//===- llvm/Analysis/VectorUtils.h - Vector utilities -----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines some vectorizer utilities. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_VECTORUTILS_H #define LLVM_ANALYSIS_VECTORUTILS_H #include "llvm/ADT/MapVector.h" #include "llvm/Analysis/LoopAccessAnalysis.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/IR/IRBuilder.h" namespace llvm { template <typename T> class ArrayRef; class DemandedBits; class GetElementPtrInst; template <typename InstTy> class InterleaveGroup; class Loop; class ScalarEvolution; class TargetTransformInfo; class Type; class Value; namespace Intrinsic { enum ID : unsigned; } /// Identify if the intrinsic is trivially vectorizable. /// This method returns true if the intrinsic's argument types are all /// scalars for the scalar form of the intrinsic and all vectors for /// the vector form of the intrinsic. bool isTriviallyVectorizable(Intrinsic::ID ID); /// Identifies if the intrinsic has a scalar operand. It checks for /// ctlz,cttz and powi special intrinsics whose argument is scalar. bool hasVectorInstrinsicScalarOpd(Intrinsic::ID ID, unsigned ScalarOpdIdx); /// Returns intrinsic ID for call. /// For the input call instruction it finds mapping intrinsic and returns /// its intrinsic ID, in case it does not found it return not_intrinsic. Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI); /// Find the operand of the GEP that should be checked for consecutive /// stores. This ignores trailing indices that have no effect on the final /// pointer. unsigned getGEPInductionOperand(const GetElementPtrInst *Gep); /// If the argument is a GEP, then returns the operand identified by /// getGEPInductionOperand. However, if there is some other non-loop-invariant /// operand, it returns that instead. Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp); /// If a value has only one user that is a CastInst, return it. Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty); /// Get the stride of a pointer access in a loop. Looks for symbolic /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise. Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp); /// Given a vector and an element number, see if the scalar value is /// already around as a register, for example if it were inserted then extracted /// from the vector. Value *findScalarElement(Value *V, unsigned EltNo); /// Get splat value if the input is a splat vector or return nullptr. /// The value may be extracted from a splat constants vector or from /// a sequence of instructions that broadcast a single value into a vector. const Value *getSplatValue(const Value *V); /// Compute a map of integer instructions to their minimum legal type /// size. /// /// C semantics force sub-int-sized values (e.g. i8, i16) to be promoted to int /// type (e.g. i32) whenever arithmetic is performed on them. /// /// For targets with native i8 or i16 operations, usually InstCombine can shrink /// the arithmetic type down again. However InstCombine refuses to create /// illegal types, so for targets without i8 or i16 registers, the lengthening /// and shrinking remains. /// /// Most SIMD ISAs (e.g. NEON) however support vectors of i8 or i16 even when /// their scalar equivalents do not, so during vectorization it is important to /// remove these lengthens and truncates when deciding the profitability of /// vectorization. /// /// This function analyzes the given range of instructions and determines the /// minimum type size each can be converted to. It attempts to remove or /// minimize type size changes across each def-use chain, so for example in the /// following code: /// /// %1 = load i8, i8* /// %2 = add i8 %1, 2 /// %3 = load i16, i16* /// %4 = zext i8 %2 to i32 /// %5 = zext i16 %3 to i32 /// %6 = add i32 %4, %5 /// %7 = trunc i32 %6 to i16 /// /// Instruction %6 must be done at least in i16, so computeMinimumValueSizes /// will return: {%1: 16, %2: 16, %3: 16, %4: 16, %5: 16, %6: 16, %7: 16}. /// /// If the optional TargetTransformInfo is provided, this function tries harder /// to do less work by only looking at illegal types. MapVector<Instruction*, uint64_t> computeMinimumValueSizes(ArrayRef<BasicBlock*> Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr); /// Specifically, let Kinds = [MD_tbaa, MD_alias_scope, MD_noalias, MD_fpmath, /// MD_nontemporal]. For K in Kinds, we get the MDNode for K from each of the /// elements of VL, compute their "intersection" (i.e., the most generic /// metadata value that covers all of the individual values), and set I's /// metadata for M equal to the intersection value. /// /// This function always sets a (possibly null) value for each K in Kinds. Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL); /// Create a mask that filters the members of an interleave group where there /// are gaps. /// /// For example, the mask for \p Group with interleave-factor 3 /// and \p VF 4, that has only its first member present is: /// /// <1,0,0,1,0,0,1,0,0,1,0,0> /// /// Note: The result is a mask of 0's and 1's, as opposed to the other /// create[*]Mask() utilities which create a shuffle mask (mask that /// consists of indices). Constant *createBitMaskForGaps(IRBuilder<> &Builder, unsigned VF, const InterleaveGroup<Instruction> &Group); /// Create a mask with replicated elements. /// /// This function creates a shuffle mask for replicating each of the \p VF /// elements in a vector \p ReplicationFactor times. It can be used to /// transform a mask of \p VF elements into a mask of /// \p VF * \p ReplicationFactor elements used by a predicated /// interleaved-group of loads/stores whose Interleaved-factor == /// \p ReplicationFactor. /// /// For example, the mask for \p ReplicationFactor=3 and \p VF=4 is: /// /// <0,0,0,1,1,1,2,2,2,3,3,3> Constant *createReplicatedMask(IRBuilder<> &Builder, unsigned ReplicationFactor, unsigned VF); /// Create an interleave shuffle mask. /// /// This function creates a shuffle mask for interleaving \p NumVecs vectors of /// vectorization factor \p VF into a single wide vector. The mask is of the /// form: /// /// <0, VF, VF * 2, ..., VF * (NumVecs - 1), 1, VF + 1, VF * 2 + 1, ...> /// /// For example, the mask for VF = 4 and NumVecs = 2 is: /// /// <0, 4, 1, 5, 2, 6, 3, 7>. Constant *createInterleaveMask(IRBuilder<> &Builder, unsigned VF, unsigned NumVecs); /// Create a stride shuffle mask. /// /// This function creates a shuffle mask whose elements begin at \p Start and /// are incremented by \p Stride. The mask can be used to deinterleave an /// interleaved vector into separate vectors of vectorization factor \p VF. The /// mask is of the form: /// /// <Start, Start + Stride, ..., Start + Stride * (VF - 1)> /// /// For example, the mask for Start = 0, Stride = 2, and VF = 4 is: /// /// <0, 2, 4, 6> Constant *createStrideMask(IRBuilder<> &Builder, unsigned Start, unsigned Stride, unsigned VF); /// Create a sequential shuffle mask. /// /// This function creates shuffle mask whose elements are sequential and begin /// at \p Start. The mask contains \p NumInts integers and is padded with \p /// NumUndefs undef values. The mask is of the form: /// /// <Start, Start + 1, ... Start + NumInts - 1, undef_1, ... undef_NumUndefs> /// /// For example, the mask for Start = 0, NumInsts = 4, and NumUndefs = 4 is: /// /// <0, 1, 2, 3, undef, undef, undef, undef> Constant *createSequentialMask(IRBuilder<> &Builder, unsigned Start, unsigned NumInts, unsigned NumUndefs); /// Concatenate a list of vectors. /// /// This function generates code that concatenate the vectors in \p Vecs into a /// single large vector. The number of vectors should be greater than one, and /// their element types should be the same. The number of elements in the /// vectors should also be the same; however, if the last vector has fewer /// elements, it will be padded with undefs. Value *concatenateVectors(IRBuilder<> &Builder, ArrayRef<Value *> Vecs); /// The group of interleaved loads/stores sharing the same stride and /// close to each other. /// /// Each member in this group has an index starting from 0, and the largest /// index should be less than interleaved factor, which is equal to the absolute /// value of the access's stride. /// /// E.g. An interleaved load group of factor 4: /// for (unsigned i = 0; i < 1024; i+=4) { /// a = A[i]; // Member of index 0 /// b = A[i+1]; // Member of index 1 /// d = A[i+3]; // Member of index 3 /// ... /// } /// /// An interleaved store group of factor 4: /// for (unsigned i = 0; i < 1024; i+=4) { /// ... /// A[i] = a; // Member of index 0 /// A[i+1] = b; // Member of index 1 /// A[i+2] = c; // Member of index 2 /// A[i+3] = d; // Member of index 3 /// } /// /// Note: the interleaved load group could have gaps (missing members), but /// the interleaved store group doesn't allow gaps. template <typename InstTy> class InterleaveGroup { public: InterleaveGroup(unsigned Factor, bool Reverse, unsigned Align) : Factor(Factor), Reverse(Reverse), Align(Align), InsertPos(nullptr) {} InterleaveGroup(InstTy *Instr, int Stride, unsigned Align) : Align(Align), InsertPos(Instr) { assert(Align && "The alignment should be non-zero"); Factor = std::abs(Stride); assert(Factor > 1 && "Invalid interleave factor"); Reverse = Stride < 0; Members[0] = Instr; } bool isReverse() const { return Reverse; } unsigned getFactor() const { return Factor; } unsigned getAlignment() const { return Align; } unsigned getNumMembers() const { return Members.size(); } /// Try to insert a new member \p Instr with index \p Index and /// alignment \p NewAlign. The index is related to the leader and it could be /// negative if it is the new leader. /// /// \returns false if the instruction doesn't belong to the group. bool insertMember(InstTy *Instr, int Index, unsigned NewAlign) { assert(NewAlign && "The new member's alignment should be non-zero"); int Key = Index + SmallestKey; // Skip if there is already a member with the same index. if (Members.find(Key) != Members.end()) return false; if (Key > LargestKey) { // The largest index is always less than the interleave factor. if (Index >= static_cast<int>(Factor)) return false; LargestKey = Key; } else if (Key < SmallestKey) { // The largest index is always less than the interleave factor. if (LargestKey - Key >= static_cast<int>(Factor)) return false; SmallestKey = Key; } // It's always safe to select the minimum alignment. Align = std::min(Align, NewAlign); Members[Key] = Instr; return true; } /// Get the member with the given index \p Index /// /// \returns nullptr if contains no such member. InstTy *getMember(unsigned Index) const { int Key = SmallestKey + Index; auto Member = Members.find(Key); if (Member == Members.end()) return nullptr; return Member->second; } /// Get the index for the given member. Unlike the key in the member /// map, the index starts from 0. unsigned getIndex(const InstTy *Instr) const { for (auto I : Members) { if (I.second == Instr) return I.first - SmallestKey; } llvm_unreachable("InterleaveGroup contains no such member"); } InstTy *getInsertPos() const { return InsertPos; } void setInsertPos(InstTy *Inst) { InsertPos = Inst; } /// Add metadata (e.g. alias info) from the instructions in this group to \p /// NewInst. /// /// FIXME: this function currently does not add noalias metadata a'la /// addNewMedata. To do that we need to compute the intersection of the /// noalias info from all members. void addMetadata(InstTy *NewInst) const; /// Returns true if this Group requires a scalar iteration to handle gaps. bool requiresScalarEpilogue() const { // If the last member of the Group exists, then a scalar epilog is not // needed for this group. if (getMember(getFactor() - 1)) return false; // We have a group with gaps. It therefore cannot be a group of stores, // and it can't be a reversed access, because such groups get invalidated. assert(!getMember(0)->mayWriteToMemory() && "Group should have been invalidated"); assert(!isReverse() && "Group should have been invalidated"); // This is a group of loads, with gaps, and without a last-member return true; } private: unsigned Factor; // Interleave Factor. bool Reverse; unsigned Align; DenseMap<int, InstTy *> Members; int SmallestKey = 0; int LargestKey = 0; // To avoid breaking dependences, vectorized instructions of an interleave // group should be inserted at either the first load or the last store in // program order. // // E.g. %even = load i32 // Insert Position // %add = add i32 %even // Use of %even // %odd = load i32 // // store i32 %even // %odd = add i32 // Def of %odd // store i32 %odd // Insert Position InstTy *InsertPos; }; /// Drive the analysis of interleaved memory accesses in the loop. /// /// Use this class to analyze interleaved accesses only when we can vectorize /// a loop. Otherwise it's meaningless to do analysis as the vectorization /// on interleaved accesses is unsafe. /// /// The analysis collects interleave groups and records the relationships /// between the member and the group in a map. class InterleavedAccessInfo { public: InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, DominatorTree *DT, LoopInfo *LI, const LoopAccessInfo *LAI) : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(LAI) {} ~InterleavedAccessInfo() { reset(); } /// Analyze the interleaved accesses and collect them in interleave /// groups. Substitute symbolic strides using \p Strides. /// Consider also predicated loads/stores in the analysis if /// \p EnableMaskedInterleavedGroup is true. void analyzeInterleaving(bool EnableMaskedInterleavedGroup); /// Invalidate groups, e.g., in case all blocks in loop will be predicated /// contrary to original assumption. Although we currently prevent group /// formation for predicated accesses, we may be able to relax this limitation /// in the future once we handle more complicated blocks. void reset() { SmallPtrSet<InterleaveGroup<Instruction> *, 4> DelSet; // Avoid releasing a pointer twice. for (auto &I : InterleaveGroupMap) DelSet.insert(I.second); for (auto *Ptr : DelSet) delete Ptr; InterleaveGroupMap.clear(); RequiresScalarEpilogue = false; } /// Check if \p Instr belongs to any interleave group. bool isInterleaved(Instruction *Instr) const { return InterleaveGroupMap.find(Instr) != InterleaveGroupMap.end(); } /// Get the interleave group that \p Instr belongs to. /// /// \returns nullptr if doesn't have such group. InterleaveGroup<Instruction> * getInterleaveGroup(const Instruction *Instr) const { if (InterleaveGroupMap.count(Instr)) return InterleaveGroupMap.find(Instr)->second; return nullptr; } iterator_range<SmallPtrSetIterator<llvm::InterleaveGroup<Instruction> *>> getInterleaveGroups() { return make_range(InterleaveGroups.begin(), InterleaveGroups.end()); } /// Returns true if an interleaved group that may access memory /// out-of-bounds requires a scalar epilogue iteration for correctness. bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } /// Invalidate groups that require a scalar epilogue (due to gaps). This can /// happen when optimizing for size forbids a scalar epilogue, and the gap /// cannot be filtered by masking the load/store. void invalidateGroupsRequiringScalarEpilogue(); private: /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. /// Simplifies SCEV expressions in the context of existing SCEV assumptions. /// The interleaved access analysis can also add new predicates (for example /// by versioning strides of pointers). PredicatedScalarEvolution &PSE; Loop *TheLoop; DominatorTree *DT; LoopInfo *LI; const LoopAccessInfo *LAI; /// True if the loop may contain non-reversed interleaved groups with /// out-of-bounds accesses. We ensure we don't speculatively access memory /// out-of-bounds by executing at least one scalar epilogue iteration. bool RequiresScalarEpilogue = false; /// Holds the relationships between the members and the interleave group. DenseMap<Instruction *, InterleaveGroup<Instruction> *> InterleaveGroupMap; SmallPtrSet<InterleaveGroup<Instruction> *, 4> InterleaveGroups; /// Holds dependences among the memory accesses in the loop. It maps a source /// access to a set of dependent sink accesses. DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; /// The descriptor for a strided memory access. struct StrideDescriptor { StrideDescriptor() = default; StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, unsigned Align) : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} // The access's stride. It is negative for a reverse access. int64_t Stride = 0; // The scalar expression of this access. const SCEV *Scev = nullptr; // The size of the memory object. uint64_t Size = 0; // The alignment of this access. unsigned Align = 0; }; /// A type for holding instructions and their stride descriptors. using StrideEntry = std::pair<Instruction *, StrideDescriptor>; /// Create a new interleave group with the given instruction \p Instr, /// stride \p Stride and alignment \p Align. /// /// \returns the newly created interleave group. InterleaveGroup<Instruction> * createInterleaveGroup(Instruction *Instr, int Stride, unsigned Align) { assert(!InterleaveGroupMap.count(Instr) && "Already in an interleaved access group"); InterleaveGroupMap[Instr] = new InterleaveGroup<Instruction>(Instr, Stride, Align); InterleaveGroups.insert(InterleaveGroupMap[Instr]); return InterleaveGroupMap[Instr]; } /// Release the group and remove all the relationships. void releaseGroup(InterleaveGroup<Instruction> *Group) { for (unsigned i = 0; i < Group->getFactor(); i++) if (Instruction *Member = Group->getMember(i)) InterleaveGroupMap.erase(Member); InterleaveGroups.erase(Group); delete Group; } /// Collect all the accesses with a constant stride in program order. void collectConstStrideAccesses( MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, const ValueToValueMap &Strides); /// Returns true if \p Stride is allowed in an interleaved group. static bool isStrided(int Stride); /// Returns true if \p BB is a predicated block. bool isPredicated(BasicBlock *BB) const { return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); } /// Returns true if LoopAccessInfo can be used for dependence queries. bool areDependencesValid() const { return LAI && LAI->getDepChecker().getDependences(); } /// Returns true if memory accesses \p A and \p B can be reordered, if /// necessary, when constructing interleaved groups. /// /// \p A must precede \p B in program order. We return false if reordering is /// not necessary or is prevented because \p A and \p B may be dependent. bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, StrideEntry *B) const { // Code motion for interleaved accesses can potentially hoist strided loads // and sink strided stores. The code below checks the legality of the // following two conditions: // // 1. Potentially moving a strided load (B) before any store (A) that // precedes B, or // // 2. Potentially moving a strided store (A) after any load or store (B) // that A precedes. // // It's legal to reorder A and B if we know there isn't a dependence from A // to B. Note that this determination is conservative since some // dependences could potentially be reordered safely. // A is potentially the source of a dependence. auto *Src = A->first; auto SrcDes = A->second; // B is potentially the sink of a dependence. auto *Sink = B->first; auto SinkDes = B->second; // Code motion for interleaved accesses can't violate WAR dependences. // Thus, reordering is legal if the source isn't a write. if (!Src->mayWriteToMemory()) return true; // At least one of the accesses must be strided. if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) return true; // If dependence information is not available from LoopAccessInfo, // conservatively assume the instructions can't be reordered. if (!areDependencesValid()) return false; // If we know there is a dependence from source to sink, assume the // instructions can't be reordered. Otherwise, reordering is legal. return Dependences.find(Src) == Dependences.end() || !Dependences.lookup(Src).count(Sink); } /// Collect the dependences from LoopAccessInfo. /// /// We process the dependences once during the interleaved access analysis to /// enable constant-time dependence queries. void collectDependences() { if (!areDependencesValid()) return; auto *Deps = LAI->getDepChecker().getDependences(); for (auto Dep : *Deps) Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); } }; } // llvm namespace #endif