//===-- llvm/ADT/APSInt.h - Arbitrary Precision Signed Int -----*- C++ -*--===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the APSInt class, which is a simple class that // represents an arbitrary sized integer that knows its signedness. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_APSINT_H #define LLVM_ADT_APSINT_H #include "llvm/ADT/APInt.h" namespace llvm { class LLVM_NODISCARD APSInt : public APInt { bool IsUnsigned; public: /// Default constructor that creates an uninitialized APInt. explicit APSInt() : IsUnsigned(false) {} /// APSInt ctor - Create an APSInt with the specified width, default to /// unsigned. explicit APSInt(uint32_t BitWidth, bool isUnsigned = true) : APInt(BitWidth, 0), IsUnsigned(isUnsigned) {} explicit APSInt(APInt I, bool isUnsigned = true) : APInt(std::move(I)), IsUnsigned(isUnsigned) {} /// Construct an APSInt from a string representation. /// /// This constructor interprets the string \p Str using the radix of 10. /// The interpretation stops at the end of the string. The bit width of the /// constructed APSInt is determined automatically. /// /// \param Str the string to be interpreted. explicit APSInt(StringRef Str); APSInt &operator=(APInt RHS) { // Retain our current sign. APInt::operator=(std::move(RHS)); return *this; } APSInt &operator=(uint64_t RHS) { // Retain our current sign. APInt::operator=(RHS); return *this; } // Query sign information. bool isSigned() const { return !IsUnsigned; } bool isUnsigned() const { return IsUnsigned; } void setIsUnsigned(bool Val) { IsUnsigned = Val; } void setIsSigned(bool Val) { IsUnsigned = !Val; } /// toString - Append this APSInt to the specified SmallString. void toString(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { APInt::toString(Str, Radix, isSigned()); } /// toString - Converts an APInt to a std::string. This is an inefficient /// method; you should prefer passing in a SmallString instead. std::string toString(unsigned Radix) const { return APInt::toString(Radix, isSigned()); } using APInt::toString; /// Get the correctly-extended \c int64_t value. int64_t getExtValue() const { assert(getMinSignedBits() <= 64 && "Too many bits for int64_t"); return isSigned() ? getSExtValue() : getZExtValue(); } APSInt trunc(uint32_t width) const { return APSInt(APInt::trunc(width), IsUnsigned); } APSInt extend(uint32_t width) const { if (IsUnsigned) return APSInt(zext(width), IsUnsigned); else return APSInt(sext(width), IsUnsigned); } APSInt extOrTrunc(uint32_t width) const { if (IsUnsigned) return APSInt(zextOrTrunc(width), IsUnsigned); else return APSInt(sextOrTrunc(width), IsUnsigned); } const APSInt &operator%=(const APSInt &RHS) { assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); if (IsUnsigned) *this = urem(RHS); else *this = srem(RHS); return *this; } const APSInt &operator/=(const APSInt &RHS) { assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); if (IsUnsigned) *this = udiv(RHS); else *this = sdiv(RHS); return *this; } APSInt operator%(const APSInt &RHS) const { assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); return IsUnsigned ? APSInt(urem(RHS), true) : APSInt(srem(RHS), false); } APSInt operator/(const APSInt &RHS) const { assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); return IsUnsigned ? APSInt(udiv(RHS), true) : APSInt(sdiv(RHS), false); } APSInt operator>>(unsigned Amt) const { return IsUnsigned ? APSInt(lshr(Amt), true) : APSInt(ashr(Amt), false); } APSInt& operator>>=(unsigned Amt) { if (IsUnsigned) lshrInPlace(Amt); else ashrInPlace(Amt); return *this; } inline bool operator<(const APSInt& RHS) const { assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); return IsUnsigned ? ult(RHS) : slt(RHS); } inline bool operator>(const APSInt& RHS) const { assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); return IsUnsigned ? ugt(RHS) : sgt(RHS); } inline bool operator<=(const APSInt& RHS) const { assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); return IsUnsigned ? ule(RHS) : sle(RHS); } inline bool operator>=(const APSInt& RHS) const { assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); return IsUnsigned ? uge(RHS) : sge(RHS); } inline bool operator==(const APSInt& RHS) const { assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); return eq(RHS); } inline bool operator!=(const APSInt& RHS) const { return !((*this) == RHS); } bool operator==(int64_t RHS) const { return compareValues(*this, get(RHS)) == 0; } bool operator!=(int64_t RHS) const { return compareValues(*this, get(RHS)) != 0; } bool operator<=(int64_t RHS) const { return compareValues(*this, get(RHS)) <= 0; } bool operator>=(int64_t RHS) const { return compareValues(*this, get(RHS)) >= 0; } bool operator<(int64_t RHS) const { return compareValues(*this, get(RHS)) < 0; } bool operator>(int64_t RHS) const { return compareValues(*this, get(RHS)) > 0; } // The remaining operators just wrap the logic of APInt, but retain the // signedness information. APSInt operator<<(unsigned Bits) const { return APSInt(static_cast<const APInt&>(*this) << Bits, IsUnsigned); } APSInt& operator<<=(unsigned Amt) { static_cast<APInt&>(*this) <<= Amt; return *this; } APSInt& operator++() { ++(static_cast<APInt&>(*this)); return *this; } APSInt& operator--() { --(static_cast<APInt&>(*this)); return *this; } APSInt operator++(int) { return APSInt(++static_cast<APInt&>(*this), IsUnsigned); } APSInt operator--(int) { return APSInt(--static_cast<APInt&>(*this), IsUnsigned); } APSInt operator-() const { return APSInt(-static_cast<const APInt&>(*this), IsUnsigned); } APSInt& operator+=(const APSInt& RHS) { assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); static_cast<APInt&>(*this) += RHS; return *this; } APSInt& operator-=(const APSInt& RHS) { assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); static_cast<APInt&>(*this) -= RHS; return *this; } APSInt& operator*=(const APSInt& RHS) { assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); static_cast<APInt&>(*this) *= RHS; return *this; } APSInt& operator&=(const APSInt& RHS) { assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); static_cast<APInt&>(*this) &= RHS; return *this; } APSInt& operator|=(const APSInt& RHS) { assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); static_cast<APInt&>(*this) |= RHS; return *this; } APSInt& operator^=(const APSInt& RHS) { assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); static_cast<APInt&>(*this) ^= RHS; return *this; } APSInt operator&(const APSInt& RHS) const { assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); return APSInt(static_cast<const APInt&>(*this) & RHS, IsUnsigned); } APSInt operator|(const APSInt& RHS) const { assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); return APSInt(static_cast<const APInt&>(*this) | RHS, IsUnsigned); } APSInt operator^(const APSInt &RHS) const { assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); return APSInt(static_cast<const APInt&>(*this) ^ RHS, IsUnsigned); } APSInt operator*(const APSInt& RHS) const { assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); return APSInt(static_cast<const APInt&>(*this) * RHS, IsUnsigned); } APSInt operator+(const APSInt& RHS) const { assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); return APSInt(static_cast<const APInt&>(*this) + RHS, IsUnsigned); } APSInt operator-(const APSInt& RHS) const { assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); return APSInt(static_cast<const APInt&>(*this) - RHS, IsUnsigned); } APSInt operator~() const { return APSInt(~static_cast<const APInt&>(*this), IsUnsigned); } /// getMaxValue - Return the APSInt representing the maximum integer value /// with the given bit width and signedness. static APSInt getMaxValue(uint32_t numBits, bool Unsigned) { return APSInt(Unsigned ? APInt::getMaxValue(numBits) : APInt::getSignedMaxValue(numBits), Unsigned); } /// getMinValue - Return the APSInt representing the minimum integer value /// with the given bit width and signedness. static APSInt getMinValue(uint32_t numBits, bool Unsigned) { return APSInt(Unsigned ? APInt::getMinValue(numBits) : APInt::getSignedMinValue(numBits), Unsigned); } /// Determine if two APSInts have the same value, zero- or /// sign-extending as needed. static bool isSameValue(const APSInt &I1, const APSInt &I2) { return !compareValues(I1, I2); } /// Compare underlying values of two numbers. static int compareValues(const APSInt &I1, const APSInt &I2) { if (I1.getBitWidth() == I2.getBitWidth() && I1.isSigned() == I2.isSigned()) return I1.IsUnsigned ? I1.compare(I2) : I1.compareSigned(I2); // Check for a bit-width mismatch. if (I1.getBitWidth() > I2.getBitWidth()) return compareValues(I1, I2.extend(I1.getBitWidth())); if (I2.getBitWidth() > I1.getBitWidth()) return compareValues(I1.extend(I2.getBitWidth()), I2); // We have a signedness mismatch. Check for negative values and do an // unsigned compare if both are positive. if (I1.isSigned()) { assert(!I2.isSigned() && "Expected signed mismatch"); if (I1.isNegative()) return -1; } else { assert(I2.isSigned() && "Expected signed mismatch"); if (I2.isNegative()) return 1; } return I1.compare(I2); } static APSInt get(int64_t X) { return APSInt(APInt(64, X), false); } static APSInt getUnsigned(uint64_t X) { return APSInt(APInt(64, X), true); } /// Profile - Used to insert APSInt objects, or objects that contain APSInt /// objects, into FoldingSets. void Profile(FoldingSetNodeID& ID) const; }; inline bool operator==(int64_t V1, const APSInt &V2) { return V2 == V1; } inline bool operator!=(int64_t V1, const APSInt &V2) { return V2 != V1; } inline bool operator<=(int64_t V1, const APSInt &V2) { return V2 >= V1; } inline bool operator>=(int64_t V1, const APSInt &V2) { return V2 <= V1; } inline bool operator<(int64_t V1, const APSInt &V2) { return V2 > V1; } inline bool operator>(int64_t V1, const APSInt &V2) { return V2 < V1; } inline raw_ostream &operator<<(raw_ostream &OS, const APSInt &I) { I.print(OS, I.isSigned()); return OS; } } // end namespace llvm #endif