//===- Twine.h - Fast Temporary String Concatenation ------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_TWINE_H #define LLVM_ADT_TWINE_H #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/ErrorHandling.h" #include <cassert> #include <cstdint> #include <string> namespace llvm { class formatv_object_base; class raw_ostream; /// Twine - A lightweight data structure for efficiently representing the /// concatenation of temporary values as strings. /// /// A Twine is a kind of rope, it represents a concatenated string using a /// binary-tree, where the string is the preorder of the nodes. Since the /// Twine can be efficiently rendered into a buffer when its result is used, /// it avoids the cost of generating temporary values for intermediate string /// results -- particularly in cases when the Twine result is never /// required. By explicitly tracking the type of leaf nodes, we can also avoid /// the creation of temporary strings for conversions operations (such as /// appending an integer to a string). /// /// A Twine is not intended for use directly and should not be stored, its /// implementation relies on the ability to store pointers to temporary stack /// objects which may be deallocated at the end of a statement. Twines should /// only be used accepted as const references in arguments, when an API wishes /// to accept possibly-concatenated strings. /// /// Twines support a special 'null' value, which always concatenates to form /// itself, and renders as an empty string. This can be returned from APIs to /// effectively nullify any concatenations performed on the result. /// /// \b Implementation /// /// Given the nature of a Twine, it is not possible for the Twine's /// concatenation method to construct interior nodes; the result must be /// represented inside the returned value. For this reason a Twine object /// actually holds two values, the left- and right-hand sides of a /// concatenation. We also have nullary Twine objects, which are effectively /// sentinel values that represent empty strings. /// /// Thus, a Twine can effectively have zero, one, or two children. The \see /// isNullary(), \see isUnary(), and \see isBinary() predicates exist for /// testing the number of children. /// /// We maintain a number of invariants on Twine objects (FIXME: Why): /// - Nullary twines are always represented with their Kind on the left-hand /// side, and the Empty kind on the right-hand side. /// - Unary twines are always represented with the value on the left-hand /// side, and the Empty kind on the right-hand side. /// - If a Twine has another Twine as a child, that child should always be /// binary (otherwise it could have been folded into the parent). /// /// These invariants are check by \see isValid(). /// /// \b Efficiency Considerations /// /// The Twine is designed to yield efficient and small code for common /// situations. For this reason, the concat() method is inlined so that /// concatenations of leaf nodes can be optimized into stores directly into a /// single stack allocated object. /// /// In practice, not all compilers can be trusted to optimize concat() fully, /// so we provide two additional methods (and accompanying operator+ /// overloads) to guarantee that particularly important cases (cstring plus /// StringRef) codegen as desired. class Twine { /// NodeKind - Represent the type of an argument. enum NodeKind : unsigned char { /// An empty string; the result of concatenating anything with it is also /// empty. NullKind, /// The empty string. EmptyKind, /// A pointer to a Twine instance. TwineKind, /// A pointer to a C string instance. CStringKind, /// A pointer to an std::string instance. StdStringKind, /// A pointer to a StringRef instance. StringRefKind, /// A pointer to a SmallString instance. SmallStringKind, /// A pointer to a formatv_object_base instance. FormatvObjectKind, /// A char value, to render as a character. CharKind, /// An unsigned int value, to render as an unsigned decimal integer. DecUIKind, /// An int value, to render as a signed decimal integer. DecIKind, /// A pointer to an unsigned long value, to render as an unsigned decimal /// integer. DecULKind, /// A pointer to a long value, to render as a signed decimal integer. DecLKind, /// A pointer to an unsigned long long value, to render as an unsigned /// decimal integer. DecULLKind, /// A pointer to a long long value, to render as a signed decimal integer. DecLLKind, /// A pointer to a uint64_t value, to render as an unsigned hexadecimal /// integer. UHexKind }; union Child { const Twine *twine; const char *cString; const std::string *stdString; const StringRef *stringRef; const SmallVectorImpl<char> *smallString; const formatv_object_base *formatvObject; char character; unsigned int decUI; int decI; const unsigned long *decUL; const long *decL; const unsigned long long *decULL; const long long *decLL; const uint64_t *uHex; }; /// LHS - The prefix in the concatenation, which may be uninitialized for /// Null or Empty kinds. Child LHS; /// RHS - The suffix in the concatenation, which may be uninitialized for /// Null or Empty kinds. Child RHS; /// LHSKind - The NodeKind of the left hand side, \see getLHSKind(). NodeKind LHSKind = EmptyKind; /// RHSKind - The NodeKind of the right hand side, \see getRHSKind(). NodeKind RHSKind = EmptyKind; /// Construct a nullary twine; the kind must be NullKind or EmptyKind. explicit Twine(NodeKind Kind) : LHSKind(Kind) { assert(isNullary() && "Invalid kind!"); } /// Construct a binary twine. explicit Twine(const Twine &LHS, const Twine &RHS) : LHSKind(TwineKind), RHSKind(TwineKind) { this->LHS.twine = &LHS; this->RHS.twine = &RHS; assert(isValid() && "Invalid twine!"); } /// Construct a twine from explicit values. explicit Twine(Child LHS, NodeKind LHSKind, Child RHS, NodeKind RHSKind) : LHS(LHS), RHS(RHS), LHSKind(LHSKind), RHSKind(RHSKind) { assert(isValid() && "Invalid twine!"); } /// Check for the null twine. bool isNull() const { return getLHSKind() == NullKind; } /// Check for the empty twine. bool isEmpty() const { return getLHSKind() == EmptyKind; } /// Check if this is a nullary twine (null or empty). bool isNullary() const { return isNull() || isEmpty(); } /// Check if this is a unary twine. bool isUnary() const { return getRHSKind() == EmptyKind && !isNullary(); } /// Check if this is a binary twine. bool isBinary() const { return getLHSKind() != NullKind && getRHSKind() != EmptyKind; } /// Check if this is a valid twine (satisfying the invariants on /// order and number of arguments). bool isValid() const { // Nullary twines always have Empty on the RHS. if (isNullary() && getRHSKind() != EmptyKind) return false; // Null should never appear on the RHS. if (getRHSKind() == NullKind) return false; // The RHS cannot be non-empty if the LHS is empty. if (getRHSKind() != EmptyKind && getLHSKind() == EmptyKind) return false; // A twine child should always be binary. if (getLHSKind() == TwineKind && !LHS.twine->isBinary()) return false; if (getRHSKind() == TwineKind && !RHS.twine->isBinary()) return false; return true; } /// Get the NodeKind of the left-hand side. NodeKind getLHSKind() const { return LHSKind; } /// Get the NodeKind of the right-hand side. NodeKind getRHSKind() const { return RHSKind; } /// Print one child from a twine. void printOneChild(raw_ostream &OS, Child Ptr, NodeKind Kind) const; /// Print the representation of one child from a twine. void printOneChildRepr(raw_ostream &OS, Child Ptr, NodeKind Kind) const; public: /// @name Constructors /// @{ /// Construct from an empty string. /*implicit*/ Twine() { assert(isValid() && "Invalid twine!"); } Twine(const Twine &) = default; /// Construct from a C string. /// /// We take care here to optimize "" into the empty twine -- this will be /// optimized out for string constants. This allows Twine arguments have /// default "" values, without introducing unnecessary string constants. /*implicit*/ Twine(const char *Str) { if (Str[0] != '\0') { LHS.cString = Str; LHSKind = CStringKind; } else LHSKind = EmptyKind; assert(isValid() && "Invalid twine!"); } /// Construct from an std::string. /*implicit*/ Twine(const std::string &Str) : LHSKind(StdStringKind) { LHS.stdString = &Str; assert(isValid() && "Invalid twine!"); } /// Construct from a StringRef. /*implicit*/ Twine(const StringRef &Str) : LHSKind(StringRefKind) { LHS.stringRef = &Str; assert(isValid() && "Invalid twine!"); } /// Construct from a SmallString. /*implicit*/ Twine(const SmallVectorImpl<char> &Str) : LHSKind(SmallStringKind) { LHS.smallString = &Str; assert(isValid() && "Invalid twine!"); } /// Construct from a formatv_object_base. /*implicit*/ Twine(const formatv_object_base &Fmt) : LHSKind(FormatvObjectKind) { LHS.formatvObject = &Fmt; assert(isValid() && "Invalid twine!"); } /// Construct from a char. explicit Twine(char Val) : LHSKind(CharKind) { LHS.character = Val; } /// Construct from a signed char. explicit Twine(signed char Val) : LHSKind(CharKind) { LHS.character = static_cast<char>(Val); } /// Construct from an unsigned char. explicit Twine(unsigned char Val) : LHSKind(CharKind) { LHS.character = static_cast<char>(Val); } /// Construct a twine to print \p Val as an unsigned decimal integer. explicit Twine(unsigned Val) : LHSKind(DecUIKind) { LHS.decUI = Val; } /// Construct a twine to print \p Val as a signed decimal integer. explicit Twine(int Val) : LHSKind(DecIKind) { LHS.decI = Val; } /// Construct a twine to print \p Val as an unsigned decimal integer. explicit Twine(const unsigned long &Val) : LHSKind(DecULKind) { LHS.decUL = &Val; } /// Construct a twine to print \p Val as a signed decimal integer. explicit Twine(const long &Val) : LHSKind(DecLKind) { LHS.decL = &Val; } /// Construct a twine to print \p Val as an unsigned decimal integer. explicit Twine(const unsigned long long &Val) : LHSKind(DecULLKind) { LHS.decULL = &Val; } /// Construct a twine to print \p Val as a signed decimal integer. explicit Twine(const long long &Val) : LHSKind(DecLLKind) { LHS.decLL = &Val; } // FIXME: Unfortunately, to make sure this is as efficient as possible we // need extra binary constructors from particular types. We can't rely on // the compiler to be smart enough to fold operator+()/concat() down to the // right thing. Yet. /// Construct as the concatenation of a C string and a StringRef. /*implicit*/ Twine(const char *LHS, const StringRef &RHS) : LHSKind(CStringKind), RHSKind(StringRefKind) { this->LHS.cString = LHS; this->RHS.stringRef = &RHS; assert(isValid() && "Invalid twine!"); } /// Construct as the concatenation of a StringRef and a C string. /*implicit*/ Twine(const StringRef &LHS, const char *RHS) : LHSKind(StringRefKind), RHSKind(CStringKind) { this->LHS.stringRef = &LHS; this->RHS.cString = RHS; assert(isValid() && "Invalid twine!"); } /// Since the intended use of twines is as temporary objects, assignments /// when concatenating might cause undefined behavior or stack corruptions Twine &operator=(const Twine &) = delete; /// Create a 'null' string, which is an empty string that always /// concatenates to form another empty string. static Twine createNull() { return Twine(NullKind); } /// @} /// @name Numeric Conversions /// @{ // Construct a twine to print \p Val as an unsigned hexadecimal integer. static Twine utohexstr(const uint64_t &Val) { Child LHS, RHS; LHS.uHex = &Val; RHS.twine = nullptr; return Twine(LHS, UHexKind, RHS, EmptyKind); } /// @} /// @name Predicate Operations /// @{ /// Check if this twine is trivially empty; a false return value does not /// necessarily mean the twine is empty. bool isTriviallyEmpty() const { return isNullary(); } /// Return true if this twine can be dynamically accessed as a single /// StringRef value with getSingleStringRef(). bool isSingleStringRef() const { if (getRHSKind() != EmptyKind) return false; switch (getLHSKind()) { case EmptyKind: case CStringKind: case StdStringKind: case StringRefKind: case SmallStringKind: return true; default: return false; } } /// @} /// @name String Operations /// @{ Twine concat(const Twine &Suffix) const; /// @} /// @name Output & Conversion. /// @{ /// Return the twine contents as a std::string. std::string str() const; /// Append the concatenated string into the given SmallString or SmallVector. void toVector(SmallVectorImpl<char> &Out) const; /// This returns the twine as a single StringRef. This method is only valid /// if isSingleStringRef() is true. StringRef getSingleStringRef() const { assert(isSingleStringRef() &&"This cannot be had as a single stringref!"); switch (getLHSKind()) { default: llvm_unreachable("Out of sync with isSingleStringRef"); case EmptyKind: return StringRef(); case CStringKind: return StringRef(LHS.cString); case StdStringKind: return StringRef(*LHS.stdString); case StringRefKind: return *LHS.stringRef; case SmallStringKind: return StringRef(LHS.smallString->data(), LHS.smallString->size()); } } /// This returns the twine as a single StringRef if it can be /// represented as such. Otherwise the twine is written into the given /// SmallVector and a StringRef to the SmallVector's data is returned. StringRef toStringRef(SmallVectorImpl<char> &Out) const { if (isSingleStringRef()) return getSingleStringRef(); toVector(Out); return StringRef(Out.data(), Out.size()); } /// This returns the twine as a single null terminated StringRef if it /// can be represented as such. Otherwise the twine is written into the /// given SmallVector and a StringRef to the SmallVector's data is returned. /// /// The returned StringRef's size does not include the null terminator. StringRef toNullTerminatedStringRef(SmallVectorImpl<char> &Out) const; /// Write the concatenated string represented by this twine to the /// stream \p OS. void print(raw_ostream &OS) const; /// Dump the concatenated string represented by this twine to stderr. void dump() const; /// Write the representation of this twine to the stream \p OS. void printRepr(raw_ostream &OS) const; /// Dump the representation of this twine to stderr. void dumpRepr() const; /// @} }; /// @name Twine Inline Implementations /// @{ inline Twine Twine::concat(const Twine &Suffix) const { // Concatenation with null is null. if (isNull() || Suffix.isNull()) return Twine(NullKind); // Concatenation with empty yields the other side. if (isEmpty()) return Suffix; if (Suffix.isEmpty()) return *this; // Otherwise we need to create a new node, taking care to fold in unary // twines. Child NewLHS, NewRHS; NewLHS.twine = this; NewRHS.twine = &Suffix; NodeKind NewLHSKind = TwineKind, NewRHSKind = TwineKind; if (isUnary()) { NewLHS = LHS; NewLHSKind = getLHSKind(); } if (Suffix.isUnary()) { NewRHS = Suffix.LHS; NewRHSKind = Suffix.getLHSKind(); } return Twine(NewLHS, NewLHSKind, NewRHS, NewRHSKind); } inline Twine operator+(const Twine &LHS, const Twine &RHS) { return LHS.concat(RHS); } /// Additional overload to guarantee simplified codegen; this is equivalent to /// concat(). inline Twine operator+(const char *LHS, const StringRef &RHS) { return Twine(LHS, RHS); } /// Additional overload to guarantee simplified codegen; this is equivalent to /// concat(). inline Twine operator+(const StringRef &LHS, const char *RHS) { return Twine(LHS, RHS); } inline raw_ostream &operator<<(raw_ostream &OS, const Twine &RHS) { RHS.print(OS); return OS; } /// @} } // end namespace llvm #endif // LLVM_ADT_TWINE_H