//===- llvm/ADT/CachedHashString.h - Prehashed string/StringRef -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines CachedHashString and CachedHashStringRef. These are owning // and not-owning string types that store their hash in addition to their string // data. // // Unlike std::string, CachedHashString can be used in DenseSet/DenseMap // (because, unlike std::string, CachedHashString lets us have empty and // tombstone values). // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_CACHED_HASH_STRING_H #define LLVM_ADT_CACHED_HASH_STRING_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/raw_ostream.h" namespace llvm { /// A container which contains a StringRef plus a precomputed hash. class CachedHashStringRef { const char *P; uint32_t Size; uint32_t Hash; public: // Explicit because hashing a string isn't free. explicit CachedHashStringRef(StringRef S) : CachedHashStringRef(S, DenseMapInfo<StringRef>::getHashValue(S)) {} CachedHashStringRef(StringRef S, uint32_t Hash) : P(S.data()), Size(S.size()), Hash(Hash) { assert(S.size() <= std::numeric_limits<uint32_t>::max()); } StringRef val() const { return StringRef(P, Size); } const char *data() const { return P; } uint32_t size() const { return Size; } uint32_t hash() const { return Hash; } }; template <> struct DenseMapInfo<CachedHashStringRef> { static CachedHashStringRef getEmptyKey() { return CachedHashStringRef(DenseMapInfo<StringRef>::getEmptyKey(), 0); } static CachedHashStringRef getTombstoneKey() { return CachedHashStringRef(DenseMapInfo<StringRef>::getTombstoneKey(), 1); } static unsigned getHashValue(const CachedHashStringRef &S) { assert(!isEqual(S, getEmptyKey()) && "Cannot hash the empty key!"); assert(!isEqual(S, getTombstoneKey()) && "Cannot hash the tombstone key!"); return S.hash(); } static bool isEqual(const CachedHashStringRef &LHS, const CachedHashStringRef &RHS) { return LHS.hash() == RHS.hash() && DenseMapInfo<StringRef>::isEqual(LHS.val(), RHS.val()); } }; /// A container which contains a string, which it owns, plus a precomputed hash. /// /// We do not null-terminate the string. class CachedHashString { friend struct DenseMapInfo<CachedHashString>; char *P; uint32_t Size; uint32_t Hash; static char *getEmptyKeyPtr() { return DenseMapInfo<char *>::getEmptyKey(); } static char *getTombstoneKeyPtr() { return DenseMapInfo<char *>::getTombstoneKey(); } bool isEmptyOrTombstone() const { return P == getEmptyKeyPtr() || P == getTombstoneKeyPtr(); } struct ConstructEmptyOrTombstoneTy {}; CachedHashString(ConstructEmptyOrTombstoneTy, char *EmptyOrTombstonePtr) : P(EmptyOrTombstonePtr), Size(0), Hash(0) { assert(isEmptyOrTombstone()); } // TODO: Use small-string optimization to avoid allocating. public: explicit CachedHashString(const char *S) : CachedHashString(StringRef(S)) {} // Explicit because copying and hashing a string isn't free. explicit CachedHashString(StringRef S) : CachedHashString(S, DenseMapInfo<StringRef>::getHashValue(S)) {} CachedHashString(StringRef S, uint32_t Hash) : P(new char[S.size()]), Size(S.size()), Hash(Hash) { memcpy(P, S.data(), S.size()); } // Ideally this class would not be copyable. But SetVector requires copyable // keys, and we want this to be usable there. CachedHashString(const CachedHashString &Other) : Size(Other.Size), Hash(Other.Hash) { if (Other.isEmptyOrTombstone()) { P = Other.P; } else { P = new char[Size]; memcpy(P, Other.P, Size); } } CachedHashString &operator=(CachedHashString Other) { swap(*this, Other); return *this; } CachedHashString(CachedHashString &&Other) noexcept : P(Other.P), Size(Other.Size), Hash(Other.Hash) { Other.P = getEmptyKeyPtr(); } ~CachedHashString() { if (!isEmptyOrTombstone()) delete[] P; } StringRef val() const { return StringRef(P, Size); } uint32_t size() const { return Size; } uint32_t hash() const { return Hash; } operator StringRef() const { return val(); } operator CachedHashStringRef() const { return CachedHashStringRef(val(), Hash); } friend void swap(CachedHashString &LHS, CachedHashString &RHS) { using std::swap; swap(LHS.P, RHS.P); swap(LHS.Size, RHS.Size); swap(LHS.Hash, RHS.Hash); } }; template <> struct DenseMapInfo<CachedHashString> { static CachedHashString getEmptyKey() { return CachedHashString(CachedHashString::ConstructEmptyOrTombstoneTy(), CachedHashString::getEmptyKeyPtr()); } static CachedHashString getTombstoneKey() { return CachedHashString(CachedHashString::ConstructEmptyOrTombstoneTy(), CachedHashString::getTombstoneKeyPtr()); } static unsigned getHashValue(const CachedHashString &S) { assert(!isEqual(S, getEmptyKey()) && "Cannot hash the empty key!"); assert(!isEqual(S, getTombstoneKey()) && "Cannot hash the tombstone key!"); return S.hash(); } static bool isEqual(const CachedHashString &LHS, const CachedHashString &RHS) { if (LHS.hash() != RHS.hash()) return false; if (LHS.P == CachedHashString::getEmptyKeyPtr()) return RHS.P == CachedHashString::getEmptyKeyPtr(); if (LHS.P == CachedHashString::getTombstoneKeyPtr()) return RHS.P == CachedHashString::getTombstoneKeyPtr(); // This is safe because if RHS.P is the empty or tombstone key, it will have // length 0, so we'll never dereference its pointer. return LHS.val() == RHS.val(); } }; } // namespace llvm #endif