailing : 1; /// The definition of this symbol is unpreemptable at runtime and is known to /// be in this linkage unit. unsigned FinalDefinitionInLinkageUnit : 1; /// The definition of this symbol is visible outside of the LTO unit. unsigned VisibleToRegularObj : 1; /// Linker redefined version of the symbol which appeared in -wrap or -defsym /// linker option. unsigned LinkerRedefined : 1; }; } // namespace lto } // namespace llvm #endif