//===- ELF.h - ELF object file implementation -------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file declares the ELFFile template class. // //===----------------------------------------------------------------------===// #ifndef LLVM_OBJECT_ELF_H #define LLVM_OBJECT_ELF_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/Object/ELFTypes.h" #include "llvm/Object/Error.h" #include "llvm/Support/Endian.h" #include "llvm/Support/Error.h" #include <cassert> #include <cstddef> #include <cstdint> #include <limits> #include <utility> namespace llvm { namespace object { StringRef getELFRelocationTypeName(uint32_t Machine, uint32_t Type); uint32_t getELFRelativeRelocationType(uint32_t Machine); StringRef getELFSectionTypeName(uint32_t Machine, uint32_t Type); // Subclasses of ELFFile may need this for template instantiation inline std::pair<unsigned char, unsigned char> getElfArchType(StringRef Object) { if (Object.size() < ELF::EI_NIDENT) return std::make_pair((uint8_t)ELF::ELFCLASSNONE, (uint8_t)ELF::ELFDATANONE); return std::make_pair((uint8_t)Object[ELF::EI_CLASS], (uint8_t)Object[ELF::EI_DATA]); } static inline Error createError(StringRef Err) { return make_error<StringError>(Err, object_error::parse_failed); } template <class ELFT> class ELFFile { public: LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) using uintX_t = typename ELFT::uint; using Elf_Ehdr = typename ELFT::Ehdr; using Elf_Shdr = typename ELFT::Shdr; using Elf_Sym = typename ELFT::Sym; using Elf_Dyn = typename ELFT::Dyn; using Elf_Phdr = typename ELFT::Phdr; using Elf_Rel = typename ELFT::Rel; using Elf_Rela = typename ELFT::Rela; using Elf_Relr = typename ELFT::Relr; using Elf_Verdef = typename ELFT::Verdef; using Elf_Verdaux = typename ELFT::Verdaux; using Elf_Verneed = typename ELFT::Verneed; using Elf_Vernaux = typename ELFT::Vernaux; using Elf_Versym = typename ELFT::Versym; using Elf_Hash = typename ELFT::Hash; using Elf_GnuHash = typename ELFT::GnuHash; using Elf_Nhdr = typename ELFT::Nhdr; using Elf_Note = typename ELFT::Note; using Elf_Note_Iterator = typename ELFT::NoteIterator; using Elf_Dyn_Range = typename ELFT::DynRange; using Elf_Shdr_Range = typename ELFT::ShdrRange; using Elf_Sym_Range = typename ELFT::SymRange; using Elf_Rel_Range = typename ELFT::RelRange; using Elf_Rela_Range = typename ELFT::RelaRange; using Elf_Relr_Range = typename ELFT::RelrRange; using Elf_Phdr_Range = typename ELFT::PhdrRange; const uint8_t *base() const { return reinterpret_cast<const uint8_t *>(Buf.data()); } size_t getBufSize() const { return Buf.size(); } private: StringRef Buf; ELFFile(StringRef Object); public: const Elf_Ehdr *getHeader() const { return reinterpret_cast<const Elf_Ehdr *>(base()); } template <typename T> Expected<const T *> getEntry(uint32_t Section, uint32_t Entry) const; template <typename T> Expected<const T *> getEntry(const Elf_Shdr *Section, uint32_t Entry) const; Expected<StringRef> getStringTable(const Elf_Shdr *Section) const; Expected<StringRef> getStringTableForSymtab(const Elf_Shdr &Section) const; Expected<StringRef> getStringTableForSymtab(const Elf_Shdr &Section, Elf_Shdr_Range Sections) const; Expected<ArrayRef<Elf_Word>> getSHNDXTable(const Elf_Shdr &Section) const; Expected<ArrayRef<Elf_Word>> getSHNDXTable(const Elf_Shdr &Section, Elf_Shdr_Range Sections) const; StringRef getRelocationTypeName(uint32_t Type) const; void getRelocationTypeName(uint32_t Type, SmallVectorImpl<char> &Result) const; uint32_t getRelativeRelocationType() const; const char *getDynamicTagAsString(unsigned Arch, uint64_t Type) const; const char *getDynamicTagAsString(uint64_t Type) const; /// Get the symbol for a given relocation. Expected<const Elf_Sym *> getRelocationSymbol(const Elf_Rel *Rel, const Elf_Shdr *SymTab) const; static Expected<ELFFile> create(StringRef Object); bool isMipsELF64() const { return getHeader()->e_machine == ELF::EM_MIPS && getHeader()->getFileClass() == ELF::ELFCLASS64; } bool isMips64EL() const { return isMipsELF64() && getHeader()->getDataEncoding() == ELF::ELFDATA2LSB; } Expected<Elf_Shdr_Range> sections() const; Expected<Elf_Dyn_Range> dynamicEntries() const; Expected<const uint8_t *> toMappedAddr(uint64_t VAddr) const; Expected<Elf_Sym_Range> symbols(const Elf_Shdr *Sec) const { if (!Sec) return makeArrayRef<Elf_Sym>(nullptr, nullptr); return getSectionContentsAsArray<Elf_Sym>(Sec); } Expected<Elf_Rela_Range> relas(const Elf_Shdr *Sec) const { return getSectionContentsAsArray<Elf_Rela>(Sec); } Expected<Elf_Rel_Range> rels(const Elf_Shdr *Sec) const { return getSectionContentsAsArray<Elf_Rel>(Sec); } Expected<Elf_Relr_Range> relrs(const Elf_Shdr *Sec) const { return getSectionContentsAsArray<Elf_Relr>(Sec); } Expected<std::vector<Elf_Rela>> decode_relrs(Elf_Relr_Range relrs) const; Expected<std::vector<Elf_Rela>> android_relas(const Elf_Shdr *Sec) const; /// Iterate over program header table. Expected<Elf_Phdr_Range> program_headers() const { if (getHeader()->e_phnum && getHeader()->e_phentsize != sizeof(Elf_Phdr)) return createError("invalid e_phentsize"); if (getHeader()->e_phoff + (getHeader()->e_phnum * getHeader()->e_phentsize) > getBufSize()) return createError("program headers longer than binary"); auto *Begin = reinterpret_cast<const Elf_Phdr *>(base() + getHeader()->e_phoff); return makeArrayRef(Begin, Begin + getHeader()->e_phnum); } /// Get an iterator over notes in a program header. /// /// The program header must be of type \c PT_NOTE. /// /// \param Phdr the program header to iterate over. /// \param Err [out] an error to support fallible iteration, which should /// be checked after iteration ends. Elf_Note_Iterator notes_begin(const Elf_Phdr &Phdr, Error &Err) const { if (Phdr.p_type != ELF::PT_NOTE) { Err = createError("attempt to iterate notes of non-note program header"); return Elf_Note_Iterator(Err); } if (Phdr.p_offset + Phdr.p_filesz > getBufSize()) { Err = createError("invalid program header offset/size"); return Elf_Note_Iterator(Err); } return Elf_Note_Iterator(base() + Phdr.p_offset, Phdr.p_filesz, Err); } /// Get an iterator over notes in a section. /// /// The section must be of type \c SHT_NOTE. /// /// \param Shdr the section to iterate over. /// \param Err [out] an error to support fallible iteration, which should /// be checked after iteration ends. Elf_Note_Iterator notes_begin(const Elf_Shdr &Shdr, Error &Err) const { if (Shdr.sh_type != ELF::SHT_NOTE) { Err = createError("attempt to iterate notes of non-note section"); return Elf_Note_Iterator(Err); } if (Shdr.sh_offset + Shdr.sh_size > getBufSize()) { Err = createError("invalid section offset/size"); return Elf_Note_Iterator(Err); } return Elf_Note_Iterator(base() + Shdr.sh_offset, Shdr.sh_size, Err); } /// Get the end iterator for notes. Elf_Note_Iterator notes_end() const { return Elf_Note_Iterator(); } /// Get an iterator range over notes of a program header. /// /// The program header must be of type \c PT_NOTE. /// /// \param Phdr the program header to iterate over. /// \param Err [out] an error to support fallible iteration, which should /// be checked after iteration ends. iterator_range<Elf_Note_Iterator> notes(const Elf_Phdr &Phdr, Error &Err) const { return make_range(notes_begin(Phdr, Err), notes_end()); } /// Get an iterator range over notes of a section. /// /// The section must be of type \c SHT_NOTE. /// /// \param Shdr the section to iterate over. /// \param Err [out] an error to support fallible iteration, which should /// be checked after iteration ends. iterator_range<Elf_Note_Iterator> notes(const Elf_Shdr &Shdr, Error &Err) const { return make_range(notes_begin(Shdr, Err), notes_end()); } Expected<StringRef> getSectionStringTable(Elf_Shdr_Range Sections) const; Expected<uint32_t> getSectionIndex(const Elf_Sym *Sym, Elf_Sym_Range Syms, ArrayRef<Elf_Word> ShndxTable) const; Expected<const Elf_Shdr *> getSection(const Elf_Sym *Sym, const Elf_Shdr *SymTab, ArrayRef<Elf_Word> ShndxTable) const; Expected<const Elf_Shdr *> getSection(const Elf_Sym *Sym, Elf_Sym_Range Symtab, ArrayRef<Elf_Word> ShndxTable) const; Expected<const Elf_Shdr *> getSection(uint32_t Index) const; Expected<const Elf_Shdr *> getSection(const StringRef SectionName) const; Expected<const Elf_Sym *> getSymbol(const Elf_Shdr *Sec, uint32_t Index) const; Expected<StringRef> getSectionName(const Elf_Shdr *Section) const; Expected<StringRef> getSectionName(const Elf_Shdr *Section, StringRef DotShstrtab) const; template <typename T> Expected<ArrayRef<T>> getSectionContentsAsArray(const Elf_Shdr *Sec) const; Expected<ArrayRef<uint8_t>> getSectionContents(const Elf_Shdr *Sec) const; }; using ELF32LEFile = ELFFile<ELF32LE>; using ELF64LEFile = ELFFile<ELF64LE>; using ELF32BEFile = ELFFile<ELF32BE>; using ELF64BEFile = ELFFile<ELF64BE>; template <class ELFT> inline Expected<const typename ELFT::Shdr *> getSection(typename ELFT::ShdrRange Sections, uint32_t Index) { if (Index >= Sections.size()) return createError("invalid section index"); return &Sections[Index]; } template <class ELFT> inline Expected<uint32_t> getExtendedSymbolTableIndex(const typename ELFT::Sym *Sym, const typename ELFT::Sym *FirstSym, ArrayRef<typename ELFT::Word> ShndxTable) { assert(Sym->st_shndx == ELF::SHN_XINDEX); unsigned Index = Sym - FirstSym; if (Index >= ShndxTable.size()) return createError("index past the end of the symbol table"); // The size of the table was checked in getSHNDXTable. return ShndxTable[Index]; } template <class ELFT> Expected<uint32_t> ELFFile<ELFT>::getSectionIndex(const Elf_Sym *Sym, Elf_Sym_Range Syms, ArrayRef<Elf_Word> ShndxTable) const { uint32_t Index = Sym->st_shndx; if (Index == ELF::SHN_XINDEX) { auto ErrorOrIndex = getExtendedSymbolTableIndex<ELFT>( Sym, Syms.begin(), ShndxTable); if (!ErrorOrIndex) return ErrorOrIndex.takeError(); return *ErrorOrIndex; } if (Index == ELF::SHN_UNDEF || Index >= ELF::SHN_LORESERVE) return 0; return Index; } template <class ELFT> Expected<const typename ELFT::Shdr *> ELFFile<ELFT>::getSection(const Elf_Sym *Sym, const Elf_Shdr *SymTab, ArrayRef<Elf_Word> ShndxTable) const { auto SymsOrErr = symbols(SymTab); if (!SymsOrErr) return SymsOrErr.takeError(); return getSection(Sym, *SymsOrErr, ShndxTable); } template <class ELFT> Expected<const typename ELFT::Shdr *> ELFFile<ELFT>::getSection(const Elf_Sym *Sym, Elf_Sym_Range Symbols, ArrayRef<Elf_Word> ShndxTable) const { auto IndexOrErr = getSectionIndex(Sym, Symbols, ShndxTable); if (!IndexOrErr) return IndexOrErr.takeError(); uint32_t Index = *IndexOrErr; if (Index == 0) return nullptr; return getSection(Index); } template <class ELFT> inline Expected<const typename ELFT::Sym *> getSymbol(typename ELFT::SymRange Symbols, uint32_t Index) { if (Index >= Symbols.size()) return createError("invalid symbol index"); return &Symbols[Index]; } template <class ELFT> Expected<const typename ELFT::Sym *> ELFFile<ELFT>::getSymbol(const Elf_Shdr *Sec, uint32_t Index) const { auto SymtabOrErr = symbols(Sec); if (!SymtabOrErr) return SymtabOrErr.takeError(); return object::getSymbol<ELFT>(*SymtabOrErr, Index); } template <class ELFT> template <typename T> Expected<ArrayRef<T>> ELFFile<ELFT>::getSectionContentsAsArray(const Elf_Shdr *Sec) const { if (Sec->sh_entsize != sizeof(T) && sizeof(T) != 1) return createError("invalid sh_entsize"); uintX_t Offset = Sec->sh_offset; uintX_t Size = Sec->sh_size; if (Size % sizeof(T)) return createError("size is not a multiple of sh_entsize"); if ((std::numeric_limits<uintX_t>::max() - Offset < Size) || Offset + Size > Buf.size()) return createError("invalid section offset"); if (Offset % alignof(T)) return createError("unaligned data"); const T *Start = reinterpret_cast<const T *>(base() + Offset); return makeArrayRef(Start, Size / sizeof(T)); } template <class ELFT> Expected<ArrayRef<uint8_t>> ELFFile<ELFT>::getSectionContents(const Elf_Shdr *Sec) const { return getSectionContentsAsArray<uint8_t>(Sec); } template <class ELFT> StringRef ELFFile<ELFT>::getRelocationTypeName(uint32_t Type) const { return getELFRelocationTypeName(getHeader()->e_machine, Type); } template <class ELFT> void ELFFile<ELFT>::getRelocationTypeName(uint32_t Type, SmallVectorImpl<char> &Result) const { if (!isMipsELF64()) { StringRef Name = getRelocationTypeName(Type); Result.append(Name.begin(), Name.end()); } else { // The Mips N64 ABI allows up to three operations to be specified per // relocation record. Unfortunately there's no easy way to test for the // presence of N64 ELFs as they have no special flag that identifies them // as being N64. We can safely assume at the moment that all Mips // ELFCLASS64 ELFs are N64. New Mips64 ABIs should provide enough // information to disambiguate between old vs new ABIs. uint8_t Type1 = (Type >> 0) & 0xFF; uint8_t Type2 = (Type >> 8) & 0xFF; uint8_t Type3 = (Type >> 16) & 0xFF; // Concat all three relocation type names. StringRef Name = getRelocationTypeName(Type1); Result.append(Name.begin(), Name.end()); Name = getRelocationTypeName(Type2); Result.append(1, '/'); Result.append(Name.begin(), Name.end()); Name = getRelocationTypeName(Type3); Result.append(1, '/'); Result.append(Name.begin(), Name.end()); } } template <class ELFT> uint32_t ELFFile<ELFT>::getRelativeRelocationType() const { return getELFRelativeRelocationType(getHeader()->e_machine); } template <class ELFT> Expected<const typename ELFT::Sym *> ELFFile<ELFT>::getRelocationSymbol(const Elf_Rel *Rel, const Elf_Shdr *SymTab) const { uint32_t Index = Rel->getSymbol(isMips64EL()); if (Index == 0) return nullptr; return getEntry<Elf_Sym>(SymTab, Index); } template <class ELFT> Expected<StringRef> ELFFile<ELFT>::getSectionStringTable(Elf_Shdr_Range Sections) const { uint32_t Index = getHeader()->e_shstrndx; if (Index == ELF::SHN_XINDEX) Index = Sections[0].sh_link; if (!Index) // no section string table. return ""; if (Index >= Sections.size()) return createError("invalid section index"); return getStringTable(&Sections[Index]); } template <class ELFT> ELFFile<ELFT>::ELFFile(StringRef Object) : Buf(Object) {} template <class ELFT> Expected<ELFFile<ELFT>> ELFFile<ELFT>::create(StringRef Object) { if (sizeof(Elf_Ehdr) > Object.size()) return createError("Invalid buffer"); return ELFFile(Object); } template <class ELFT> Expected<typename ELFT::ShdrRange> ELFFile<ELFT>::sections() const { const uintX_t SectionTableOffset = getHeader()->e_shoff; if (SectionTableOffset == 0) return ArrayRef<Elf_Shdr>(); if (getHeader()->e_shentsize != sizeof(Elf_Shdr)) return createError( "invalid section header entry size (e_shentsize) in ELF header"); const uint64_t FileSize = Buf.size(); if (SectionTableOffset + sizeof(Elf_Shdr) > FileSize) return createError("section header table goes past the end of the file"); // Invalid address alignment of section headers if (SectionTableOffset & (alignof(Elf_Shdr) - 1)) return createError("invalid alignment of section headers"); const Elf_Shdr *First = reinterpret_cast<const Elf_Shdr *>(base() + SectionTableOffset); uintX_t NumSections = getHeader()->e_shnum; if (NumSections == 0) NumSections = First->sh_size; if (NumSections > UINT64_MAX / sizeof(Elf_Shdr)) return createError("section table goes past the end of file"); const uint64_t SectionTableSize = NumSections * sizeof(Elf_Shdr); // Section table goes past end of file! if (SectionTableOffset + SectionTableSize > FileSize) return createError("section table goes past the end of file"); return makeArrayRef(First, NumSections); } template <class ELFT> template <typename T> Expected<const T *> ELFFile<ELFT>::getEntry(uint32_t Section, uint32_t Entry) const { auto SecOrErr = getSection(Section); if (!SecOrErr) return SecOrErr.takeError(); return getEntry<T>(*SecOrErr, Entry); } template <class ELFT> template <typename T> Expected<const T *> ELFFile<ELFT>::getEntry(const Elf_Shdr *Section, uint32_t Entry) const { if (sizeof(T) != Section->sh_entsize) return createError("invalid sh_entsize"); size_t Pos = Section->sh_offset + Entry * sizeof(T); if (Pos + sizeof(T) > Buf.size()) return createError("invalid section offset"); return reinterpret_cast<const T *>(base() + Pos); } template <class ELFT> Expected<const typename ELFT::Shdr *> ELFFile<ELFT>::getSection(uint32_t Index) const { auto TableOrErr = sections(); if (!TableOrErr) return TableOrErr.takeError(); return object::getSection<ELFT>(*TableOrErr, Index); } template <class ELFT> Expected<const typename ELFT::Shdr *> ELFFile<ELFT>::getSection(const StringRef SectionName) const { auto TableOrErr = sections(); if (!TableOrErr) return TableOrErr.takeError(); for (auto &Sec : *TableOrErr) { auto SecNameOrErr = getSectionName(&Sec); if (!SecNameOrErr) return SecNameOrErr.takeError(); if (*SecNameOrErr == SectionName) return &Sec; } return createError("invalid section name"); } template <class ELFT> Expected<StringRef> ELFFile<ELFT>::getStringTable(const Elf_Shdr *Section) const { if (Section->sh_type != ELF::SHT_STRTAB) return createError("invalid sh_type for string table, expected SHT_STRTAB"); auto V = getSectionContentsAsArray<char>(Section); if (!V) return V.takeError(); ArrayRef<char> Data = *V; if (Data.empty()) return createError("empty string table"); if (Data.back() != '\0') return createError("string table non-null terminated"); return StringRef(Data.begin(), Data.size()); } template <class ELFT> Expected<ArrayRef<typename ELFT::Word>> ELFFile<ELFT>::getSHNDXTable(const Elf_Shdr &Section) const { auto SectionsOrErr = sections(); if (!SectionsOrErr) return SectionsOrErr.takeError(); return getSHNDXTable(Section, *SectionsOrErr); } template <class ELFT> Expected<ArrayRef<typename ELFT::Word>> ELFFile<ELFT>::getSHNDXTable(const Elf_Shdr &Section, Elf_Shdr_Range Sections) const { assert(Section.sh_type == ELF::SHT_SYMTAB_SHNDX); auto VOrErr = getSectionContentsAsArray<Elf_Word>(&Section); if (!VOrErr) return VOrErr.takeError(); ArrayRef<Elf_Word> V = *VOrErr; auto SymTableOrErr = object::getSection<ELFT>(Sections, Section.sh_link); if (!SymTableOrErr) return SymTableOrErr.takeError(); const Elf_Shdr &SymTable = **SymTableOrErr; if (SymTable.sh_type != ELF::SHT_SYMTAB && SymTable.sh_type != ELF::SHT_DYNSYM) return createError("invalid sh_type"); if (V.size() != (SymTable.sh_size / sizeof(Elf_Sym))) return createError("invalid section contents size"); return V; } template <class ELFT> Expected<StringRef> ELFFile<ELFT>::getStringTableForSymtab(const Elf_Shdr &Sec) const { auto SectionsOrErr = sections(); if (!SectionsOrErr) return SectionsOrErr.takeError(); return getStringTableForSymtab(Sec, *SectionsOrErr); } template <class ELFT> Expected<StringRef> ELFFile<ELFT>::getStringTableForSymtab(const Elf_Shdr &Sec, Elf_Shdr_Range Sections) const { if (Sec.sh_type != ELF::SHT_SYMTAB && Sec.sh_type != ELF::SHT_DYNSYM) return createError( "invalid sh_type for symbol table, expected SHT_SYMTAB or SHT_DYNSYM"); auto SectionOrErr = object::getSection<ELFT>(Sections, Sec.sh_link); if (!SectionOrErr) return SectionOrErr.takeError(); return getStringTable(*SectionOrErr); } template <class ELFT> Expected<StringRef> ELFFile<ELFT>::getSectionName(const Elf_Shdr *Section) const { auto SectionsOrErr = sections(); if (!SectionsOrErr) return SectionsOrErr.takeError(); auto Table = getSectionStringTable(*SectionsOrErr); if (!Table) return Table.takeError(); return getSectionName(Section, *Table); } template <class ELFT> Expected<StringRef> ELFFile<ELFT>::getSectionName(const Elf_Shdr *Section, StringRef DotShstrtab) const { uint32_t Offset = Section->sh_name; if (Offset == 0) return StringRef(); if (Offset >= DotShstrtab.size()) return createError("invalid string offset"); return StringRef(DotShstrtab.data() + Offset); } /// This function returns the hash value for a symbol in the .dynsym section /// Name of the API remains consistent as specified in the libelf /// REF : http://www.sco.com/developers/gabi/latest/ch5.dynamic.html#hash inline unsigned hashSysV(StringRef SymbolName) { unsigned h = 0, g; for (char C : SymbolName) { h = (h << 4) + C; g = h & 0xf0000000L; if (g != 0) h ^= g >> 24; h &= ~g; } return h; } } // end namespace object } // end namespace llvm #endif // LLVM_OBJECT_ELF_H