//===- llvm/ADT/MapVector.h - Map w/ deterministic value order --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a map that provides insertion order iteration. The // interface is purposefully minimal. The key is assumed to be cheap to copy // and 2 copies are kept, one for indexing in a DenseMap, one for iteration in // a std::vector. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_MAPVECTOR_H #define LLVM_ADT_MAPVECTOR_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallVector.h" #include <algorithm> #include <cassert> #include <cstddef> #include <iterator> #include <type_traits> #include <utility> #include <vector> namespace llvm { /// This class implements a map that also provides access to all stored values /// in a deterministic order. The values are kept in a std::vector and the /// mapping is done with DenseMap from Keys to indexes in that vector. template<typename KeyT, typename ValueT, typename MapType = DenseMap<KeyT, unsigned>, typename VectorType = std::vector<std::pair<KeyT, ValueT>>> class MapVector { MapType Map; VectorType Vector; static_assert( std::is_integral<typename MapType::mapped_type>::value, "The mapped_type of the specified Map must be an integral type"); public: using value_type = typename VectorType::value_type; using size_type = typename VectorType::size_type; using iterator = typename VectorType::iterator; using const_iterator = typename VectorType::const_iterator; using reverse_iterator = typename VectorType::reverse_iterator; using const_reverse_iterator = typename VectorType::const_reverse_iterator; /// Clear the MapVector and return the underlying vector. VectorType takeVector() { Map.clear(); return std::move(Vector); } size_type size() const { return Vector.size(); } /// Grow the MapVector so that it can contain at least \p NumEntries items /// before resizing again. void reserve(size_type NumEntries) { Map.reserve(NumEntries); Vector.reserve(NumEntries); } iterator begin() { return Vector.begin(); } const_iterator begin() const { return Vector.begin(); } iterator end() { return Vector.end(); } const_iterator end() const { return Vector.end(); } reverse_iterator rbegin() { return Vector.rbegin(); } const_reverse_iterator rbegin() const { return Vector.rbegin(); } reverse_iterator rend() { return Vector.rend(); } const_reverse_iterator rend() const { return Vector.rend(); } bool empty() const { return Vector.empty(); } std::pair<KeyT, ValueT> &front() { return Vector.front(); } const std::pair<KeyT, ValueT> &front() const { return Vector.front(); } std::pair<KeyT, ValueT> &back() { return Vector.back(); } const std::pair<KeyT, ValueT> &back() const { return Vector.back(); } void clear() { Map.clear(); Vector.clear(); } void swap(MapVector &RHS) { std::swap(Map, RHS.Map); std::swap(Vector, RHS.Vector); } ValueT &operator[](const KeyT &Key) { std::pair<KeyT, typename MapType::mapped_type> Pair = std::make_pair(Key, 0); std::pair<typename MapType::iterator, bool> Result = Map.insert(Pair); auto &I = Result.first->second; if (Result.second) { Vector.push_back(std::make_pair(Key, ValueT())); I = Vector.size() - 1; } return Vector[I].second; } // Returns a copy of the value. Only allowed if ValueT is copyable. ValueT lookup(const KeyT &Key) const { static_assert(std::is_copy_constructible<ValueT>::value, "Cannot call lookup() if ValueT is not copyable."); typename MapType::const_iterator Pos = Map.find(Key); return Pos == Map.end()? ValueT() : Vector[Pos->second].second; } std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) { std::pair<KeyT, typename MapType::mapped_type> Pair = std::make_pair(KV.first, 0); std::pair<typename MapType::iterator, bool> Result = Map.insert(Pair); auto &I = Result.first->second; if (Result.second) { Vector.push_back(std::make_pair(KV.first, KV.second)); I = Vector.size() - 1; return std::make_pair(std::prev(end()), true); } return std::make_pair(begin() + I, false); } std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) { // Copy KV.first into the map, then move it into the vector. std::pair<KeyT, typename MapType::mapped_type> Pair = std::make_pair(KV.first, 0); std::pair<typename MapType::iterator, bool> Result = Map.insert(Pair); auto &I = Result.first->second; if (Result.second) { Vector.push_back(std::move(KV)); I = Vector.size() - 1; return std::make_pair(std::prev(end()), true); } return std::make_pair(begin() + I, false); } size_type count(const KeyT &Key) const { typename MapType::const_iterator Pos = Map.find(Key); return Pos == Map.end()? 0 : 1; } iterator find(const KeyT &Key) { typename MapType::const_iterator Pos = Map.find(Key); return Pos == Map.end()? Vector.end() : (Vector.begin() + Pos->second); } const_iterator find(const KeyT &Key) const { typename MapType::const_iterator Pos = Map.find(Key); return Pos == Map.end()? Vector.end() : (Vector.begin() + Pos->second); } /// Remove the last element from the vector. void pop_back() { typename MapType::iterator Pos = Map.find(Vector.back().first); Map.erase(Pos); Vector.pop_back(); } /// Remove the element given by Iterator. /// /// Returns an iterator to the element following the one which was removed, /// which may be end(). /// /// \note This is a deceivingly expensive operation (linear time). It's /// usually better to use \a remove_if() if possible. typename VectorType::iterator erase(typename VectorType::iterator Iterator) { Map.erase(Iterator->first); auto Next = Vector.erase(Iterator); if (Next == Vector.end()) return Next; // Update indices in the map. size_t Index = Next - Vector.begin(); for (auto &I : Map) { assert(I.second != Index && "Index was already erased!"); if (I.second > Index) --I.second; } return Next; } /// Remove all elements with the key value Key. /// /// Returns the number of elements removed. size_type erase(const KeyT &Key) { auto Iterator = find(Key); if (Iterator == end()) return 0; erase(Iterator); return 1; } /// Remove the elements that match the predicate. /// /// Erase all elements that match \c Pred in a single pass. Takes linear /// time. template <class Predicate> void remove_if(Predicate Pred); }; template <typename KeyT, typename ValueT, typename MapType, typename VectorType> template <class Function> void MapVector<KeyT, ValueT, MapType, VectorType>::remove_if(Function Pred) { auto O = Vector.begin(); for (auto I = O, E = Vector.end(); I != E; ++I) { if (Pred(*I)) { // Erase from the map. Map.erase(I->first); continue; } if (I != O) { // Move the value and update the index in the map. *O = std::move(*I); Map[O->first] = O - Vector.begin(); } ++O; } // Erase trailing entries in the vector. Vector.erase(O, Vector.end()); } /// A MapVector that performs no allocations if smaller than a certain /// size. template <typename KeyT, typename ValueT, unsigned N> struct SmallMapVector : MapVector<KeyT, ValueT, SmallDenseMap<KeyT, unsigned, N>, SmallVector<std::pair<KeyT, ValueT>, N>> { }; } // end namespace llvm #endif // LLVM_ADT_MAPVECTOR_H