//===-- llvm/ADT/Hashing.h - Utilities for hashing --------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the newly proposed standard C++ interfaces for hashing // arbitrary data and building hash functions for user-defined types. This // interface was originally proposed in N3333[1] and is currently under review // for inclusion in a future TR and/or standard. // // The primary interfaces provide are comprised of one type and three functions: // // -- 'hash_code' class is an opaque type representing the hash code for some // data. It is the intended product of hashing, and can be used to implement // hash tables, checksumming, and other common uses of hashes. It is not an // integer type (although it can be converted to one) because it is risky // to assume much about the internals of a hash_code. In particular, each // execution of the program has a high probability of producing a different // hash_code for a given input. Thus their values are not stable to save or // persist, and should only be used during the execution for the // construction of hashing datastructures. // // -- 'hash_value' is a function designed to be overloaded for each // user-defined type which wishes to be used within a hashing context. It // should be overloaded within the user-defined type's namespace and found // via ADL. Overloads for primitive types are provided by this library. // // -- 'hash_combine' and 'hash_combine_range' are functions designed to aid // programmers in easily and intuitively combining a set of data into // a single hash_code for their object. They should only logically be used // within the implementation of a 'hash_value' routine or similar context. // // Note that 'hash_combine_range' contains very special logic for hashing // a contiguous array of integers or pointers. This logic is *extremely* fast, // on a modern Intel "Gainestown" Xeon (Nehalem uarch) @2.2 GHz, these were // benchmarked at over 6.5 GiB/s for large keys, and <20 cycles/hash for keys // under 32-bytes. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_HASHING_H #define LLVM_ADT_HASHING_H #include "llvm/Support/DataTypes.h" #include "llvm/Support/Host.h" #include "llvm/Support/SwapByteOrder.h" #include "llvm/Support/type_traits.h" #include <algorithm> #include <cassert> #include <cstring> #include <string> #include <utility> namespace llvm { /// An opaque object representing a hash code. /// /// This object represents the result of hashing some entity. It is intended to /// be used to implement hashtables or other hashing-based data structures. /// While it wraps and exposes a numeric value, this value should not be /// trusted to be stable or predictable across processes or executions. /// /// In order to obtain the hash_code for an object 'x': /// \code /// using llvm::hash_value; /// llvm::hash_code code = hash_value(x); /// \endcode class hash_code { size_t value; public: /// Default construct a hash_code. /// Note that this leaves the value uninitialized. hash_code() = default; /// Form a hash code directly from a numerical value. hash_code(size_t value) : value(value) {} /// Convert the hash code to its numerical value for use. /*explicit*/ operator size_t() const { return value; } friend bool operator==(const hash_code &lhs, const hash_code &rhs) { return lhs.value == rhs.value; } friend bool operator!=(const hash_code &lhs, const hash_code &rhs) { return lhs.value != rhs.value; } /// Allow a hash_code to be directly run through hash_value. friend size_t hash_value(const hash_code &code) { return code.value; } }; /// Compute a hash_code for any integer value. /// /// Note that this function is intended to compute the same hash_code for /// a particular value without regard to the pre-promotion type. This is in /// contrast to hash_combine which may produce different hash_codes for /// differing argument types even if they would implicit promote to a common /// type without changing the value. template <typename T> typename std::enable_if<is_integral_or_enum<T>::value, hash_code>::type hash_value(T value); /// Compute a hash_code for a pointer's address. /// /// N.B.: This hashes the *address*. Not the value and not the type. template <typename T> hash_code hash_value(const T *ptr); /// Compute a hash_code for a pair of objects. template <typename T, typename U> hash_code hash_value(const std::pair<T, U> &arg); /// Compute a hash_code for a standard string. template <typename T> hash_code hash_value(const std::basic_string<T> &arg); /// Override the execution seed with a fixed value. /// /// This hashing library uses a per-execution seed designed to change on each /// run with high probability in order to ensure that the hash codes are not /// attackable and to ensure that output which is intended to be stable does /// not rely on the particulars of the hash codes produced. /// /// That said, there are use cases where it is important to be able to /// reproduce *exactly* a specific behavior. To that end, we provide a function /// which will forcibly set the seed to a fixed value. This must be done at the /// start of the program, before any hashes are computed. Also, it cannot be /// undone. This makes it thread-hostile and very hard to use outside of /// immediately on start of a simple program designed for reproducible /// behavior. void set_fixed_execution_hash_seed(uint64_t fixed_value); // All of the implementation details of actually computing the various hash // code values are held within this namespace. These routines are included in // the header file mainly to allow inlining and constant propagation. namespace hashing { namespace detail { inline uint64_t fetch64(const char *p) { uint64_t result; memcpy(&result, p, sizeof(result)); if (sys::IsBigEndianHost) sys::swapByteOrder(result); return result; } inline uint32_t fetch32(const char *p) { uint32_t result; memcpy(&result, p, sizeof(result)); if (sys::IsBigEndianHost) sys::swapByteOrder(result); return result; } /// Some primes between 2^63 and 2^64 for various uses. static const uint64_t k0 = 0xc3a5c85c97cb3127ULL; static const uint64_t k1 = 0xb492b66fbe98f273ULL; static const uint64_t k2 = 0x9ae16a3b2f90404fULL; static const uint64_t k3 = 0xc949d7c7509e6557ULL; /// Bitwise right rotate. /// Normally this will compile to a single instruction, especially if the /// shift is a manifest constant. inline uint64_t rotate(uint64_t val, size_t shift) { // Avoid shifting by 64: doing so yields an undefined result. return shift == 0 ? val : ((val >> shift) | (val << (64 - shift))); } inline uint64_t shift_mix(uint64_t val) { return val ^ (val >> 47); } inline uint64_t hash_16_bytes(uint64_t low, uint64_t high) { // Murmur-inspired hashing. const uint64_t kMul = 0x9ddfea08eb382d69ULL; uint64_t a = (low ^ high) * kMul; a ^= (a >> 47); uint64_t b = (high ^ a) * kMul; b ^= (b >> 47); b *= kMul; return b; } inline uint64_t hash_1to3_bytes(const char *s, size_t len, uint64_t seed) { uint8_t a = s[0]; uint8_t b = s[len >> 1]; uint8_t c = s[len - 1]; uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8); uint32_t z = len + (static_cast<uint32_t>(c) << 2); return shift_mix(y * k2 ^ z * k3 ^ seed) * k2; } inline uint64_t hash_4to8_bytes(const char *s, size_t len, uint64_t seed) { uint64_t a = fetch32(s); return hash_16_bytes(len + (a << 3), seed ^ fetch32(s + len - 4)); } inline uint64_t hash_9to16_bytes(const char *s, size_t len, uint64_t seed) { uint64_t a = fetch64(s); uint64_t b = fetch64(s + len - 8); return hash_16_bytes(seed ^ a, rotate(b + len, len)) ^ b; } inline uint64_t hash_17to32_bytes(const char *s, size_t len, uint64_t seed) { uint64_t a = fetch64(s) * k1; uint64_t b = fetch64(s + 8); uint64_t c = fetch64(s + len - 8) * k2; uint64_t d = fetch64(s + len - 16) * k0; return hash_16_bytes(rotate(a - b, 43) + rotate(c ^ seed, 30) + d, a + rotate(b ^ k3, 20) - c + len + seed); } inline uint64_t hash_33to64_bytes(const char *s, size_t len, uint64_t seed) { uint64_t z = fetch64(s + 24); uint64_t a = fetch64(s) + (len + fetch64(s + len - 16)) * k0; uint64_t b = rotate(a + z, 52); uint64_t c = rotate(a, 37); a += fetch64(s + 8); c += rotate(a, 7); a += fetch64(s + 16); uint64_t vf = a + z; uint64_t vs = b + rotate(a, 31) + c; a = fetch64(s + 16) + fetch64(s + len - 32); z = fetch64(s + len - 8); b = rotate(a + z, 52); c = rotate(a, 37); a += fetch64(s + len - 24); c += rotate(a, 7); a += fetch64(s + len - 16); uint64_t wf = a + z; uint64_t ws = b + rotate(a, 31) + c; uint64_t r = shift_mix((vf + ws) * k2 + (wf + vs) * k0); return shift_mix((seed ^ (r * k0)) + vs) * k2; } inline uint64_t hash_short(const char *s, size_t length, uint64_t seed) { if (length >= 4 && length <= 8) return hash_4to8_bytes(s, length, seed); if (length > 8 && length <= 16) return hash_9to16_bytes(s, length, seed); if (length > 16 && length <= 32) return hash_17to32_bytes(s, length, seed); if (length > 32) return hash_33to64_bytes(s, length, seed); if (length != 0) return hash_1to3_bytes(s, length, seed); return k2 ^ seed; } /// The intermediate state used during hashing. /// Currently, the algorithm for computing hash codes is based on CityHash and /// keeps 56 bytes of arbitrary state. struct hash_state { uint64_t h0, h1, h2, h3, h4, h5, h6; /// Create a new hash_state structure and initialize it based on the /// seed and the first 64-byte chunk. /// This effectively performs the initial mix. static hash_state create(const char *s, uint64_t seed) { hash_state state = { 0, seed, hash_16_bytes(seed, k1), rotate(seed ^ k1, 49), seed * k1, shift_mix(seed), 0 }; state.h6 = hash_16_bytes(state.h4, state.h5); state.mix(s); return state; } /// Mix 32-bytes from the input sequence into the 16-bytes of 'a' /// and 'b', including whatever is already in 'a' and 'b'. static void mix_32_bytes(const char *s, uint64_t &a, uint64_t &b) { a += fetch64(s); uint64_t c = fetch64(s + 24); b = rotate(b + a + c, 21); uint64_t d = a; a += fetch64(s + 8) + fetch64(s + 16); b += rotate(a, 44) + d; a += c; } /// Mix in a 64-byte buffer of data. /// We mix all 64 bytes even when the chunk length is smaller, but we /// record the actual length. void mix(const char *s) { h0 = rotate(h0 + h1 + h3 + fetch64(s + 8), 37) * k1; h1 = rotate(h1 + h4 + fetch64(s + 48), 42) * k1; h0 ^= h6; h1 += h3 + fetch64(s + 40); h2 = rotate(h2 + h5, 33) * k1; h3 = h4 * k1; h4 = h0 + h5; mix_32_bytes(s, h3, h4); h5 = h2 + h6; h6 = h1 + fetch64(s + 16); mix_32_bytes(s + 32, h5, h6); std::swap(h2, h0); } /// Compute the final 64-bit hash code value based on the current /// state and the length of bytes hashed. uint64_t finalize(size_t length) { return hash_16_bytes(hash_16_bytes(h3, h5) + shift_mix(h1) * k1 + h2, hash_16_bytes(h4, h6) + shift_mix(length) * k1 + h0); } }; /// A global, fixed seed-override variable. /// /// This variable can be set using the \see llvm::set_fixed_execution_seed /// function. See that function for details. Do not, under any circumstances, /// set or read this variable. extern uint64_t fixed_seed_override; inline uint64_t get_execution_seed() { // FIXME: This needs to be a per-execution seed. This is just a placeholder // implementation. Switching to a per-execution seed is likely to flush out // instability bugs and so will happen as its own commit. // // However, if there is a fixed seed override set the first time this is // called, return that instead of the per-execution seed. const uint64_t seed_prime = 0xff51afd7ed558ccdULL; static uint64_t seed = fixed_seed_override ? fixed_seed_override : seed_prime; return seed; } /// Trait to indicate whether a type's bits can be hashed directly. /// /// A type trait which is true if we want to combine values for hashing by /// reading the underlying data. It is false if values of this type must /// first be passed to hash_value, and the resulting hash_codes combined. // // FIXME: We want to replace is_integral_or_enum and is_pointer here with // a predicate which asserts that comparing the underlying storage of two // values of the type for equality is equivalent to comparing the two values // for equality. For all the platforms we care about, this holds for integers // and pointers, but there are platforms where it doesn't and we would like to // support user-defined types which happen to satisfy this property. template <typename T> struct is_hashable_data : std::integral_constant<bool, ((is_integral_or_enum<T>::value || std::is_pointer<T>::value) && 64 % sizeof(T) == 0)> {}; // Special case std::pair to detect when both types are viable and when there // is no alignment-derived padding in the pair. This is a bit of a lie because // std::pair isn't truly POD, but it's close enough in all reasonable // implementations for our use case of hashing the underlying data. template <typename T, typename U> struct is_hashable_data<std::pair<T, U> > : std::integral_constant<bool, (is_hashable_data<T>::value && is_hashable_data<U>::value && (sizeof(T) + sizeof(U)) == sizeof(std::pair<T, U>))> {}; /// Helper to get the hashable data representation for a type. /// This variant is enabled when the type itself can be used. template <typename T> typename std::enable_if<is_hashable_data<T>::value, T>::type get_hashable_data(const T &value) { return value; } /// Helper to get the hashable data representation for a type. /// This variant is enabled when we must first call hash_value and use the /// result as our data. template <typename T> typename std::enable_if<!is_hashable_data<T>::value, size_t>::type get_hashable_data(const T &value) { using ::llvm::hash_value; return hash_value(value); } /// Helper to store data from a value into a buffer and advance the /// pointer into that buffer. /// /// This routine first checks whether there is enough space in the provided /// buffer, and if not immediately returns false. If there is space, it /// copies the underlying bytes of value into the buffer, advances the /// buffer_ptr past the copied bytes, and returns true. template <typename T> bool store_and_advance(char *&buffer_ptr, char *buffer_end, const T& value, size_t offset = 0) { size_t store_size = sizeof(value) - offset; if (buffer_ptr + store_size > buffer_end) return false; const char *value_data = reinterpret_cast<const char *>(&value); memcpy(buffer_ptr, value_data + offset, store_size); buffer_ptr += store_size; return true; } /// Implement the combining of integral values into a hash_code. /// /// This overload is selected when the value type of the iterator is /// integral. Rather than computing a hash_code for each object and then /// combining them, this (as an optimization) directly combines the integers. template <typename InputIteratorT> hash_code hash_combine_range_impl(InputIteratorT first, InputIteratorT last) { const uint64_t seed = get_execution_seed(); char buffer[64], *buffer_ptr = buffer; char *const buffer_end = std::end(buffer); while (first != last && store_and_advance(buffer_ptr, buffer_end, get_hashable_data(*first))) ++first; if (first == last) return hash_short(buffer, buffer_ptr - buffer, seed); assert(buffer_ptr == buffer_end); hash_state state = state.create(buffer, seed); size_t length = 64; while (first != last) { // Fill up the buffer. We don't clear it, which re-mixes the last round // when only a partial 64-byte chunk is left. buffer_ptr = buffer; while (first != last && store_and_advance(buffer_ptr, buffer_end, get_hashable_data(*first))) ++first; // Rotate the buffer if we did a partial fill in order to simulate doing // a mix of the last 64-bytes. That is how the algorithm works when we // have a contiguous byte sequence, and we want to emulate that here. std::rotate(buffer, buffer_ptr, buffer_end); // Mix this chunk into the current state. state.mix(buffer); length += buffer_ptr - buffer; }; return state.finalize(length); } /// Implement the combining of integral values into a hash_code. /// /// This overload is selected when the value type of the iterator is integral /// and when the input iterator is actually a pointer. Rather than computing /// a hash_code for each object and then combining them, this (as an /// optimization) directly combines the integers. Also, because the integers /// are stored in contiguous memory, this routine avoids copying each value /// and directly reads from the underlying memory. template <typename ValueT> typename std::enable_if<is_hashable_data<ValueT>::value, hash_code>::type hash_combine_range_impl(ValueT *first, ValueT *last) { const uint64_t seed = get_execution_seed(); const char *s_begin = reinterpret_cast<const char *>(first); const char *s_end = reinterpret_cast<const char *>(last); const size_t length = std::distance(s_begin, s_end); if (length <= 64) return hash_short(s_begin, length, seed); const char *s_aligned_end = s_begin + (length & ~63); hash_state state = state.create(s_begin, seed); s_begin += 64; while (s_begin != s_aligned_end) { state.mix(s_begin); s_begin += 64; } if (length & 63) state.mix(s_end - 64); return state.finalize(length); } } // namespace detail } // namespace hashing /// Compute a hash_code for a sequence of values. /// /// This hashes a sequence of values. It produces the same hash_code as /// 'hash_combine(a, b, c, ...)', but can run over arbitrary sized sequences /// and is significantly faster given pointers and types which can be hashed as /// a sequence of bytes. template <typename InputIteratorT> hash_code hash_combine_range(InputIteratorT first, InputIteratorT last) { return ::llvm::hashing::detail::hash_combine_range_impl(first, last); } // Implementation details for hash_combine. namespace hashing { namespace detail { /// Helper class to manage the recursive combining of hash_combine /// arguments. /// /// This class exists to manage the state and various calls involved in the /// recursive combining of arguments used in hash_combine. It is particularly /// useful at minimizing the code in the recursive calls to ease the pain /// caused by a lack of variadic functions. struct hash_combine_recursive_helper { char buffer[64]; hash_state state; const uint64_t seed; public: /// Construct a recursive hash combining helper. /// /// This sets up the state for a recursive hash combine, including getting /// the seed and buffer setup. hash_combine_recursive_helper() : seed(get_execution_seed()) {} /// Combine one chunk of data into the current in-flight hash. /// /// This merges one chunk of data into the hash. First it tries to buffer /// the data. If the buffer is full, it hashes the buffer into its /// hash_state, empties it, and then merges the new chunk in. This also /// handles cases where the data straddles the end of the buffer. template <typename T> char *combine_data(size_t &length, char *buffer_ptr, char *buffer_end, T data) { if (!store_and_advance(buffer_ptr, buffer_end, data)) { // Check for skew which prevents the buffer from being packed, and do // a partial store into the buffer to fill it. This is only a concern // with the variadic combine because that formation can have varying // argument types. size_t partial_store_size = buffer_end - buffer_ptr; memcpy(buffer_ptr, &data, partial_store_size); // If the store fails, our buffer is full and ready to hash. We have to // either initialize the hash state (on the first full buffer) or mix // this buffer into the existing hash state. Length tracks the *hashed* // length, not the buffered length. if (length == 0) { state = state.create(buffer, seed); length = 64; } else { // Mix this chunk into the current state and bump length up by 64. state.mix(buffer); length += 64; } // Reset the buffer_ptr to the head of the buffer for the next chunk of // data. buffer_ptr = buffer; // Try again to store into the buffer -- this cannot fail as we only // store types smaller than the buffer. if (!store_and_advance(buffer_ptr, buffer_end, data, partial_store_size)) abort(); } return buffer_ptr; } /// Recursive, variadic combining method. /// /// This function recurses through each argument, combining that argument /// into a single hash. template <typename T, typename ...Ts> hash_code combine(size_t length, char *buffer_ptr, char *buffer_end, const T &arg, const Ts &...args) { buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg)); // Recurse to the next argument. return combine(length, buffer_ptr, buffer_end, args...); } /// Base case for recursive, variadic combining. /// /// The base case when combining arguments recursively is reached when all /// arguments have been handled. It flushes the remaining buffer and /// constructs a hash_code. hash_code combine(size_t length, char *buffer_ptr, char *buffer_end) { // Check whether the entire set of values fit in the buffer. If so, we'll // use the optimized short hashing routine and skip state entirely. if (length == 0) return hash_short(buffer, buffer_ptr - buffer, seed); // Mix the final buffer, rotating it if we did a partial fill in order to // simulate doing a mix of the last 64-bytes. That is how the algorithm // works when we have a contiguous byte sequence, and we want to emulate // that here. std::rotate(buffer, buffer_ptr, buffer_end); // Mix this chunk into the current state. state.mix(buffer); length += buffer_ptr - buffer; return state.finalize(length); } }; } // namespace detail } // namespace hashing /// Combine values into a single hash_code. /// /// This routine accepts a varying number of arguments of any type. It will /// attempt to combine them into a single hash_code. For user-defined types it /// attempts to call a \see hash_value overload (via ADL) for the type. For /// integer and pointer types it directly combines their data into the /// resulting hash_code. /// /// The result is suitable for returning from a user's hash_value /// *implementation* for their user-defined type. Consumers of a type should /// *not* call this routine, they should instead call 'hash_value'. template <typename ...Ts> hash_code hash_combine(const Ts &...args) { // Recursively hash each argument using a helper class. ::llvm::hashing::detail::hash_combine_recursive_helper helper; return helper.combine(0, helper.buffer, helper.buffer + 64, args...); } // Implementation details for implementations of hash_value overloads provided // here. namespace hashing { namespace detail { /// Helper to hash the value of a single integer. /// /// Overloads for smaller integer types are not provided to ensure consistent /// behavior in the presence of integral promotions. Essentially, /// "hash_value('4')" and "hash_value('0' + 4)" should be the same. inline hash_code hash_integer_value(uint64_t value) { // Similar to hash_4to8_bytes but using a seed instead of length. const uint64_t seed = get_execution_seed(); const char *s = reinterpret_cast<const char *>(&value); const uint64_t a = fetch32(s); return hash_16_bytes(seed + (a << 3), fetch32(s + 4)); } } // namespace detail } // namespace hashing // Declared and documented above, but defined here so that any of the hashing // infrastructure is available. template <typename T> typename std::enable_if<is_integral_or_enum<T>::value, hash_code>::type hash_value(T value) { return ::llvm::hashing::detail::hash_integer_value( static_cast<uint64_t>(value)); } // Declared and documented above, but defined here so that any of the hashing // infrastructure is available. template <typename T> hash_code hash_value(const T *ptr) { return ::llvm::hashing::detail::hash_integer_value( reinterpret_cast<uintptr_t>(ptr)); } // Declared and documented above, but defined here so that any of the hashing // infrastructure is available. template <typename T, typename U> hash_code hash_value(const std::pair<T, U> &arg) { return hash_combine(arg.first, arg.second); } // Declared and documented above, but defined here so that any of the hashing // infrastructure is available. template <typename T> hash_code hash_value(const std::basic_string<T> &arg) { return hash_combine_range(arg.begin(), arg.end()); } } // namespace llvm #endif