//===- RegisterPressure.h - Dynamic Register Pressure -----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the RegisterPressure class which can be used to track // MachineInstr level register pressure. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_REGISTERPRESSURE_H #define LLVM_CODEGEN_REGISTERPRESSURE_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/SparseSet.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/SlotIndexes.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/MC/LaneBitmask.h" #include <cassert> #include <cstddef> #include <cstdint> #include <cstdlib> #include <limits> #include <vector> namespace llvm { class LiveIntervals; class MachineFunction; class MachineInstr; class MachineRegisterInfo; class RegisterClassInfo; struct RegisterMaskPair { unsigned RegUnit; ///< Virtual register or register unit. LaneBitmask LaneMask; RegisterMaskPair(unsigned RegUnit, LaneBitmask LaneMask) : RegUnit(RegUnit), LaneMask(LaneMask) {} }; /// Base class for register pressure results. struct RegisterPressure { /// Map of max reg pressure indexed by pressure set ID, not class ID. std::vector<unsigned> MaxSetPressure; /// List of live in virtual registers or physical register units. SmallVector<RegisterMaskPair,8> LiveInRegs; SmallVector<RegisterMaskPair,8> LiveOutRegs; void dump(const TargetRegisterInfo *TRI) const; }; /// RegisterPressure computed within a region of instructions delimited by /// TopIdx and BottomIdx. During pressure computation, the maximum pressure per /// register pressure set is increased. Once pressure within a region is fully /// computed, the live-in and live-out sets are recorded. /// /// This is preferable to RegionPressure when LiveIntervals are available, /// because delimiting regions by SlotIndex is more robust and convenient than /// holding block iterators. The block contents can change without invalidating /// the pressure result. struct IntervalPressure : RegisterPressure { /// Record the boundary of the region being tracked. SlotIndex TopIdx; SlotIndex BottomIdx; void reset(); void openTop(SlotIndex NextTop); void openBottom(SlotIndex PrevBottom); }; /// RegisterPressure computed within a region of instructions delimited by /// TopPos and BottomPos. This is a less precise version of IntervalPressure for /// use when LiveIntervals are unavailable. struct RegionPressure : RegisterPressure { /// Record the boundary of the region being tracked. MachineBasicBlock::const_iterator TopPos; MachineBasicBlock::const_iterator BottomPos; void reset(); void openTop(MachineBasicBlock::const_iterator PrevTop); void openBottom(MachineBasicBlock::const_iterator PrevBottom); }; /// Capture a change in pressure for a single pressure set. UnitInc may be /// expressed in terms of upward or downward pressure depending on the client /// and will be dynamically adjusted for current liveness. /// /// Pressure increments are tiny, typically 1-2 units, and this is only for /// heuristics, so we don't check UnitInc overflow. Instead, we may have a /// higher level assert that pressure is consistent within a region. We also /// effectively ignore dead defs which don't affect heuristics much. class PressureChange { uint16_t PSetID = 0; // ID+1. 0=Invalid. int16_t UnitInc = 0; public: PressureChange() = default; PressureChange(unsigned id): PSetID(id + 1) { assert(id < std::numeric_limits<uint16_t>::max() && "PSetID overflow."); } bool isValid() const { return PSetID > 0; } unsigned getPSet() const { assert(isValid() && "invalid PressureChange"); return PSetID - 1; } // If PSetID is invalid, return UINT16_MAX to give it lowest priority. unsigned getPSetOrMax() const { return (PSetID - 1) & std::numeric_limits<uint16_t>::max(); } int getUnitInc() const { return UnitInc; } void setUnitInc(int Inc) { UnitInc = Inc; } bool operator==(const PressureChange &RHS) const { return PSetID == RHS.PSetID && UnitInc == RHS.UnitInc; } }; template <> struct isPodLike<PressureChange> { static const bool value = true; }; /// List of PressureChanges in order of increasing, unique PSetID. /// /// Use a small fixed number, because we can fit more PressureChanges in an /// empty SmallVector than ever need to be tracked per register class. If more /// PSets are affected, then we only track the most constrained. class PressureDiff { // The initial design was for MaxPSets=4, but that requires PSet partitions, // which are not yet implemented. (PSet partitions are equivalent PSets given // the register classes actually in use within the scheduling region.) enum { MaxPSets = 16 }; PressureChange PressureChanges[MaxPSets]; using iterator = PressureChange *; iterator nonconst_begin() { return &PressureChanges[0]; } iterator nonconst_end() { return &PressureChanges[MaxPSets]; } public: using const_iterator = const PressureChange *; const_iterator begin() const { return &PressureChanges[0]; } const_iterator end() const { return &PressureChanges[MaxPSets]; } void addPressureChange(unsigned RegUnit, bool IsDec, const MachineRegisterInfo *MRI); void dump(const TargetRegisterInfo &TRI) const; }; /// List of registers defined and used by a machine instruction. class RegisterOperands { public: /// List of virtual registers and register units read by the instruction. SmallVector<RegisterMaskPair, 8> Uses; /// List of virtual registers and register units defined by the /// instruction which are not dead. SmallVector<RegisterMaskPair, 8> Defs; /// List of virtual registers and register units defined by the /// instruction but dead. SmallVector<RegisterMaskPair, 8> DeadDefs; /// Analyze the given instruction \p MI and fill in the Uses, Defs and /// DeadDefs list based on the MachineOperand flags. void collect(const MachineInstr &MI, const TargetRegisterInfo &TRI, const MachineRegisterInfo &MRI, bool TrackLaneMasks, bool IgnoreDead); /// Use liveness information to find dead defs not marked with a dead flag /// and move them to the DeadDefs vector. void detectDeadDefs(const MachineInstr &MI, const LiveIntervals &LIS); /// Use liveness information to find out which uses/defs are partially /// undefined/dead and adjust the RegisterMaskPairs accordingly. /// If \p AddFlagsMI is given then missing read-undef and dead flags will be /// added to the instruction. void adjustLaneLiveness(const LiveIntervals &LIS, const MachineRegisterInfo &MRI, SlotIndex Pos, MachineInstr *AddFlagsMI = nullptr); }; /// Array of PressureDiffs. class PressureDiffs { PressureDiff *PDiffArray = nullptr; unsigned Size = 0; unsigned Max = 0; public: PressureDiffs() = default; ~PressureDiffs() { free(PDiffArray); } void clear() { Size = 0; } void init(unsigned N); PressureDiff &operator[](unsigned Idx) { assert(Idx < Size && "PressureDiff index out of bounds"); return PDiffArray[Idx]; } const PressureDiff &operator[](unsigned Idx) const { return const_cast<PressureDiffs*>(this)->operator[](Idx); } /// Record pressure difference induced by the given operand list to /// node with index \p Idx. void addInstruction(unsigned Idx, const RegisterOperands &RegOpers, const MachineRegisterInfo &MRI); }; /// Store the effects of a change in pressure on things that MI scheduler cares /// about. /// /// Excess records the value of the largest difference in register units beyond /// the target's pressure limits across the affected pressure sets, where /// largest is defined as the absolute value of the difference. Negative /// ExcessUnits indicates a reduction in pressure that had already exceeded the /// target's limits. /// /// CriticalMax records the largest increase in the tracker's max pressure that /// exceeds the critical limit for some pressure set determined by the client. /// /// CurrentMax records the largest increase in the tracker's max pressure that /// exceeds the current limit for some pressure set determined by the client. struct RegPressureDelta { PressureChange Excess; PressureChange CriticalMax; PressureChange CurrentMax; RegPressureDelta() = default; bool operator==(const RegPressureDelta &RHS) const { return Excess == RHS.Excess && CriticalMax == RHS.CriticalMax && CurrentMax == RHS.CurrentMax; } bool operator!=(const RegPressureDelta &RHS) const { return !operator==(RHS); } }; /// A set of live virtual registers and physical register units. /// /// This is a wrapper around a SparseSet which deals with mapping register unit /// and virtual register indexes to an index usable by the sparse set. class LiveRegSet { private: struct IndexMaskPair { unsigned Index; LaneBitmask LaneMask; IndexMaskPair(unsigned Index, LaneBitmask LaneMask) : Index(Index), LaneMask(LaneMask) {} unsigned getSparseSetIndex() const { return Index; } }; using RegSet = SparseSet<IndexMaskPair>; RegSet Regs; unsigned NumRegUnits; unsigned getSparseIndexFromReg(unsigned Reg) const { if (TargetRegisterInfo::isVirtualRegister(Reg)) return TargetRegisterInfo::virtReg2Index(Reg) + NumRegUnits; assert(Reg < NumRegUnits); return Reg; } unsigned getRegFromSparseIndex(unsigned SparseIndex) const { if (SparseIndex >= NumRegUnits) return TargetRegisterInfo::index2VirtReg(SparseIndex-NumRegUnits); return SparseIndex; } public: void clear(); void init(const MachineRegisterInfo &MRI); LaneBitmask contains(unsigned Reg) const { unsigned SparseIndex = getSparseIndexFromReg(Reg); RegSet::const_iterator I = Regs.find(SparseIndex); if (I == Regs.end()) return LaneBitmask::getNone(); return I->LaneMask; } /// Mark the \p Pair.LaneMask lanes of \p Pair.Reg as live. /// Returns the previously live lanes of \p Pair.Reg. LaneBitmask insert(RegisterMaskPair Pair) { unsigned SparseIndex = getSparseIndexFromReg(Pair.RegUnit); auto InsertRes = Regs.insert(IndexMaskPair(SparseIndex, Pair.LaneMask)); if (!InsertRes.second) { LaneBitmask PrevMask = InsertRes.first->LaneMask; InsertRes.first->LaneMask |= Pair.LaneMask; return PrevMask; } return LaneBitmask::getNone(); } /// Clears the \p Pair.LaneMask lanes of \p Pair.Reg (mark them as dead). /// Returns the previously live lanes of \p Pair.Reg. LaneBitmask erase(RegisterMaskPair Pair) { unsigned SparseIndex = getSparseIndexFromReg(Pair.RegUnit); RegSet::iterator I = Regs.find(SparseIndex); if (I == Regs.end()) return LaneBitmask::getNone(); LaneBitmask PrevMask = I->LaneMask; I->LaneMask &= ~Pair.LaneMask; return PrevMask; } size_t size() const { return Regs.size(); } template<typename ContainerT> void appendTo(ContainerT &To) const { for (const IndexMaskPair &P : Regs) { unsigned Reg = getRegFromSparseIndex(P.Index); if (P.LaneMask.any()) To.push_back(RegisterMaskPair(Reg, P.LaneMask)); } } }; /// Track the current register pressure at some position in the instruction /// stream, and remember the high water mark within the region traversed. This /// does not automatically consider live-through ranges. The client may /// independently adjust for global liveness. /// /// Each RegPressureTracker only works within a MachineBasicBlock. Pressure can /// be tracked across a larger region by storing a RegisterPressure result at /// each block boundary and explicitly adjusting pressure to account for block /// live-in and live-out register sets. /// /// RegPressureTracker holds a reference to a RegisterPressure result that it /// computes incrementally. During downward tracking, P.BottomIdx or P.BottomPos /// is invalid until it reaches the end of the block or closeRegion() is /// explicitly called. Similarly, P.TopIdx is invalid during upward /// tracking. Changing direction has the side effect of closing region, and /// traversing past TopIdx or BottomIdx reopens it. class RegPressureTracker { const MachineFunction *MF = nullptr; const TargetRegisterInfo *TRI = nullptr; const RegisterClassInfo *RCI = nullptr; const MachineRegisterInfo *MRI; const LiveIntervals *LIS = nullptr; /// We currently only allow pressure tracking within a block. const MachineBasicBlock *MBB = nullptr; /// Track the max pressure within the region traversed so far. RegisterPressure &P; /// Run in two modes dependending on whether constructed with IntervalPressure /// or RegisterPressure. If requireIntervals is false, LIS are ignored. bool RequireIntervals; /// True if UntiedDefs will be populated. bool TrackUntiedDefs = false; /// True if lanemasks should be tracked. bool TrackLaneMasks = false; /// Register pressure corresponds to liveness before this instruction /// iterator. It may point to the end of the block or a DebugValue rather than /// an instruction. MachineBasicBlock::const_iterator CurrPos; /// Pressure map indexed by pressure set ID, not class ID. std::vector<unsigned> CurrSetPressure; /// Set of live registers. LiveRegSet LiveRegs; /// Set of vreg defs that start a live range. SparseSet<unsigned, VirtReg2IndexFunctor> UntiedDefs; /// Live-through pressure. std::vector<unsigned> LiveThruPressure; public: RegPressureTracker(IntervalPressure &rp) : P(rp), RequireIntervals(true) {} RegPressureTracker(RegionPressure &rp) : P(rp), RequireIntervals(false) {} void reset(); void init(const MachineFunction *mf, const RegisterClassInfo *rci, const LiveIntervals *lis, const MachineBasicBlock *mbb, MachineBasicBlock::const_iterator pos, bool TrackLaneMasks, bool TrackUntiedDefs); /// Force liveness of virtual registers or physical register /// units. Particularly useful to initialize the livein/out state of the /// tracker before the first call to advance/recede. void addLiveRegs(ArrayRef<RegisterMaskPair> Regs); /// Get the MI position corresponding to this register pressure. MachineBasicBlock::const_iterator getPos() const { return CurrPos; } // Reset the MI position corresponding to the register pressure. This allows // schedulers to move instructions above the RegPressureTracker's // CurrPos. Since the pressure is computed before CurrPos, the iterator // position changes while pressure does not. void setPos(MachineBasicBlock::const_iterator Pos) { CurrPos = Pos; } /// Recede across the previous instruction. void recede(SmallVectorImpl<RegisterMaskPair> *LiveUses = nullptr); /// Recede across the previous instruction. /// This "low-level" variant assumes that recedeSkipDebugValues() was /// called previously and takes precomputed RegisterOperands for the /// instruction. void recede(const RegisterOperands &RegOpers, SmallVectorImpl<RegisterMaskPair> *LiveUses = nullptr); /// Recede until we find an instruction which is not a DebugValue. void recedeSkipDebugValues(); /// Advance across the current instruction. void advance(); /// Advance across the current instruction. /// This is a "low-level" variant of advance() which takes precomputed /// RegisterOperands of the instruction. void advance(const RegisterOperands &RegOpers); /// Finalize the region boundaries and recored live ins and live outs. void closeRegion(); /// Initialize the LiveThru pressure set based on the untied defs found in /// RPTracker. void initLiveThru(const RegPressureTracker &RPTracker); /// Copy an existing live thru pressure result. void initLiveThru(ArrayRef<unsigned> PressureSet) { LiveThruPressure.assign(PressureSet.begin(), PressureSet.end()); } ArrayRef<unsigned> getLiveThru() const { return LiveThruPressure; } /// Get the resulting register pressure over the traversed region. /// This result is complete if closeRegion() was explicitly invoked. RegisterPressure &getPressure() { return P; } const RegisterPressure &getPressure() const { return P; } /// Get the register set pressure at the current position, which may be less /// than the pressure across the traversed region. const std::vector<unsigned> &getRegSetPressureAtPos() const { return CurrSetPressure; } bool isTopClosed() const; bool isBottomClosed() const; void closeTop(); void closeBottom(); /// Consider the pressure increase caused by traversing this instruction /// bottom-up. Find the pressure set with the most change beyond its pressure /// limit based on the tracker's current pressure, and record the number of /// excess register units of that pressure set introduced by this instruction. void getMaxUpwardPressureDelta(const MachineInstr *MI, PressureDiff *PDiff, RegPressureDelta &Delta, ArrayRef<PressureChange> CriticalPSets, ArrayRef<unsigned> MaxPressureLimit); void getUpwardPressureDelta(const MachineInstr *MI, /*const*/ PressureDiff &PDiff, RegPressureDelta &Delta, ArrayRef<PressureChange> CriticalPSets, ArrayRef<unsigned> MaxPressureLimit) const; /// Consider the pressure increase caused by traversing this instruction /// top-down. Find the pressure set with the most change beyond its pressure /// limit based on the tracker's current pressure, and record the number of /// excess register units of that pressure set introduced by this instruction. void getMaxDownwardPressureDelta(const MachineInstr *MI, RegPressureDelta &Delta, ArrayRef<PressureChange> CriticalPSets, ArrayRef<unsigned> MaxPressureLimit); /// Find the pressure set with the most change beyond its pressure limit after /// traversing this instruction either upward or downward depending on the /// closed end of the current region. void getMaxPressureDelta(const MachineInstr *MI, RegPressureDelta &Delta, ArrayRef<PressureChange> CriticalPSets, ArrayRef<unsigned> MaxPressureLimit) { if (isTopClosed()) return getMaxDownwardPressureDelta(MI, Delta, CriticalPSets, MaxPressureLimit); assert(isBottomClosed() && "Uninitialized pressure tracker"); return getMaxUpwardPressureDelta(MI, nullptr, Delta, CriticalPSets, MaxPressureLimit); } /// Get the pressure of each PSet after traversing this instruction bottom-up. void getUpwardPressure(const MachineInstr *MI, std::vector<unsigned> &PressureResult, std::vector<unsigned> &MaxPressureResult); /// Get the pressure of each PSet after traversing this instruction top-down. void getDownwardPressure(const MachineInstr *MI, std::vector<unsigned> &PressureResult, std::vector<unsigned> &MaxPressureResult); void getPressureAfterInst(const MachineInstr *MI, std::vector<unsigned> &PressureResult, std::vector<unsigned> &MaxPressureResult) { if (isTopClosed()) return getUpwardPressure(MI, PressureResult, MaxPressureResult); assert(isBottomClosed() && "Uninitialized pressure tracker"); return getDownwardPressure(MI, PressureResult, MaxPressureResult); } bool hasUntiedDef(unsigned VirtReg) const { return UntiedDefs.count(VirtReg); } void dump() const; protected: /// Add Reg to the live out set and increase max pressure. void discoverLiveOut(RegisterMaskPair Pair); /// Add Reg to the live in set and increase max pressure. void discoverLiveIn(RegisterMaskPair Pair); /// Get the SlotIndex for the first nondebug instruction including or /// after the current position. SlotIndex getCurrSlot() const; void increaseRegPressure(unsigned RegUnit, LaneBitmask PreviousMask, LaneBitmask NewMask); void decreaseRegPressure(unsigned RegUnit, LaneBitmask PreviousMask, LaneBitmask NewMask); void bumpDeadDefs(ArrayRef<RegisterMaskPair> DeadDefs); void bumpUpwardPressure(const MachineInstr *MI); void bumpDownwardPressure(const MachineInstr *MI); void discoverLiveInOrOut(RegisterMaskPair Pair, SmallVectorImpl<RegisterMaskPair> &LiveInOrOut); LaneBitmask getLastUsedLanes(unsigned RegUnit, SlotIndex Pos) const; LaneBitmask getLiveLanesAt(unsigned RegUnit, SlotIndex Pos) const; LaneBitmask getLiveThroughAt(unsigned RegUnit, SlotIndex Pos) const; }; void dumpRegSetPressure(ArrayRef<unsigned> SetPressure, const TargetRegisterInfo *TRI); } // end namespace llvm #endif // LLVM_CODEGEN_REGISTERPRESSURE_H