//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// \file /// This file implements a class to represent arbitrary precision /// integral constant values and operations on them. /// //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_APINT_H #define LLVM_ADT_APINT_H #include "llvm/Support/Compiler.h" #include "llvm/Support/MathExtras.h" #include <cassert> #include <climits> #include <cstring> #include <string> namespace llvm { class FoldingSetNodeID; class StringRef; class hash_code; class raw_ostream; template <typename T> class SmallVectorImpl; template <typename T> class ArrayRef; template <typename T> class Optional; class APInt; inline APInt operator-(APInt); //===----------------------------------------------------------------------===// // APInt Class //===----------------------------------------------------------------------===// /// Class for arbitrary precision integers. /// /// APInt is a functional replacement for common case unsigned integer type like /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width /// integer sizes and large integer value types such as 3-bits, 15-bits, or more /// than 64-bits of precision. APInt provides a variety of arithmetic operators /// and methods to manipulate integer values of any bit-width. It supports both /// the typical integer arithmetic and comparison operations as well as bitwise /// manipulation. /// /// The class has several invariants worth noting: /// * All bit, byte, and word positions are zero-based. /// * Once the bit width is set, it doesn't change except by the Truncate, /// SignExtend, or ZeroExtend operations. /// * All binary operators must be on APInt instances of the same bit width. /// Attempting to use these operators on instances with different bit /// widths will yield an assertion. /// * The value is stored canonically as an unsigned value. For operations /// where it makes a difference, there are both signed and unsigned variants /// of the operation. For example, sdiv and udiv. However, because the bit /// widths must be the same, operations such as Mul and Add produce the same /// results regardless of whether the values are interpreted as signed or /// not. /// * In general, the class tries to follow the style of computation that LLVM /// uses in its IR. This simplifies its use for LLVM. /// class LLVM_NODISCARD APInt { public: typedef uint64_t WordType; /// This enum is used to hold the constants we needed for APInt. enum : unsigned { /// Byte size of a word. APINT_WORD_SIZE = sizeof(WordType), /// Bits in a word. APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT }; enum class Rounding { DOWN, TOWARD_ZERO, UP, }; static const WordType WORDTYPE_MAX = ~WordType(0); private: /// This union is used to store the integer value. When the /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal. union { uint64_t VAL; ///< Used to store the <= 64 bits integer value. uint64_t *pVal; ///< Used to store the >64 bits integer value. } U; unsigned BitWidth; ///< The number of bits in this APInt. friend struct DenseMapAPIntKeyInfo; friend class APSInt; /// Fast internal constructor /// /// This constructor is used only internally for speed of construction of /// temporaries. It is unsafe for general use so it is not public. APInt(uint64_t *val, unsigned bits) : BitWidth(bits) { U.pVal = val; } /// Determine if this APInt just has one word to store value. /// /// \returns true if the number of bits <= 64, false otherwise. bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; } /// Determine which word a bit is in. /// /// \returns the word position for the specified bit position. static unsigned whichWord(unsigned bitPosition) { return bitPosition / APINT_BITS_PER_WORD; } /// Determine which bit in a word a bit is in. /// /// \returns the bit position in a word for the specified bit position /// in the APInt. static unsigned whichBit(unsigned bitPosition) { return bitPosition % APINT_BITS_PER_WORD; } /// Get a single bit mask. /// /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set /// This method generates and returns a uint64_t (word) mask for a single /// bit at a specific bit position. This is used to mask the bit in the /// corresponding word. static uint64_t maskBit(unsigned bitPosition) { return 1ULL << whichBit(bitPosition); } /// Clear unused high order bits /// /// This method is used internally to clear the top "N" bits in the high order /// word that are not used by the APInt. This is needed after the most /// significant word is assigned a value to ensure that those bits are /// zero'd out. APInt &clearUnusedBits() { // Compute how many bits are used in the final word unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1; // Mask out the high bits. uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits); if (isSingleWord()) U.VAL &= mask; else U.pVal[getNumWords() - 1] &= mask; return *this; } /// Get the word corresponding to a bit position /// \returns the corresponding word for the specified bit position. uint64_t getWord(unsigned bitPosition) const { return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)]; } /// Utility method to change the bit width of this APInt to new bit width, /// allocating and/or deallocating as necessary. There is no guarantee on the /// value of any bits upon return. Caller should populate the bits after. void reallocate(unsigned NewBitWidth); /// Convert a char array into an APInt /// /// \param radix 2, 8, 10, 16, or 36 /// Converts a string into a number. The string must be non-empty /// and well-formed as a number of the given base. The bit-width /// must be sufficient to hold the result. /// /// This is used by the constructors that take string arguments. /// /// StringRef::getAsInteger is superficially similar but (1) does /// not assume that the string is well-formed and (2) grows the /// result to hold the input. void fromString(unsigned numBits, StringRef str, uint8_t radix); /// An internal division function for dividing APInts. /// /// This is used by the toString method to divide by the radix. It simply /// provides a more convenient form of divide for internal use since KnuthDiv /// has specific constraints on its inputs. If those constraints are not met /// then it provides a simpler form of divide. static void divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS, unsigned rhsWords, WordType *Quotient, WordType *Remainder); /// out-of-line slow case for inline constructor void initSlowCase(uint64_t val, bool isSigned); /// shared code between two array constructors void initFromArray(ArrayRef<uint64_t> array); /// out-of-line slow case for inline copy constructor void initSlowCase(const APInt &that); /// out-of-line slow case for shl void shlSlowCase(unsigned ShiftAmt); /// out-of-line slow case for lshr. void lshrSlowCase(unsigned ShiftAmt); /// out-of-line slow case for ashr. void ashrSlowCase(unsigned ShiftAmt); /// out-of-line slow case for operator= void AssignSlowCase(const APInt &RHS); /// out-of-line slow case for operator== bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY; /// out-of-line slow case for countLeadingZeros unsigned countLeadingZerosSlowCase() const LLVM_READONLY; /// out-of-line slow case for countLeadingOnes. unsigned countLeadingOnesSlowCase() const LLVM_READONLY; /// out-of-line slow case for countTrailingZeros. unsigned countTrailingZerosSlowCase() const LLVM_READONLY; /// out-of-line slow case for countTrailingOnes unsigned countTrailingOnesSlowCase() const LLVM_READONLY; /// out-of-line slow case for countPopulation unsigned countPopulationSlowCase() const LLVM_READONLY; /// out-of-line slow case for intersects. bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY; /// out-of-line slow case for isSubsetOf. bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY; /// out-of-line slow case for setBits. void setBitsSlowCase(unsigned loBit, unsigned hiBit); /// out-of-line slow case for flipAllBits. void flipAllBitsSlowCase(); /// out-of-line slow case for operator&=. void AndAssignSlowCase(const APInt& RHS); /// out-of-line slow case for operator|=. void OrAssignSlowCase(const APInt& RHS); /// out-of-line slow case for operator^=. void XorAssignSlowCase(const APInt& RHS); /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal /// to, or greater than RHS. int compare(const APInt &RHS) const LLVM_READONLY; /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal /// to, or greater than RHS. int compareSigned(const APInt &RHS) const LLVM_READONLY; public: /// \name Constructors /// @{ /// Create a new APInt of numBits width, initialized as val. /// /// If isSigned is true then val is treated as if it were a signed value /// (i.e. as an int64_t) and the appropriate sign extension to the bit width /// will be done. Otherwise, no sign extension occurs (high order bits beyond /// the range of val are zero filled). /// /// \param numBits the bit width of the constructed APInt /// \param val the initial value of the APInt /// \param isSigned how to treat signedness of val APInt(unsigned numBits, uint64_t val, bool isSigned = false) : BitWidth(numBits) { assert(BitWidth && "bitwidth too small"); if (isSingleWord()) { U.VAL = val; clearUnusedBits(); } else { initSlowCase(val, isSigned); } } /// Construct an APInt of numBits width, initialized as bigVal[]. /// /// Note that bigVal.size() can be smaller or larger than the corresponding /// bit width but any extraneous bits will be dropped. /// /// \param numBits the bit width of the constructed APInt /// \param bigVal a sequence of words to form the initial value of the APInt APInt(unsigned numBits, ArrayRef<uint64_t> bigVal); /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but /// deprecated because this constructor is prone to ambiguity with the /// APInt(unsigned, uint64_t, bool) constructor. /// /// If this overload is ever deleted, care should be taken to prevent calls /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool) /// constructor. APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]); /// Construct an APInt from a string representation. /// /// This constructor interprets the string \p str in the given radix. The /// interpretation stops when the first character that is not suitable for the /// radix is encountered, or the end of the string. Acceptable radix values /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the /// string to require more bits than numBits. /// /// \param numBits the bit width of the constructed APInt /// \param str the string to be interpreted /// \param radix the radix to use for the conversion APInt(unsigned numBits, StringRef str, uint8_t radix); /// Simply makes *this a copy of that. /// Copy Constructor. APInt(const APInt &that) : BitWidth(that.BitWidth) { if (isSingleWord()) U.VAL = that.U.VAL; else initSlowCase(that); } /// Move Constructor. APInt(APInt &&that) : BitWidth(that.BitWidth) { memcpy(&U, &that.U, sizeof(U)); that.BitWidth = 0; } /// Destructor. ~APInt() { if (needsCleanup()) delete[] U.pVal; } /// Default constructor that creates an uninteresting APInt /// representing a 1-bit zero value. /// /// This is useful for object deserialization (pair this with the static /// method Read). explicit APInt() : BitWidth(1) { U.VAL = 0; } /// Returns whether this instance allocated memory. bool needsCleanup() const { return !isSingleWord(); } /// Used to insert APInt objects, or objects that contain APInt objects, into /// FoldingSets. void Profile(FoldingSetNodeID &id) const; /// @} /// \name Value Tests /// @{ /// Determine sign of this APInt. /// /// This tests the high bit of this APInt to determine if it is set. /// /// \returns true if this APInt is negative, false otherwise bool isNegative() const { return (*this)[BitWidth - 1]; } /// Determine if this APInt Value is non-negative (>= 0) /// /// This tests the high bit of the APInt to determine if it is unset. bool isNonNegative() const { return !isNegative(); } /// Determine if sign bit of this APInt is set. /// /// This tests the high bit of this APInt to determine if it is set. /// /// \returns true if this APInt has its sign bit set, false otherwise. bool isSignBitSet() const { return (*this)[BitWidth-1]; } /// Determine if sign bit of this APInt is clear. /// /// This tests the high bit of this APInt to determine if it is clear. /// /// \returns true if this APInt has its sign bit clear, false otherwise. bool isSignBitClear() const { return !isSignBitSet(); } /// Determine if this APInt Value is positive. /// /// This tests if the value of this APInt is positive (> 0). Note /// that 0 is not a positive value. /// /// \returns true if this APInt is positive. bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); } /// Determine if all bits are set /// /// This checks to see if the value has all bits of the APInt are set or not. bool isAllOnesValue() const { if (isSingleWord()) return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth); return countTrailingOnesSlowCase() == BitWidth; } /// Determine if all bits are clear /// /// This checks to see if the value has all bits of the APInt are clear or /// not. bool isNullValue() const { return !*this; } /// Determine if this is a value of 1. /// /// This checks to see if the value of this APInt is one. bool isOneValue() const { if (isSingleWord()) return U.VAL == 1; return countLeadingZerosSlowCase() == BitWidth - 1; } /// Determine if this is the largest unsigned value. /// /// This checks to see if the value of this APInt is the maximum unsigned /// value for the APInt's bit width. bool isMaxValue() const { return isAllOnesValue(); } /// Determine if this is the largest signed value. /// /// This checks to see if the value of this APInt is the maximum signed /// value for the APInt's bit width. bool isMaxSignedValue() const { if (isSingleWord()) return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1); return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1; } /// Determine if this is the smallest unsigned value. /// /// This checks to see if the value of this APInt is the minimum unsigned /// value for the APInt's bit width. bool isMinValue() const { return isNullValue(); } /// Determine if this is the smallest signed value. /// /// This checks to see if the value of this APInt is the minimum signed /// value for the APInt's bit width. bool isMinSignedValue() const { if (isSingleWord()) return U.VAL == (WordType(1) << (BitWidth - 1)); return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1; } /// Check if this APInt has an N-bits unsigned integer value. bool isIntN(unsigned N) const { assert(N && "N == 0 ???"); return getActiveBits() <= N; } /// Check if this APInt has an N-bits signed integer value. bool isSignedIntN(unsigned N) const { assert(N && "N == 0 ???"); return getMinSignedBits() <= N; } /// Check if this APInt's value is a power of two greater than zero. /// /// \returns true if the argument APInt value is a power of two > 0. bool isPowerOf2() const { if (isSingleWord()) return isPowerOf2_64(U.VAL); return countPopulationSlowCase() == 1; } /// Check if the APInt's value is returned by getSignMask. /// /// \returns true if this is the value returned by getSignMask. bool isSignMask() const { return isMinSignedValue(); } /// Convert APInt to a boolean value. /// /// This converts the APInt to a boolean value as a test against zero. bool getBoolValue() const { return !!*this; } /// If this value is smaller than the specified limit, return it, otherwise /// return the limit value. This causes the value to saturate to the limit. uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const { return ugt(Limit) ? Limit : getZExtValue(); } /// Check if the APInt consists of a repeated bit pattern. /// /// e.g. 0x01010101 satisfies isSplat(8). /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit /// width without remainder. bool isSplat(unsigned SplatSizeInBits) const; /// \returns true if this APInt value is a sequence of \param numBits ones /// starting at the least significant bit with the remainder zero. bool isMask(unsigned numBits) const { assert(numBits != 0 && "numBits must be non-zero"); assert(numBits <= BitWidth && "numBits out of range"); if (isSingleWord()) return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits)); unsigned Ones = countTrailingOnesSlowCase(); return (numBits == Ones) && ((Ones + countLeadingZerosSlowCase()) == BitWidth); } /// \returns true if this APInt is a non-empty sequence of ones starting at /// the least significant bit with the remainder zero. /// Ex. isMask(0x0000FFFFU) == true. bool isMask() const { if (isSingleWord()) return isMask_64(U.VAL); unsigned Ones = countTrailingOnesSlowCase(); return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth); } /// Return true if this APInt value contains a sequence of ones with /// the remainder zero. bool isShiftedMask() const { if (isSingleWord()) return isShiftedMask_64(U.VAL); unsigned Ones = countPopulationSlowCase(); unsigned LeadZ = countLeadingZerosSlowCase(); return (Ones + LeadZ + countTrailingZeros()) == BitWidth; } /// @} /// \name Value Generators /// @{ /// Gets maximum unsigned value of APInt for specific bit width. static APInt getMaxValue(unsigned numBits) { return getAllOnesValue(numBits); } /// Gets maximum signed value of APInt for a specific bit width. static APInt getSignedMaxValue(unsigned numBits) { APInt API = getAllOnesValue(numBits); API.clearBit(numBits - 1); return API; } /// Gets minimum unsigned value of APInt for a specific bit width. static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); } /// Gets minimum signed value of APInt for a specific bit width. static APInt getSignedMinValue(unsigned numBits) { APInt API(numBits, 0); API.setBit(numBits - 1); return API; } /// Get the SignMask for a specific bit width. /// /// This is just a wrapper function of getSignedMinValue(), and it helps code /// readability when we want to get a SignMask. static APInt getSignMask(unsigned BitWidth) { return getSignedMinValue(BitWidth); } /// Get the all-ones value. /// /// \returns the all-ones value for an APInt of the specified bit-width. static APInt getAllOnesValue(unsigned numBits) { return APInt(numBits, WORDTYPE_MAX, true); } /// Get the '0' value. /// /// \returns the '0' value for an APInt of the specified bit-width. static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); } /// Compute an APInt containing numBits highbits from this APInt. /// /// Get an APInt with the same BitWidth as this APInt, just zero mask /// the low bits and right shift to the least significant bit. /// /// \returns the high "numBits" bits of this APInt. APInt getHiBits(unsigned numBits) const; /// Compute an APInt containing numBits lowbits from this APInt. /// /// Get an APInt with the same BitWidth as this APInt, just zero mask /// the high bits. /// /// \returns the low "numBits" bits of this APInt. APInt getLoBits(unsigned numBits) const; /// Return an APInt with exactly one bit set in the result. static APInt getOneBitSet(unsigned numBits, unsigned BitNo) { APInt Res(numBits, 0); Res.setBit(BitNo); return Res; } /// Get a value with a block of bits set. /// /// Constructs an APInt value that has a contiguous range of bits set. The /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other /// bits will be zero. For example, with parameters(32, 0, 16) you would get /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For /// example, with parameters (32, 28, 4), you would get 0xF000000F. /// /// \param numBits the intended bit width of the result /// \param loBit the index of the lowest bit set. /// \param hiBit the index of the highest bit set. /// /// \returns An APInt value with the requested bits set. static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) { APInt Res(numBits, 0); Res.setBits(loBit, hiBit); return Res; } /// Get a value with upper bits starting at loBit set. /// /// Constructs an APInt value that has a contiguous range of bits set. The /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other /// bits will be zero. For example, with parameters(32, 12) you would get /// 0xFFFFF000. /// /// \param numBits the intended bit width of the result /// \param loBit the index of the lowest bit to set. /// /// \returns An APInt value with the requested bits set. static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) { APInt Res(numBits, 0); Res.setBitsFrom(loBit); return Res; } /// Get a value with high bits set /// /// Constructs an APInt value that has the top hiBitsSet bits set. /// /// \param numBits the bitwidth of the result /// \param hiBitsSet the number of high-order bits set in the result. static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) { APInt Res(numBits, 0); Res.setHighBits(hiBitsSet); return Res; } /// Get a value with low bits set /// /// Constructs an APInt value that has the bottom loBitsSet bits set. /// /// \param numBits the bitwidth of the result /// \param loBitsSet the number of low-order bits set in the result. static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) { APInt Res(numBits, 0); Res.setLowBits(loBitsSet); return Res; } /// Return a value containing V broadcasted over NewLen bits. static APInt getSplat(unsigned NewLen, const APInt &V); /// Determine if two APInts have the same value, after zero-extending /// one of them (if needed!) to ensure that the bit-widths match. static bool isSameValue(const APInt &I1, const APInt &I2) { if (I1.getBitWidth() == I2.getBitWidth()) return I1 == I2; if (I1.getBitWidth() > I2.getBitWidth()) return I1 == I2.zext(I1.getBitWidth()); return I1.zext(I2.getBitWidth()) == I2; } /// Overload to compute a hash_code for an APInt value. friend hash_code hash_value(const APInt &Arg); /// This function returns a pointer to the internal storage of the APInt. /// This is useful for writing out the APInt in binary form without any /// conversions. const uint64_t *getRawData() const { if (isSingleWord()) return &U.VAL; return &U.pVal[0]; } /// @} /// \name Unary Operators /// @{ /// Postfix increment operator. /// /// Increments *this by 1. /// /// \returns a new APInt value representing the original value of *this. const APInt operator++(int) { APInt API(*this); ++(*this); return API; } /// Prefix increment operator. /// /// \returns *this incremented by one APInt &operator++(); /// Postfix decrement operator. /// /// Decrements *this by 1. /// /// \returns a new APInt value representing the original value of *this. const APInt operator--(int) { APInt API(*this); --(*this); return API; } /// Prefix decrement operator. /// /// \returns *this decremented by one. APInt &operator--(); /// Logical negation operator. /// /// Performs logical negation operation on this APInt. /// /// \returns true if *this is zero, false otherwise. bool operator!() const { if (isSingleWord()) return U.VAL == 0; return countLeadingZerosSlowCase() == BitWidth; } /// @} /// \name Assignment Operators /// @{ /// Copy assignment operator. /// /// \returns *this after assignment of RHS. APInt &operator=(const APInt &RHS) { // If the bitwidths are the same, we can avoid mucking with memory if (isSingleWord() && RHS.isSingleWord()) { U.VAL = RHS.U.VAL; BitWidth = RHS.BitWidth; return clearUnusedBits(); } AssignSlowCase(RHS); return *this; } /// Move assignment operator. APInt &operator=(APInt &&that) { #ifdef _MSC_VER // The MSVC std::shuffle implementation still does self-assignment. if (this == &that) return *this; #endif assert(this != &that && "Self-move not supported"); if (!isSingleWord()) delete[] U.pVal; // Use memcpy so that type based alias analysis sees both VAL and pVal // as modified. memcpy(&U, &that.U, sizeof(U)); BitWidth = that.BitWidth; that.BitWidth = 0; return *this; } /// Assignment operator. /// /// The RHS value is assigned to *this. If the significant bits in RHS exceed /// the bit width, the excess bits are truncated. If the bit width is larger /// than 64, the value is zero filled in the unspecified high order bits. /// /// \returns *this after assignment of RHS value. APInt &operator=(uint64_t RHS) { if (isSingleWord()) { U.VAL = RHS; clearUnusedBits(); } else { U.pVal[0] = RHS; memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); } return *this; } /// Bitwise AND assignment operator. /// /// Performs a bitwise AND operation on this APInt and RHS. The result is /// assigned to *this. /// /// \returns *this after ANDing with RHS. APInt &operator&=(const APInt &RHS) { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) U.VAL &= RHS.U.VAL; else AndAssignSlowCase(RHS); return *this; } /// Bitwise AND assignment operator. /// /// Performs a bitwise AND operation on this APInt and RHS. RHS is /// logically zero-extended or truncated to match the bit-width of /// the LHS. APInt &operator&=(uint64_t RHS) { if (isSingleWord()) { U.VAL &= RHS; return *this; } U.pVal[0] &= RHS; memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); return *this; } /// Bitwise OR assignment operator. /// /// Performs a bitwise OR operation on this APInt and RHS. The result is /// assigned *this; /// /// \returns *this after ORing with RHS. APInt &operator|=(const APInt &RHS) { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) U.VAL |= RHS.U.VAL; else OrAssignSlowCase(RHS); return *this; } /// Bitwise OR assignment operator. /// /// Performs a bitwise OR operation on this APInt and RHS. RHS is /// logically zero-extended or truncated to match the bit-width of /// the LHS. APInt &operator|=(uint64_t RHS) { if (isSingleWord()) { U.VAL |= RHS; clearUnusedBits(); } else { U.pVal[0] |= RHS; } return *this; } /// Bitwise XOR assignment operator. /// /// Performs a bitwise XOR operation on this APInt and RHS. The result is /// assigned to *this. /// /// \returns *this after XORing with RHS. APInt &operator^=(const APInt &RHS) { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) U.VAL ^= RHS.U.VAL; else XorAssignSlowCase(RHS); return *this; } /// Bitwise XOR assignment operator. /// /// Performs a bitwise XOR operation on this APInt and RHS. RHS is /// logically zero-extended or truncated to match the bit-width of /// the LHS. APInt &operator^=(uint64_t RHS) { if (isSingleWord()) { U.VAL ^= RHS; clearUnusedBits(); } else { U.pVal[0] ^= RHS; } return *this; } /// Multiplication assignment operator. /// /// Multiplies this APInt by RHS and assigns the result to *this. /// /// \returns *this APInt &operator*=(const APInt &RHS); APInt &operator*=(uint64_t RHS); /// Addition assignment operator. /// /// Adds RHS to *this and assigns the result to *this. /// /// \returns *this APInt &operator+=(const APInt &RHS); APInt &operator+=(uint64_t RHS); /// Subtraction assignment operator. /// /// Subtracts RHS from *this and assigns the result to *this. /// /// \returns *this APInt &operator-=(const APInt &RHS); APInt &operator-=(uint64_t RHS); /// Left-shift assignment function. /// /// Shifts *this left by shiftAmt and assigns the result to *this. /// /// \returns *this after shifting left by ShiftAmt APInt &operator<<=(unsigned ShiftAmt) { assert(ShiftAmt <= BitWidth && "Invalid shift amount"); if (isSingleWord()) { if (ShiftAmt == BitWidth) U.VAL = 0; else U.VAL <<= ShiftAmt; return clearUnusedBits(); } shlSlowCase(ShiftAmt); return *this; } /// Left-shift assignment function. /// /// Shifts *this left by shiftAmt and assigns the result to *this. /// /// \returns *this after shifting left by ShiftAmt APInt &operator<<=(const APInt &ShiftAmt); /// @} /// \name Binary Operators /// @{ /// Multiplication operator. /// /// Multiplies this APInt by RHS and returns the result. APInt operator*(const APInt &RHS) const; /// Left logical shift operator. /// /// Shifts this APInt left by \p Bits and returns the result. APInt operator<<(unsigned Bits) const { return shl(Bits); } /// Left logical shift operator. /// /// Shifts this APInt left by \p Bits and returns the result. APInt operator<<(const APInt &Bits) const { return shl(Bits); } /// Arithmetic right-shift function. /// /// Arithmetic right-shift this APInt by shiftAmt. APInt ashr(unsigned ShiftAmt) const { APInt R(*this); R.ashrInPlace(ShiftAmt); return R; } /// Arithmetic right-shift this APInt by ShiftAmt in place. void ashrInPlace(unsigned ShiftAmt) { assert(ShiftAmt <= BitWidth && "Invalid shift amount"); if (isSingleWord()) { int64_t SExtVAL = SignExtend64(U.VAL, BitWidth); if (ShiftAmt == BitWidth) U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit. else U.VAL = SExtVAL >> ShiftAmt; clearUnusedBits(); return; } ashrSlowCase(ShiftAmt); } /// Logical right-shift function. /// /// Logical right-shift this APInt by shiftAmt. APInt lshr(unsigned shiftAmt) const { APInt R(*this); R.lshrInPlace(shiftAmt); return R; } /// Logical right-shift this APInt by ShiftAmt in place. void lshrInPlace(unsigned ShiftAmt) { assert(ShiftAmt <= BitWidth && "Invalid shift amount"); if (isSingleWord()) { if (ShiftAmt == BitWidth) U.VAL = 0; else U.VAL >>= ShiftAmt; return; } lshrSlowCase(ShiftAmt); } /// Left-shift function. /// /// Left-shift this APInt by shiftAmt. APInt shl(unsigned shiftAmt) const { APInt R(*this); R <<= shiftAmt; return R; } /// Rotate left by rotateAmt. APInt rotl(unsigned rotateAmt) const; /// Rotate right by rotateAmt. APInt rotr(unsigned rotateAmt) const; /// Arithmetic right-shift function. /// /// Arithmetic right-shift this APInt by shiftAmt. APInt ashr(const APInt &ShiftAmt) const { APInt R(*this); R.ashrInPlace(ShiftAmt); return R; } /// Arithmetic right-shift this APInt by shiftAmt in place. void ashrInPlace(const APInt &shiftAmt); /// Logical right-shift function. /// /// Logical right-shift this APInt by shiftAmt. APInt lshr(const APInt &ShiftAmt) const { APInt R(*this); R.lshrInPlace(ShiftAmt); return R; } /// Logical right-shift this APInt by ShiftAmt in place. void lshrInPlace(const APInt &ShiftAmt); /// Left-shift function. /// /// Left-shift this APInt by shiftAmt. APInt shl(const APInt &ShiftAmt) const { APInt R(*this); R <<= ShiftAmt; return R; } /// Rotate left by rotateAmt. APInt rotl(const APInt &rotateAmt) const; /// Rotate right by rotateAmt. APInt rotr(const APInt &rotateAmt) const; /// Unsigned division operation. /// /// Perform an unsigned divide operation on this APInt by RHS. Both this and /// RHS are treated as unsigned quantities for purposes of this division. /// /// \returns a new APInt value containing the division result, rounded towards /// zero. APInt udiv(const APInt &RHS) const; APInt udiv(uint64_t RHS) const; /// Signed division function for APInt. /// /// Signed divide this APInt by APInt RHS. /// /// The result is rounded towards zero. APInt sdiv(const APInt &RHS) const; APInt sdiv(int64_t RHS) const; /// Unsigned remainder operation. /// /// Perform an unsigned remainder operation on this APInt with RHS being the /// divisor. Both this and RHS are treated as unsigned quantities for purposes /// of this operation. Note that this is a true remainder operation and not a /// modulo operation because the sign follows the sign of the dividend which /// is *this. /// /// \returns a new APInt value containing the remainder result APInt urem(const APInt &RHS) const; uint64_t urem(uint64_t RHS) const; /// Function for signed remainder operation. /// /// Signed remainder operation on APInt. APInt srem(const APInt &RHS) const; int64_t srem(int64_t RHS) const; /// Dual division/remainder interface. /// /// Sometimes it is convenient to divide two APInt values and obtain both the /// quotient and remainder. This function does both operations in the same /// computation making it a little more efficient. The pair of input arguments /// may overlap with the pair of output arguments. It is safe to call /// udivrem(X, Y, X, Y), for example. static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder); static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient, uint64_t &Remainder); static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder); static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient, int64_t &Remainder); // Operations that return overflow indicators. APInt sadd_ov(const APInt &RHS, bool &Overflow) const; APInt uadd_ov(const APInt &RHS, bool &Overflow) const; APInt ssub_ov(const APInt &RHS, bool &Overflow) const; APInt usub_ov(const APInt &RHS, bool &Overflow) const; APInt sdiv_ov(const APInt &RHS, bool &Overflow) const; APInt smul_ov(const APInt &RHS, bool &Overflow) const; APInt umul_ov(const APInt &RHS, bool &Overflow) const; APInt sshl_ov(const APInt &Amt, bool &Overflow) const; APInt ushl_ov(const APInt &Amt, bool &Overflow) const; // Operations that saturate APInt sadd_sat(const APInt &RHS) const; APInt uadd_sat(const APInt &RHS) const; APInt ssub_sat(const APInt &RHS) const; APInt usub_sat(const APInt &RHS) const; /// Array-indexing support. /// /// \returns the bit value at bitPosition bool operator[](unsigned bitPosition) const { assert(bitPosition < getBitWidth() && "Bit position out of bounds!"); return (maskBit(bitPosition) & getWord(bitPosition)) != 0; } /// @} /// \name Comparison Operators /// @{ /// Equality operator. /// /// Compares this APInt with RHS for the validity of the equality /// relationship. bool operator==(const APInt &RHS) const { assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths"); if (isSingleWord()) return U.VAL == RHS.U.VAL; return EqualSlowCase(RHS); } /// Equality operator. /// /// Compares this APInt with a uint64_t for the validity of the equality /// relationship. /// /// \returns true if *this == Val bool operator==(uint64_t Val) const { return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val; } /// Equality comparison. /// /// Compares this APInt with RHS for the validity of the equality /// relationship. /// /// \returns true if *this == Val bool eq(const APInt &RHS) const { return (*this) == RHS; } /// Inequality operator. /// /// Compares this APInt with RHS for the validity of the inequality /// relationship. /// /// \returns true if *this != Val bool operator!=(const APInt &RHS) const { return !((*this) == RHS); } /// Inequality operator. /// /// Compares this APInt with a uint64_t for the validity of the inequality /// relationship. /// /// \returns true if *this != Val bool operator!=(uint64_t Val) const { return !((*this) == Val); } /// Inequality comparison /// /// Compares this APInt with RHS for the validity of the inequality /// relationship. /// /// \returns true if *this != Val bool ne(const APInt &RHS) const { return !((*this) == RHS); } /// Unsigned less than comparison /// /// Regards both *this and RHS as unsigned quantities and compares them for /// the validity of the less-than relationship. /// /// \returns true if *this < RHS when both are considered unsigned. bool ult(const APInt &RHS) const { return compare(RHS) < 0; } /// Unsigned less than comparison /// /// Regards both *this as an unsigned quantity and compares it with RHS for /// the validity of the less-than relationship. /// /// \returns true if *this < RHS when considered unsigned. bool ult(uint64_t RHS) const { // Only need to check active bits if not a single word. return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS; } /// Signed less than comparison /// /// Regards both *this and RHS as signed quantities and compares them for /// validity of the less-than relationship. /// /// \returns true if *this < RHS when both are considered signed. bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; } /// Signed less than comparison /// /// Regards both *this as a signed quantity and compares it with RHS for /// the validity of the less-than relationship. /// /// \returns true if *this < RHS when considered signed. bool slt(int64_t RHS) const { return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative() : getSExtValue() < RHS; } /// Unsigned less or equal comparison /// /// Regards both *this and RHS as unsigned quantities and compares them for /// validity of the less-or-equal relationship. /// /// \returns true if *this <= RHS when both are considered unsigned. bool ule(const APInt &RHS) const { return compare(RHS) <= 0; } /// Unsigned less or equal comparison /// /// Regards both *this as an unsigned quantity and compares it with RHS for /// the validity of the less-or-equal relationship. /// /// \returns true if *this <= RHS when considered unsigned. bool ule(uint64_t RHS) const { return !ugt(RHS); } /// Signed less or equal comparison /// /// Regards both *this and RHS as signed quantities and compares them for /// validity of the less-or-equal relationship. /// /// \returns true if *this <= RHS when both are considered signed. bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; } /// Signed less or equal comparison /// /// Regards both *this as a signed quantity and compares it with RHS for the /// validity of the less-or-equal relationship. /// /// \returns true if *this <= RHS when considered signed. bool sle(uint64_t RHS) const { return !sgt(RHS); } /// Unsigned greather than comparison /// /// Regards both *this and RHS as unsigned quantities and compares them for /// the validity of the greater-than relationship. /// /// \returns true if *this > RHS when both are considered unsigned. bool ugt(const APInt &RHS) const { return !ule(RHS); } /// Unsigned greater than comparison /// /// Regards both *this as an unsigned quantity and compares it with RHS for /// the validity of the greater-than relationship. /// /// \returns true if *this > RHS when considered unsigned. bool ugt(uint64_t RHS) const { // Only need to check active bits if not a single word. return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS; } /// Signed greather than comparison /// /// Regards both *this and RHS as signed quantities and compares them for the /// validity of the greater-than relationship. /// /// \returns true if *this > RHS when both are considered signed. bool sgt(const APInt &RHS) const { return !sle(RHS); } /// Signed greater than comparison /// /// Regards both *this as a signed quantity and compares it with RHS for /// the validity of the greater-than relationship. /// /// \returns true if *this > RHS when considered signed. bool sgt(int64_t RHS) const { return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative() : getSExtValue() > RHS; } /// Unsigned greater or equal comparison /// /// Regards both *this and RHS as unsigned quantities and compares them for /// validity of the greater-or-equal relationship. /// /// \returns true if *this >= RHS when both are considered unsigned. bool uge(const APInt &RHS) const { return !ult(RHS); } /// Unsigned greater or equal comparison /// /// Regards both *this as an unsigned quantity and compares it with RHS for /// the validity of the greater-or-equal relationship. /// /// \returns true if *this >= RHS when considered unsigned. bool uge(uint64_t RHS) const { return !ult(RHS); } /// Signed greater or equal comparison /// /// Regards both *this and RHS as signed quantities and compares them for /// validity of the greater-or-equal relationship. /// /// \returns true if *this >= RHS when both are considered signed. bool sge(const APInt &RHS) const { return !slt(RHS); } /// Signed greater or equal comparison /// /// Regards both *this as a signed quantity and compares it with RHS for /// the validity of the greater-or-equal relationship. /// /// \returns true if *this >= RHS when considered signed. bool sge(int64_t RHS) const { return !slt(RHS); } /// This operation tests if there are any pairs of corresponding bits /// between this APInt and RHS that are both set. bool intersects(const APInt &RHS) const { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) return (U.VAL & RHS.U.VAL) != 0; return intersectsSlowCase(RHS); } /// This operation checks that all bits set in this APInt are also set in RHS. bool isSubsetOf(const APInt &RHS) const { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) return (U.VAL & ~RHS.U.VAL) == 0; return isSubsetOfSlowCase(RHS); } /// @} /// \name Resizing Operators /// @{ /// Truncate to new width. /// /// Truncate the APInt to a specified width. It is an error to specify a width /// that is greater than or equal to the current width. APInt trunc(unsigned width) const; /// Sign extend to a new width. /// /// This operation sign extends the APInt to a new width. If the high order /// bit is set, the fill on the left will be done with 1 bits, otherwise zero. /// It is an error to specify a width that is less than or equal to the /// current width. APInt sext(unsigned width) const; /// Zero extend to a new width. /// /// This operation zero extends the APInt to a new width. The high order bits /// are filled with 0 bits. It is an error to specify a width that is less /// than or equal to the current width. APInt zext(unsigned width) const; /// Sign extend or truncate to width /// /// Make this APInt have the bit width given by \p width. The value is sign /// extended, truncated, or left alone to make it that width. APInt sextOrTrunc(unsigned width) const; /// Zero extend or truncate to width /// /// Make this APInt have the bit width given by \p width. The value is zero /// extended, truncated, or left alone to make it that width. APInt zextOrTrunc(unsigned width) const; /// Sign extend or truncate to width /// /// Make this APInt have the bit width given by \p width. The value is sign /// extended, or left alone to make it that width. APInt sextOrSelf(unsigned width) const; /// Zero extend or truncate to width /// /// Make this APInt have the bit width given by \p width. The value is zero /// extended, or left alone to make it that width. APInt zextOrSelf(unsigned width) const; /// @} /// \name Bit Manipulation Operators /// @{ /// Set every bit to 1. void setAllBits() { if (isSingleWord()) U.VAL = WORDTYPE_MAX; else // Set all the bits in all the words. memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE); // Clear the unused ones clearUnusedBits(); } /// Set a given bit to 1. /// /// Set the given bit to 1 whose position is given as "bitPosition". void setBit(unsigned BitPosition) { assert(BitPosition < BitWidth && "BitPosition out of range"); WordType Mask = maskBit(BitPosition); if (isSingleWord()) U.VAL |= Mask; else U.pVal[whichWord(BitPosition)] |= Mask; } /// Set the sign bit to 1. void setSignBit() { setBit(BitWidth - 1); } /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1. void setBits(unsigned loBit, unsigned hiBit) { assert(hiBit <= BitWidth && "hiBit out of range"); assert(loBit <= BitWidth && "loBit out of range"); assert(loBit <= hiBit && "loBit greater than hiBit"); if (loBit == hiBit) return; if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) { uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit)); mask <<= loBit; if (isSingleWord()) U.VAL |= mask; else U.pVal[0] |= mask; } else { setBitsSlowCase(loBit, hiBit); } } /// Set the top bits starting from loBit. void setBitsFrom(unsigned loBit) { return setBits(loBit, BitWidth); } /// Set the bottom loBits bits. void setLowBits(unsigned loBits) { return setBits(0, loBits); } /// Set the top hiBits bits. void setHighBits(unsigned hiBits) { return setBits(BitWidth - hiBits, BitWidth); } /// Set every bit to 0. void clearAllBits() { if (isSingleWord()) U.VAL = 0; else memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE); } /// Set a given bit to 0. /// /// Set the given bit to 0 whose position is given as "bitPosition". void clearBit(unsigned BitPosition) { assert(BitPosition < BitWidth && "BitPosition out of range"); WordType Mask = ~maskBit(BitPosition); if (isSingleWord()) U.VAL &= Mask; else U.pVal[whichWord(BitPosition)] &= Mask; } /// Set the sign bit to 0. void clearSignBit() { clearBit(BitWidth - 1); } /// Toggle every bit to its opposite value. void flipAllBits() { if (isSingleWord()) { U.VAL ^= WORDTYPE_MAX; clearUnusedBits(); } else { flipAllBitsSlowCase(); } } /// Toggles a given bit to its opposite value. /// /// Toggle a given bit to its opposite value whose position is given /// as "bitPosition". void flipBit(unsigned bitPosition); /// Negate this APInt in place. void negate() { flipAllBits(); ++(*this); } /// Insert the bits from a smaller APInt starting at bitPosition. void insertBits(const APInt &SubBits, unsigned bitPosition); /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits). APInt extractBits(unsigned numBits, unsigned bitPosition) const; /// @} /// \name Value Characterization Functions /// @{ /// Return the number of bits in the APInt. unsigned getBitWidth() const { return BitWidth; } /// Get the number of words. /// /// Here one word's bitwidth equals to that of uint64_t. /// /// \returns the number of words to hold the integer value of this APInt. unsigned getNumWords() const { return getNumWords(BitWidth); } /// Get the number of words. /// /// *NOTE* Here one word's bitwidth equals to that of uint64_t. /// /// \returns the number of words to hold the integer value with a given bit /// width. static unsigned getNumWords(unsigned BitWidth) { return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; } /// Compute the number of active bits in the value /// /// This function returns the number of active bits which is defined as the /// bit width minus the number of leading zeros. This is used in several /// computations to see how "wide" the value is. unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); } /// Compute the number of active words in the value of this APInt. /// /// This is used in conjunction with getActiveData to extract the raw value of /// the APInt. unsigned getActiveWords() const { unsigned numActiveBits = getActiveBits(); return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1; } /// Get the minimum bit size for this signed APInt /// /// Computes the minimum bit width for this APInt while considering it to be a /// signed (and probably negative) value. If the value is not negative, this /// function returns the same value as getActiveBits()+1. Otherwise, it /// returns the smallest bit width that will retain the negative value. For /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so /// for -1, this function will always return 1. unsigned getMinSignedBits() const { if (isNegative()) return BitWidth - countLeadingOnes() + 1; return getActiveBits() + 1; } /// Get zero extended value /// /// This method attempts to return the value of this APInt as a zero extended /// uint64_t. The bitwidth must be <= 64 or the value must fit within a /// uint64_t. Otherwise an assertion will result. uint64_t getZExtValue() const { if (isSingleWord()) return U.VAL; assert(getActiveBits() <= 64 && "Too many bits for uint64_t"); return U.pVal[0]; } /// Get sign extended value /// /// This method attempts to return the value of this APInt as a sign extended /// int64_t. The bit width must be <= 64 or the value must fit within an /// int64_t. Otherwise an assertion will result. int64_t getSExtValue() const { if (isSingleWord()) return SignExtend64(U.VAL, BitWidth); assert(getMinSignedBits() <= 64 && "Too many bits for int64_t"); return int64_t(U.pVal[0]); } /// Get bits required for string value. /// /// This method determines how many bits are required to hold the APInt /// equivalent of the string given by \p str. static unsigned getBitsNeeded(StringRef str, uint8_t radix); /// The APInt version of the countLeadingZeros functions in /// MathExtras.h. /// /// It counts the number of zeros from the most significant bit to the first /// one bit. /// /// \returns BitWidth if the value is zero, otherwise returns the number of /// zeros from the most significant bit to the first one bits. unsigned countLeadingZeros() const { if (isSingleWord()) { unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth; return llvm::countLeadingZeros(U.VAL) - unusedBits; } return countLeadingZerosSlowCase(); } /// Count the number of leading one bits. /// /// This function is an APInt version of the countLeadingOnes /// functions in MathExtras.h. It counts the number of ones from the most /// significant bit to the first zero bit. /// /// \returns 0 if the high order bit is not set, otherwise returns the number /// of 1 bits from the most significant to the least unsigned countLeadingOnes() const { if (isSingleWord()) return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth)); return countLeadingOnesSlowCase(); } /// Computes the number of leading bits of this APInt that are equal to its /// sign bit. unsigned getNumSignBits() const { return isNegative() ? countLeadingOnes() : countLeadingZeros(); } /// Count the number of trailing zero bits. /// /// This function is an APInt version of the countTrailingZeros /// functions in MathExtras.h. It counts the number of zeros from the least /// significant bit to the first set bit. /// /// \returns BitWidth if the value is zero, otherwise returns the number of /// zeros from the least significant bit to the first one bit. unsigned countTrailingZeros() const { if (isSingleWord()) return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth); return countTrailingZerosSlowCase(); } /// Count the number of trailing one bits. /// /// This function is an APInt version of the countTrailingOnes /// functions in MathExtras.h. It counts the number of ones from the least /// significant bit to the first zero bit. /// /// \returns BitWidth if the value is all ones, otherwise returns the number /// of ones from the least significant bit to the first zero bit. unsigned countTrailingOnes() const { if (isSingleWord()) return llvm::countTrailingOnes(U.VAL); return countTrailingOnesSlowCase(); } /// Count the number of bits set. /// /// This function is an APInt version of the countPopulation functions /// in MathExtras.h. It counts the number of 1 bits in the APInt value. /// /// \returns 0 if the value is zero, otherwise returns the number of set bits. unsigned countPopulation() const { if (isSingleWord()) return llvm::countPopulation(U.VAL); return countPopulationSlowCase(); } /// @} /// \name Conversion Functions /// @{ void print(raw_ostream &OS, bool isSigned) const; /// Converts an APInt to a string and append it to Str. Str is commonly a /// SmallString. void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed, bool formatAsCLiteral = false) const; /// Considers the APInt to be unsigned and converts it into a string in the /// radix given. The radix can be 2, 8, 10 16, or 36. void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { toString(Str, Radix, false, false); } /// Considers the APInt to be signed and converts it into a string in the /// radix given. The radix can be 2, 8, 10, 16, or 36. void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { toString(Str, Radix, true, false); } /// Return the APInt as a std::string. /// /// Note that this is an inefficient method. It is better to pass in a /// SmallVector/SmallString to the methods above to avoid thrashing the heap /// for the string. std::string toString(unsigned Radix, bool Signed) const; /// \returns a byte-swapped representation of this APInt Value. APInt byteSwap() const; /// \returns the value with the bit representation reversed of this APInt /// Value. APInt reverseBits() const; /// Converts this APInt to a double value. double roundToDouble(bool isSigned) const; /// Converts this unsigned APInt to a double value. double roundToDouble() const { return roundToDouble(false); } /// Converts this signed APInt to a double value. double signedRoundToDouble() const { return roundToDouble(true); } /// Converts APInt bits to a double /// /// The conversion does not do a translation from integer to double, it just /// re-interprets the bits as a double. Note that it is valid to do this on /// any bit width. Exactly 64 bits will be translated. double bitsToDouble() const { return BitsToDouble(getWord(0)); } /// Converts APInt bits to a double /// /// The conversion does not do a translation from integer to float, it just /// re-interprets the bits as a float. Note that it is valid to do this on /// any bit width. Exactly 32 bits will be translated. float bitsToFloat() const { return BitsToFloat(getWord(0)); } /// Converts a double to APInt bits. /// /// The conversion does not do a translation from double to integer, it just /// re-interprets the bits of the double. static APInt doubleToBits(double V) { return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V)); } /// Converts a float to APInt bits. /// /// The conversion does not do a translation from float to integer, it just /// re-interprets the bits of the float. static APInt floatToBits(float V) { return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V)); } /// @} /// \name Mathematics Operations /// @{ /// \returns the floor log base 2 of this APInt. unsigned logBase2() const { return getActiveBits() - 1; } /// \returns the ceil log base 2 of this APInt. unsigned ceilLogBase2() const { APInt temp(*this); --temp; return temp.getActiveBits(); } /// \returns the nearest log base 2 of this APInt. Ties round up. /// /// NOTE: When we have a BitWidth of 1, we define: /// /// log2(0) = UINT32_MAX /// log2(1) = 0 /// /// to get around any mathematical concerns resulting from /// referencing 2 in a space where 2 does no exist. unsigned nearestLogBase2() const { // Special case when we have a bitwidth of 1. If VAL is 1, then we // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to // UINT32_MAX. if (BitWidth == 1) return U.VAL - 1; // Handle the zero case. if (isNullValue()) return UINT32_MAX; // The non-zero case is handled by computing: // // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1]. // // where x[i] is referring to the value of the ith bit of x. unsigned lg = logBase2(); return lg + unsigned((*this)[lg - 1]); } /// \returns the log base 2 of this APInt if its an exact power of two, -1 /// otherwise int32_t exactLogBase2() const { if (!isPowerOf2()) return -1; return logBase2(); } /// Compute the square root APInt sqrt() const; /// Get the absolute value; /// /// If *this is < 0 then return -(*this), otherwise *this; APInt abs() const { if (isNegative()) return -(*this); return *this; } /// \returns the multiplicative inverse for a given modulo. APInt multiplicativeInverse(const APInt &modulo) const; /// @} /// \name Support for division by constant /// @{ /// Calculate the magic number for signed division by a constant. struct ms; ms magic() const; /// Calculate the magic number for unsigned division by a constant. struct mu; mu magicu(unsigned LeadingZeros = 0) const; /// @} /// \name Building-block Operations for APInt and APFloat /// @{ // These building block operations operate on a representation of arbitrary // precision, two's-complement, bignum integer values. They should be // sufficient to implement APInt and APFloat bignum requirements. Inputs are // generally a pointer to the base of an array of integer parts, representing // an unsigned bignum, and a count of how many parts there are. /// Sets the least significant part of a bignum to the input value, and zeroes /// out higher parts. static void tcSet(WordType *, WordType, unsigned); /// Assign one bignum to another. static void tcAssign(WordType *, const WordType *, unsigned); /// Returns true if a bignum is zero, false otherwise. static bool tcIsZero(const WordType *, unsigned); /// Extract the given bit of a bignum; returns 0 or 1. Zero-based. static int tcExtractBit(const WordType *, unsigned bit); /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least /// significant bit of DST. All high bits above srcBITS in DST are /// zero-filled. static void tcExtract(WordType *, unsigned dstCount, const WordType *, unsigned srcBits, unsigned srcLSB); /// Set the given bit of a bignum. Zero-based. static void tcSetBit(WordType *, unsigned bit); /// Clear the given bit of a bignum. Zero-based. static void tcClearBit(WordType *, unsigned bit); /// Returns the bit number of the least or most significant set bit of a /// number. If the input number has no bits set -1U is returned. static unsigned tcLSB(const WordType *, unsigned n); static unsigned tcMSB(const WordType *parts, unsigned n); /// Negate a bignum in-place. static void tcNegate(WordType *, unsigned); /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag. static WordType tcAdd(WordType *, const WordType *, WordType carry, unsigned); /// DST += RHS. Returns the carry flag. static WordType tcAddPart(WordType *, WordType, unsigned); /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag. static WordType tcSubtract(WordType *, const WordType *, WordType carry, unsigned); /// DST -= RHS. Returns the carry flag. static WordType tcSubtractPart(WordType *, WordType, unsigned); /// DST += SRC * MULTIPLIER + PART if add is true /// DST = SRC * MULTIPLIER + PART if add is false /// /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must /// start at the same point, i.e. DST == SRC. /// /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned. /// Otherwise DST is filled with the least significant DSTPARTS parts of the /// result, and if all of the omitted higher parts were zero return zero, /// otherwise overflow occurred and return one. static int tcMultiplyPart(WordType *dst, const WordType *src, WordType multiplier, WordType carry, unsigned srcParts, unsigned dstParts, bool add); /// DST = LHS * RHS, where DST has the same width as the operands and is /// filled with the least significant parts of the result. Returns one if /// overflow occurred, otherwise zero. DST must be disjoint from both /// operands. static int tcMultiply(WordType *, const WordType *, const WordType *, unsigned); /// DST = LHS * RHS, where DST has width the sum of the widths of the /// operands. No overflow occurs. DST must be disjoint from both operands. static void tcFullMultiply(WordType *, const WordType *, const WordType *, unsigned, unsigned); /// If RHS is zero LHS and REMAINDER are left unchanged, return one. /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set /// REMAINDER to the remainder, return zero. i.e. /// /// OLD_LHS = RHS * LHS + REMAINDER /// /// SCRATCH is a bignum of the same size as the operands and result for use by /// the routine; its contents need not be initialized and are destroyed. LHS, /// REMAINDER and SCRATCH must be distinct. static int tcDivide(WordType *lhs, const WordType *rhs, WordType *remainder, WordType *scratch, unsigned parts); /// Shift a bignum left Count bits. Shifted in bits are zero. There are no /// restrictions on Count. static void tcShiftLeft(WordType *, unsigned Words, unsigned Count); /// Shift a bignum right Count bits. Shifted in bits are zero. There are no /// restrictions on Count. static void tcShiftRight(WordType *, unsigned Words, unsigned Count); /// The obvious AND, OR and XOR and complement operations. static void tcAnd(WordType *, const WordType *, unsigned); static void tcOr(WordType *, const WordType *, unsigned); static void tcXor(WordType *, const WordType *, unsigned); static void tcComplement(WordType *, unsigned); /// Comparison (unsigned) of two bignums. static int tcCompare(const WordType *, const WordType *, unsigned); /// Increment a bignum in-place. Return the carry flag. static WordType tcIncrement(WordType *dst, unsigned parts) { return tcAddPart(dst, 1, parts); } /// Decrement a bignum in-place. Return the borrow flag. static WordType tcDecrement(WordType *dst, unsigned parts) { return tcSubtractPart(dst, 1, parts); } /// Set the least significant BITS and clear the rest. static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits); /// debug method void dump() const; /// @} }; /// Magic data for optimising signed division by a constant. struct APInt::ms { APInt m; ///< magic number unsigned s; ///< shift amount }; /// Magic data for optimising unsigned division by a constant. struct APInt::mu { APInt m; ///< magic number bool a; ///< add indicator unsigned s; ///< shift amount }; inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; } inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; } /// Unary bitwise complement operator. /// /// \returns an APInt that is the bitwise complement of \p v. inline APInt operator~(APInt v) { v.flipAllBits(); return v; } inline APInt operator&(APInt a, const APInt &b) { a &= b; return a; } inline APInt operator&(const APInt &a, APInt &&b) { b &= a; return std::move(b); } inline APInt operator&(APInt a, uint64_t RHS) { a &= RHS; return a; } inline APInt operator&(uint64_t LHS, APInt b) { b &= LHS; return b; } inline APInt operator|(APInt a, const APInt &b) { a |= b; return a; } inline APInt operator|(const APInt &a, APInt &&b) { b |= a; return std::move(b); } inline APInt operator|(APInt a, uint64_t RHS) { a |= RHS; return a; } inline APInt operator|(uint64_t LHS, APInt b) { b |= LHS; return b; } inline APInt operator^(APInt a, const APInt &b) { a ^= b; return a; } inline APInt operator^(const APInt &a, APInt &&b) { b ^= a; return std::move(b); } inline APInt operator^(APInt a, uint64_t RHS) { a ^= RHS; return a; } inline APInt operator^(uint64_t LHS, APInt b) { b ^= LHS; return b; } inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) { I.print(OS, true); return OS; } inline APInt operator-(APInt v) { v.negate(); return v; } inline APInt operator+(APInt a, const APInt &b) { a += b; return a; } inline APInt operator+(const APInt &a, APInt &&b) { b += a; return std::move(b); } inline APInt operator+(APInt a, uint64_t RHS) { a += RHS; return a; } inline APInt operator+(uint64_t LHS, APInt b) { b += LHS; return b; } inline APInt operator-(APInt a, const APInt &b) { a -= b; return a; } inline APInt operator-(const APInt &a, APInt &&b) { b.negate(); b += a; return std::move(b); } inline APInt operator-(APInt a, uint64_t RHS) { a -= RHS; return a; } inline APInt operator-(uint64_t LHS, APInt b) { b.negate(); b += LHS; return b; } inline APInt operator*(APInt a, uint64_t RHS) { a *= RHS; return a; } inline APInt operator*(uint64_t LHS, APInt b) { b *= LHS; return b; } namespace APIntOps { /// Determine the smaller of two APInts considered to be signed. inline const APInt &smin(const APInt &A, const APInt &B) { return A.slt(B) ? A : B; } /// Determine the larger of two APInts considered to be signed. inline const APInt &smax(const APInt &A, const APInt &B) { return A.sgt(B) ? A : B; } /// Determine the smaller of two APInts considered to be signed. inline const APInt &umin(const APInt &A, const APInt &B) { return A.ult(B) ? A : B; } /// Determine the larger of two APInts considered to be unsigned. inline const APInt &umax(const APInt &A, const APInt &B) { return A.ugt(B) ? A : B; } /// Compute GCD of two unsigned APInt values. /// /// This function returns the greatest common divisor of the two APInt values /// using Stein's algorithm. /// /// \returns the greatest common divisor of A and B. APInt GreatestCommonDivisor(APInt A, APInt B); /// Converts the given APInt to a double value. /// /// Treats the APInt as an unsigned value for conversion purposes. inline double RoundAPIntToDouble(const APInt &APIVal) { return APIVal.roundToDouble(); } /// Converts the given APInt to a double value. /// /// Treats the APInt as a signed value for conversion purposes. inline double RoundSignedAPIntToDouble(const APInt &APIVal) { return APIVal.signedRoundToDouble(); } /// Converts the given APInt to a float vlalue. inline float RoundAPIntToFloat(const APInt &APIVal) { return float(RoundAPIntToDouble(APIVal)); } /// Converts the given APInt to a float value. /// /// Treast the APInt as a signed value for conversion purposes. inline float RoundSignedAPIntToFloat(const APInt &APIVal) { return float(APIVal.signedRoundToDouble()); } /// Converts the given double value into a APInt. /// /// This function convert a double value to an APInt value. APInt RoundDoubleToAPInt(double Double, unsigned width); /// Converts a float value into a APInt. /// /// Converts a float value into an APInt value. inline APInt RoundFloatToAPInt(float Float, unsigned width) { return RoundDoubleToAPInt(double(Float), width); } /// Return A unsign-divided by B, rounded by the given rounding mode. APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM); /// Return A sign-divided by B, rounded by the given rounding mode. APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM); /// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range /// (e.g. 32 for i32). /// This function finds the smallest number n, such that /// (a) n >= 0 and q(n) = 0, or /// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all /// integers, belong to two different intervals [Rk, Rk+R), /// where R = 2^BW, and k is an integer. /// The idea here is to find when q(n) "overflows" 2^BW, while at the /// same time "allowing" subtraction. In unsigned modulo arithmetic a /// subtraction (treated as addition of negated numbers) would always /// count as an overflow, but here we want to allow values to decrease /// and increase as long as they are within the same interval. /// Specifically, adding of two negative numbers should not cause an /// overflow (as long as the magnitude does not exceed the bith width). /// On the other hand, given a positive number, adding a negative /// number to it can give a negative result, which would cause the /// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is /// treated as a special case of an overflow. /// /// This function returns None if after finding k that minimizes the /// positive solution to q(n) = kR, both solutions are contained between /// two consecutive integers. /// /// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation /// in arithmetic modulo 2^BW, and treating the values as signed) by the /// virtue of *signed* overflow. This function will *not* find such an n, /// however it may find a value of n satisfying the inequalities due to /// an *unsigned* overflow (if the values are treated as unsigned). /// To find a solution for a signed overflow, treat it as a problem of /// finding an unsigned overflow with a range with of BW-1. /// /// The returned value may have a different bit width from the input /// coefficients. Optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C, unsigned RangeWidth); } // End of APIntOps namespace // See friend declaration above. This additional declaration is required in // order to compile LLVM with IBM xlC compiler. hash_code hash_value(const APInt &Arg); } // End of llvm namespace #endif