//===- llvm/Support/KnownBits.h - Stores known zeros/ones -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a class for representing known zeros and ones used by // computeKnownBits. // //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_KNOWNBITS_H #define LLVM_SUPPORT_KNOWNBITS_H #include "llvm/ADT/APInt.h" namespace llvm { // Struct for tracking the known zeros and ones of a value. struct KnownBits { APInt Zero; APInt One; private: // Internal constructor for creating a KnownBits from two APInts. KnownBits(APInt Zero, APInt One) : Zero(std::move(Zero)), One(std::move(One)) {} public: // Default construct Zero and One. KnownBits() {} /// Create a known bits object of BitWidth bits initialized to unknown. KnownBits(unsigned BitWidth) : Zero(BitWidth, 0), One(BitWidth, 0) {} /// Get the bit width of this value. unsigned getBitWidth() const { assert(Zero.getBitWidth() == One.getBitWidth() && "Zero and One should have the same width!"); return Zero.getBitWidth(); } /// Returns true if there is conflicting information. bool hasConflict() const { return Zero.intersects(One); } /// Returns true if we know the value of all bits. bool isConstant() const { assert(!hasConflict() && "KnownBits conflict!"); return Zero.countPopulation() + One.countPopulation() == getBitWidth(); } /// Returns the value when all bits have a known value. This just returns One /// with a protective assertion. const APInt &getConstant() const { assert(isConstant() && "Can only get value when all bits are known"); return One; } /// Returns true if we don't know any bits. bool isUnknown() const { return Zero.isNullValue() && One.isNullValue(); } /// Resets the known state of all bits. void resetAll() { Zero.clearAllBits(); One.clearAllBits(); } /// Returns true if value is all zero. bool isZero() const { assert(!hasConflict() && "KnownBits conflict!"); return Zero.isAllOnesValue(); } /// Returns true if value is all one bits. bool isAllOnes() const { assert(!hasConflict() && "KnownBits conflict!"); return One.isAllOnesValue(); } /// Make all bits known to be zero and discard any previous information. void setAllZero() { Zero.setAllBits(); One.clearAllBits(); } /// Make all bits known to be one and discard any previous information. void setAllOnes() { Zero.clearAllBits(); One.setAllBits(); } /// Returns true if this value is known to be negative. bool isNegative() const { return One.isSignBitSet(); } /// Returns true if this value is known to be non-negative. bool isNonNegative() const { return Zero.isSignBitSet(); } /// Make this value negative. void makeNegative() { One.setSignBit(); } /// Make this value non-negative. void makeNonNegative() { Zero.setSignBit(); } /// Truncate the underlying known Zero and One bits. This is equivalent /// to truncating the value we're tracking. KnownBits trunc(unsigned BitWidth) { return KnownBits(Zero.trunc(BitWidth), One.trunc(BitWidth)); } /// Zero extends the underlying known Zero and One bits. This is equivalent /// to zero extending the value we're tracking. KnownBits zext(unsigned BitWidth) { return KnownBits(Zero.zext(BitWidth), One.zext(BitWidth)); } /// Sign extends the underlying known Zero and One bits. This is equivalent /// to sign extending the value we're tracking. KnownBits sext(unsigned BitWidth) { return KnownBits(Zero.sext(BitWidth), One.sext(BitWidth)); } /// Zero extends or truncates the underlying known Zero and One bits. This is /// equivalent to zero extending or truncating the value we're tracking. KnownBits zextOrTrunc(unsigned BitWidth) { return KnownBits(Zero.zextOrTrunc(BitWidth), One.zextOrTrunc(BitWidth)); } /// Returns the minimum number of trailing zero bits. unsigned countMinTrailingZeros() const { return Zero.countTrailingOnes(); } /// Returns the minimum number of trailing one bits. unsigned countMinTrailingOnes() const { return One.countTrailingOnes(); } /// Returns the minimum number of leading zero bits. unsigned countMinLeadingZeros() const { return Zero.countLeadingOnes(); } /// Returns the minimum number of leading one bits. unsigned countMinLeadingOnes() const { return One.countLeadingOnes(); } /// Returns the number of times the sign bit is replicated into the other /// bits. unsigned countMinSignBits() const { if (isNonNegative()) return countMinLeadingZeros(); if (isNegative()) return countMinLeadingOnes(); return 0; } /// Returns the maximum number of trailing zero bits possible. unsigned countMaxTrailingZeros() const { return One.countTrailingZeros(); } /// Returns the maximum number of trailing one bits possible. unsigned countMaxTrailingOnes() const { return Zero.countTrailingZeros(); } /// Returns the maximum number of leading zero bits possible. unsigned countMaxLeadingZeros() const { return One.countLeadingZeros(); } /// Returns the maximum number of leading one bits possible. unsigned countMaxLeadingOnes() const { return Zero.countLeadingZeros(); } /// Returns the number of bits known to be one. unsigned countMinPopulation() const { return One.countPopulation(); } /// Returns the maximum number of bits that could be one. unsigned countMaxPopulation() const { return getBitWidth() - Zero.countPopulation(); } /// Compute known bits resulting from adding LHS and RHS. static KnownBits computeForAddSub(bool Add, bool NSW, const KnownBits &LHS, KnownBits RHS); }; } // end namespace llvm #endif