//===- MCAssembler.h - Object File Generation -------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef LLVM_MC_MCASSEMBLER_H #define LLVM_MC_MCASSEMBLER_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/iterator.h" #include "llvm/ADT/iterator_range.h" #include "llvm/BinaryFormat/MachO.h" #include "llvm/MC/MCDirectives.h" #include "llvm/MC/MCDwarf.h" #include "llvm/MC/MCFixup.h" #include "llvm/MC/MCFragment.h" #include "llvm/MC/MCLinkerOptimizationHint.h" #include "llvm/MC/MCSymbol.h" #include <cassert> #include <cstddef> #include <cstdint> #include <string> #include <utility> #include <vector> namespace llvm { class MCAsmBackend; class MCAsmLayout; class MCContext; class MCCodeEmitter; class MCFragment; class MCObjectWriter; class MCSection; class MCValue; // FIXME: This really doesn't belong here. See comments below. struct IndirectSymbolData { MCSymbol *Symbol; MCSection *Section; }; // FIXME: Ditto this. Purely so the Streamer and the ObjectWriter can talk // to one another. struct DataRegionData { // This enum should be kept in sync w/ the mach-o definition in // llvm/Object/MachOFormat.h. enum KindTy { Data = 1, JumpTable8, JumpTable16, JumpTable32 } Kind; MCSymbol *Start; MCSymbol *End; }; class MCAssembler { friend class MCAsmLayout; public: using SectionListType = std::vector<MCSection *>; using SymbolDataListType = std::vector<const MCSymbol *>; using const_iterator = pointee_iterator<SectionListType::const_iterator>; using iterator = pointee_iterator<SectionListType::iterator>; using const_symbol_iterator = pointee_iterator<SymbolDataListType::const_iterator>; using symbol_iterator = pointee_iterator<SymbolDataListType::iterator>; using symbol_range = iterator_range<symbol_iterator>; using const_symbol_range = iterator_range<const_symbol_iterator>; using const_indirect_symbol_iterator = std::vector<IndirectSymbolData>::const_iterator; using indirect_symbol_iterator = std::vector<IndirectSymbolData>::iterator; using const_data_region_iterator = std::vector<DataRegionData>::const_iterator; using data_region_iterator = std::vector<DataRegionData>::iterator; /// MachO specific deployment target version info. // A Major version of 0 indicates that no version information was supplied // and so the corresponding load command should not be emitted. using VersionInfoType = struct { bool EmitBuildVersion; union { MCVersionMinType Type; ///< Used when EmitBuildVersion==false. MachO::PlatformType Platform; ///< Used when EmitBuildVersion==true. } TypeOrPlatform; unsigned Major; unsigned Minor; unsigned Update; }; private: MCContext &Context; std::unique_ptr<MCAsmBackend> Backend; std::unique_ptr<MCCodeEmitter> Emitter; std::unique_ptr<MCObjectWriter> Writer; SectionListType Sections; SymbolDataListType Symbols; std::vector<IndirectSymbolData> IndirectSymbols; std::vector<DataRegionData> DataRegions; /// The list of linker options to propagate into the object file. std::vector<std::vector<std::string>> LinkerOptions; /// List of declared file names std::vector<std::string> FileNames; MCDwarfLineTableParams LTParams; /// The set of function symbols for which a .thumb_func directive has /// been seen. // // FIXME: We really would like this in target specific code rather than // here. Maybe when the relocation stuff moves to target specific, // this can go with it? The streamer would need some target specific // refactoring too. mutable SmallPtrSet<const MCSymbol *, 32> ThumbFuncs; /// The bundle alignment size currently set in the assembler. /// /// By default it's 0, which means bundling is disabled. unsigned BundleAlignSize; bool RelaxAll : 1; bool SubsectionsViaSymbols : 1; bool IncrementalLinkerCompatible : 1; /// ELF specific e_header flags // It would be good if there were an MCELFAssembler class to hold this. // ELF header flags are used both by the integrated and standalone assemblers. // Access to the flags is necessary in cases where assembler directives affect // which flags to be set. unsigned ELFHeaderEFlags; /// Used to communicate Linker Optimization Hint information between /// the Streamer and the .o writer MCLOHContainer LOHContainer; VersionInfoType VersionInfo; /// Evaluate a fixup to a relocatable expression and the value which should be /// placed into the fixup. /// /// \param Layout The layout to use for evaluation. /// \param Fixup The fixup to evaluate. /// \param DF The fragment the fixup is inside. /// \param Target [out] On return, the relocatable expression the fixup /// evaluates to. /// \param Value [out] On return, the value of the fixup as currently laid /// out. /// \param WasForced [out] On return, the value in the fixup is set to the /// correct value if WasForced is true, even if evaluateFixup returns false. /// \return Whether the fixup value was fully resolved. This is true if the /// \p Value result is fixed, otherwise the value may change due to /// relocation. bool evaluateFixup(const MCAsmLayout &Layout, const MCFixup &Fixup, const MCFragment *DF, MCValue &Target, uint64_t &Value, bool &WasForced) const; /// Check whether a fixup can be satisfied, or whether it needs to be relaxed /// (increased in size, in order to hold its value correctly). bool fixupNeedsRelaxation(const MCFixup &Fixup, const MCRelaxableFragment *DF, const MCAsmLayout &Layout) const; /// Check whether the given fragment needs relaxation. bool fragmentNeedsRelaxation(const MCRelaxableFragment *IF, const MCAsmLayout &Layout) const; /// Perform one layout iteration and return true if any offsets /// were adjusted. bool layoutOnce(MCAsmLayout &Layout); /// Perform one layout iteration of the given section and return true /// if any offsets were adjusted. bool layoutSectionOnce(MCAsmLayout &Layout, MCSection &Sec); bool relaxInstruction(MCAsmLayout &Layout, MCRelaxableFragment &IF); bool relaxPaddingFragment(MCAsmLayout &Layout, MCPaddingFragment &PF); bool relaxLEB(MCAsmLayout &Layout, MCLEBFragment &IF); bool relaxDwarfLineAddr(MCAsmLayout &Layout, MCDwarfLineAddrFragment &DF); bool relaxDwarfCallFrameFragment(MCAsmLayout &Layout, MCDwarfCallFrameFragment &DF); bool relaxCVInlineLineTable(MCAsmLayout &Layout, MCCVInlineLineTableFragment &DF); bool relaxCVDefRange(MCAsmLayout &Layout, MCCVDefRangeFragment &DF); /// finishLayout - Finalize a layout, including fragment lowering. void finishLayout(MCAsmLayout &Layout); std::tuple<MCValue, uint64_t, bool> handleFixup(const MCAsmLayout &Layout, MCFragment &F, const MCFixup &Fixup); public: std::vector<std::pair<StringRef, const MCSymbol *>> Symvers; /// Construct a new assembler instance. // // FIXME: How are we going to parameterize this? Two obvious options are stay // concrete and require clients to pass in a target like object. The other // option is to make this abstract, and have targets provide concrete // implementations as we do with AsmParser. MCAssembler(MCContext &Context, std::unique_ptr<MCAsmBackend> Backend, std::unique_ptr<MCCodeEmitter> Emitter, std::unique_ptr<MCObjectWriter> Writer); MCAssembler(const MCAssembler &) = delete; MCAssembler &operator=(const MCAssembler &) = delete; ~MCAssembler(); /// Compute the effective fragment size assuming it is laid out at the given /// \p SectionAddress and \p FragmentOffset. uint64_t computeFragmentSize(const MCAsmLayout &Layout, const MCFragment &F) const; /// Find the symbol which defines the atom containing the given symbol, or /// null if there is no such symbol. const MCSymbol *getAtom(const MCSymbol &S) const; /// Check whether a particular symbol is visible to the linker and is required /// in the symbol table, or whether it can be discarded by the assembler. This /// also effects whether the assembler treats the label as potentially /// defining a separate atom. bool isSymbolLinkerVisible(const MCSymbol &SD) const; /// Emit the section contents to \p OS. void writeSectionData(raw_ostream &OS, const MCSection *Section, const MCAsmLayout &Layout) const; /// Check whether a given symbol has been flagged with .thumb_func. bool isThumbFunc(const MCSymbol *Func) const; /// Flag a function symbol as the target of a .thumb_func directive. void setIsThumbFunc(const MCSymbol *Func) { ThumbFuncs.insert(Func); } /// ELF e_header flags unsigned getELFHeaderEFlags() const { return ELFHeaderEFlags; } void setELFHeaderEFlags(unsigned Flags) { ELFHeaderEFlags = Flags; } /// MachO deployment target version information. const VersionInfoType &getVersionInfo() const { return VersionInfo; } void setVersionMin(MCVersionMinType Type, unsigned Major, unsigned Minor, unsigned Update) { VersionInfo.EmitBuildVersion = false; VersionInfo.TypeOrPlatform.Type = Type; VersionInfo.Major = Major; VersionInfo.Minor = Minor; VersionInfo.Update = Update; } void setBuildVersion(MachO::PlatformType Platform, unsigned Major, unsigned Minor, unsigned Update) { VersionInfo.EmitBuildVersion = true; VersionInfo.TypeOrPlatform.Platform = Platform; VersionInfo.Major = Major; VersionInfo.Minor = Minor; VersionInfo.Update = Update; } /// Reuse an assembler instance /// void reset(); MCContext &getContext() const { return Context; } MCAsmBackend *getBackendPtr() const { return Backend.get(); } MCCodeEmitter *getEmitterPtr() const { return Emitter.get(); } MCObjectWriter *getWriterPtr() const { return Writer.get(); } MCAsmBackend &getBackend() const { return *Backend; } MCCodeEmitter &getEmitter() const { return *Emitter; } MCObjectWriter &getWriter() const { return *Writer; } MCDwarfLineTableParams getDWARFLinetableParams() const { return LTParams; } void setDWARFLinetableParams(MCDwarfLineTableParams P) { LTParams = P; } /// Finish - Do final processing and write the object to the output stream. /// \p Writer is used for custom object writer (as the MCJIT does), /// if not specified it is automatically created from backend. void Finish(); // Layout all section and prepare them for emission. void layout(MCAsmLayout &Layout); // FIXME: This does not belong here. bool getSubsectionsViaSymbols() const { return SubsectionsViaSymbols; } void setSubsectionsViaSymbols(bool Value) { SubsectionsViaSymbols = Value; } bool isIncrementalLinkerCompatible() const { return IncrementalLinkerCompatible; } void setIncrementalLinkerCompatible(bool Value) { IncrementalLinkerCompatible = Value; } bool getRelaxAll() const { return RelaxAll; } void setRelaxAll(bool Value) { RelaxAll = Value; } bool isBundlingEnabled() const { return BundleAlignSize != 0; } unsigned getBundleAlignSize() const { return BundleAlignSize; } void setBundleAlignSize(unsigned Size) { assert((Size == 0 || !(Size & (Size - 1))) && "Expect a power-of-two bundle align size"); BundleAlignSize = Size; } /// \name Section List Access /// @{ iterator begin() { return Sections.begin(); } const_iterator begin() const { return Sections.begin(); } iterator end() { return Sections.end(); } const_iterator end() const { return Sections.end(); } size_t size() const { return Sections.size(); } /// @} /// \name Symbol List Access /// @{ symbol_iterator symbol_begin() { return Symbols.begin(); } const_symbol_iterator symbol_begin() const { return Symbols.begin(); } symbol_iterator symbol_end() { return Symbols.end(); } const_symbol_iterator symbol_end() const { return Symbols.end(); } symbol_range symbols() { return make_range(symbol_begin(), symbol_end()); } const_symbol_range symbols() const { return make_range(symbol_begin(), symbol_end()); } size_t symbol_size() const { return Symbols.size(); } /// @} /// \name Indirect Symbol List Access /// @{ // FIXME: This is a total hack, this should not be here. Once things are // factored so that the streamer has direct access to the .o writer, it can // disappear. std::vector<IndirectSymbolData> &getIndirectSymbols() { return IndirectSymbols; } indirect_symbol_iterator indirect_symbol_begin() { return IndirectSymbols.begin(); } const_indirect_symbol_iterator indirect_symbol_begin() const { return IndirectSymbols.begin(); } indirect_symbol_iterator indirect_symbol_end() { return IndirectSymbols.end(); } const_indirect_symbol_iterator indirect_symbol_end() const { return IndirectSymbols.end(); } size_t indirect_symbol_size() const { return IndirectSymbols.size(); } /// @} /// \name Linker Option List Access /// @{ std::vector<std::vector<std::string>> &getLinkerOptions() { return LinkerOptions; } /// @} /// \name Data Region List Access /// @{ // FIXME: This is a total hack, this should not be here. Once things are // factored so that the streamer has direct access to the .o writer, it can // disappear. std::vector<DataRegionData> &getDataRegions() { return DataRegions; } data_region_iterator data_region_begin() { return DataRegions.begin(); } const_data_region_iterator data_region_begin() const { return DataRegions.begin(); } data_region_iterator data_region_end() { return DataRegions.end(); } const_data_region_iterator data_region_end() const { return DataRegions.end(); } size_t data_region_size() const { return DataRegions.size(); } /// @} /// \name Data Region List Access /// @{ // FIXME: This is a total hack, this should not be here. Once things are // factored so that the streamer has direct access to the .o writer, it can // disappear. MCLOHContainer &getLOHContainer() { return LOHContainer; } const MCLOHContainer &getLOHContainer() const { return const_cast<MCAssembler *>(this)->getLOHContainer(); } struct CGProfileEntry { const MCSymbolRefExpr *From; const MCSymbolRefExpr *To; uint64_t Count; }; std::vector<CGProfileEntry> CGProfile; /// @} /// \name Backend Data Access /// @{ bool registerSection(MCSection &Section); void registerSymbol(const MCSymbol &Symbol, bool *Created = nullptr); ArrayRef<std::string> getFileNames() { return FileNames; } void addFileName(StringRef FileName) { if (!is_contained(FileNames, FileName)) FileNames.push_back(FileName); } /// Write the necessary bundle padding to \p OS. /// Expects a fragment \p F containing instructions and its size \p FSize. void writeFragmentPadding(raw_ostream &OS, const MCEncodedFragment &F, uint64_t FSize) const; /// @} void dump() const; }; /// Compute the amount of padding required before the fragment \p F to /// obey bundling restrictions, where \p FOffset is the fragment's offset in /// its section and \p FSize is the fragment's size. uint64_t computeBundlePadding(const MCAssembler &Assembler, const MCEncodedFragment *F, uint64_t FOffset, uint64_t FSize); } // end namespace llvm #endif // LLVM_MC_MCASSEMBLER_H