//===- JITSymbol.h - JIT symbol abstraction ---------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Abstraction for target process addresses. // //===----------------------------------------------------------------------===// #ifndef LLVM_EXECUTIONENGINE_JITSYMBOL_H #define LLVM_EXECUTIONENGINE_JITSYMBOL_H #include <algorithm> #include <cassert> #include <cstddef> #include <cstdint> #include <functional> #include <map> #include <set> #include <string> #include "llvm/ADT/BitmaskEnum.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/Error.h" namespace llvm { class GlobalValue; namespace object { class SymbolRef; } // end namespace object /// Represents an address in the target process's address space. using JITTargetAddress = uint64_t; /// Convert a JITTargetAddress to a pointer. template <typename T> T jitTargetAddressToPointer(JITTargetAddress Addr) { static_assert(std::is_pointer<T>::value, "T must be a pointer type"); uintptr_t IntPtr = static_cast<uintptr_t>(Addr); assert(IntPtr == Addr && "JITTargetAddress value out of range for uintptr_t"); return reinterpret_cast<T>(IntPtr); } template <typename T> JITTargetAddress pointerToJITTargetAddress(T *Ptr) { return static_cast<JITTargetAddress>(reinterpret_cast<uintptr_t>(Ptr)); } /// Flags for symbols in the JIT. class JITSymbolFlags { public: using UnderlyingType = uint8_t; using TargetFlagsType = uint64_t; enum FlagNames : UnderlyingType { None = 0, HasError = 1U << 0, Weak = 1U << 1, Common = 1U << 2, Absolute = 1U << 3, Exported = 1U << 4, Callable = 1U << 5, Lazy = 1U << 6, Materializing = 1U << 7, LLVM_MARK_AS_BITMASK_ENUM(/* LargestValue = */ Materializing) }; static JITSymbolFlags stripTransientFlags(JITSymbolFlags Orig) { return static_cast<FlagNames>(Orig.Flags & ~Lazy & ~Materializing); } /// Default-construct a JITSymbolFlags instance. JITSymbolFlags() = default; /// Construct a JITSymbolFlags instance from the given flags. JITSymbolFlags(FlagNames Flags) : Flags(Flags) {} /// Construct a JITSymbolFlags instance from the given flags and target /// flags. JITSymbolFlags(FlagNames Flags, TargetFlagsType TargetFlags) : Flags(Flags), TargetFlags(TargetFlags) {} /// Implicitly convert to bool. Returs true if any flag is set. explicit operator bool() const { return Flags != None || TargetFlags != 0; } /// Compare for equality. bool operator==(const JITSymbolFlags &RHS) const { return Flags == RHS.Flags && TargetFlags == RHS.TargetFlags; } /// Bitwise AND-assignment for FlagNames. JITSymbolFlags &operator&=(const FlagNames &RHS) { Flags &= RHS; return *this; } /// Bitwise OR-assignment for FlagNames. JITSymbolFlags &operator|=(const FlagNames &RHS) { Flags |= RHS; return *this; } /// Return true if there was an error retrieving this symbol. bool hasError() const { return (Flags & HasError) == HasError; } /// Returns true if this is a lazy symbol. /// This flag is used internally by the JIT APIs to track /// materialization states. bool isLazy() const { return Flags & Lazy; } /// Returns true if this symbol is in the process of being /// materialized. bool isMaterializing() const { return Flags & Materializing; } /// Returns true if this symbol is fully materialized. /// (i.e. neither lazy, nor materializing). bool isMaterialized() const { return !(Flags & (Lazy | Materializing)); } /// Returns true if the Weak flag is set. bool isWeak() const { return (Flags & Weak) == Weak; } /// Returns true if the Common flag is set. bool isCommon() const { return (Flags & Common) == Common; } /// Returns true if the symbol isn't weak or common. bool isStrong() const { return !isWeak() && !isCommon(); } /// Returns true if the Exported flag is set. bool isExported() const { return (Flags & Exported) == Exported; } /// Returns true if the given symbol is known to be callable. bool isCallable() const { return (Flags & Callable) == Callable; } /// Get the underlying flags value as an integer. UnderlyingType getRawFlagsValue() const { return static_cast<UnderlyingType>(Flags); } /// Return a reference to the target-specific flags. TargetFlagsType& getTargetFlags() { return TargetFlags; } /// Return a reference to the target-specific flags. const TargetFlagsType& getTargetFlags() const { return TargetFlags; } /// Construct a JITSymbolFlags value based on the flags of the given global /// value. static JITSymbolFlags fromGlobalValue(const GlobalValue &GV); /// Construct a JITSymbolFlags value based on the flags of the given libobject /// symbol. static Expected<JITSymbolFlags> fromObjectSymbol(const object::SymbolRef &Symbol); private: FlagNames Flags = None; TargetFlagsType TargetFlags = 0; }; inline JITSymbolFlags operator&(const JITSymbolFlags &LHS, const JITSymbolFlags::FlagNames &RHS) { JITSymbolFlags Tmp = LHS; Tmp &= RHS; return Tmp; } inline JITSymbolFlags operator|(const JITSymbolFlags &LHS, const JITSymbolFlags::FlagNames &RHS) { JITSymbolFlags Tmp = LHS; Tmp |= RHS; return Tmp; } /// ARM-specific JIT symbol flags. /// FIXME: This should be moved into a target-specific header. class ARMJITSymbolFlags { public: ARMJITSymbolFlags() = default; enum FlagNames { None = 0, Thumb = 1 << 0 }; operator JITSymbolFlags::TargetFlagsType&() { return Flags; } static ARMJITSymbolFlags fromObjectSymbol(const object::SymbolRef &Symbol); private: JITSymbolFlags::TargetFlagsType Flags = 0; }; /// Represents a symbol that has been evaluated to an address already. class JITEvaluatedSymbol { public: JITEvaluatedSymbol() = default; /// Create a 'null' symbol. JITEvaluatedSymbol(std::nullptr_t) {} /// Create a symbol for the given address and flags. JITEvaluatedSymbol(JITTargetAddress Address, JITSymbolFlags Flags) : Address(Address), Flags(Flags) {} /// An evaluated symbol converts to 'true' if its address is non-zero. explicit operator bool() const { return Address != 0; } /// Return the address of this symbol. JITTargetAddress getAddress() const { return Address; } /// Return the flags for this symbol. JITSymbolFlags getFlags() const { return Flags; } /// Set the flags for this symbol. void setFlags(JITSymbolFlags Flags) { this->Flags = std::move(Flags); } private: JITTargetAddress Address = 0; JITSymbolFlags Flags; }; /// Represents a symbol in the JIT. class JITSymbol { public: using GetAddressFtor = std::function<Expected<JITTargetAddress>()>; /// Create a 'null' symbol, used to represent a "symbol not found" /// result from a successful (non-erroneous) lookup. JITSymbol(std::nullptr_t) : CachedAddr(0) {} /// Create a JITSymbol representing an error in the symbol lookup /// process (e.g. a network failure during a remote lookup). JITSymbol(Error Err) : Err(std::move(Err)), Flags(JITSymbolFlags::HasError) {} /// Create a symbol for a definition with a known address. JITSymbol(JITTargetAddress Addr, JITSymbolFlags Flags) : CachedAddr(Addr), Flags(Flags) {} /// Construct a JITSymbol from a JITEvaluatedSymbol. JITSymbol(JITEvaluatedSymbol Sym) : CachedAddr(Sym.getAddress()), Flags(Sym.getFlags()) {} /// Create a symbol for a definition that doesn't have a known address /// yet. /// @param GetAddress A functor to materialize a definition (fixing the /// address) on demand. /// /// This constructor allows a JIT layer to provide a reference to a symbol /// definition without actually materializing the definition up front. The /// user can materialize the definition at any time by calling the getAddress /// method. JITSymbol(GetAddressFtor GetAddress, JITSymbolFlags Flags) : GetAddress(std::move(GetAddress)), CachedAddr(0), Flags(Flags) {} JITSymbol(const JITSymbol&) = delete; JITSymbol& operator=(const JITSymbol&) = delete; JITSymbol(JITSymbol &&Other) : GetAddress(std::move(Other.GetAddress)), Flags(std::move(Other.Flags)) { if (Flags.hasError()) Err = std::move(Other.Err); else CachedAddr = std::move(Other.CachedAddr); } JITSymbol& operator=(JITSymbol &&Other) { GetAddress = std::move(Other.GetAddress); Flags = std::move(Other.Flags); if (Flags.hasError()) Err = std::move(Other.Err); else CachedAddr = std::move(Other.CachedAddr); return *this; } ~JITSymbol() { if (Flags.hasError()) Err.~Error(); else CachedAddr.~JITTargetAddress(); } /// Returns true if the symbol exists, false otherwise. explicit operator bool() const { return !Flags.hasError() && (CachedAddr || GetAddress); } /// Move the error field value out of this JITSymbol. Error takeError() { if (Flags.hasError()) return std::move(Err); return Error::success(); } /// Get the address of the symbol in the target address space. Returns /// '0' if the symbol does not exist. Expected<JITTargetAddress> getAddress() { assert(!Flags.hasError() && "getAddress called on error value"); if (GetAddress) { if (auto CachedAddrOrErr = GetAddress()) { GetAddress = nullptr; CachedAddr = *CachedAddrOrErr; assert(CachedAddr && "Symbol could not be materialized."); } else return CachedAddrOrErr.takeError(); } return CachedAddr; } JITSymbolFlags getFlags() const { return Flags; } private: GetAddressFtor GetAddress; union { JITTargetAddress CachedAddr; Error Err; }; JITSymbolFlags Flags; }; /// Symbol resolution interface. /// /// Allows symbol flags and addresses to be looked up by name. /// Symbol queries are done in bulk (i.e. you request resolution of a set of /// symbols, rather than a single one) to reduce IPC overhead in the case of /// remote JITing, and expose opportunities for parallel compilation. class JITSymbolResolver { public: using LookupSet = std::set<StringRef>; using LookupResult = std::map<StringRef, JITEvaluatedSymbol>; using OnResolvedFunction = std::function<void(Expected<LookupResult>)>; virtual ~JITSymbolResolver() = default; /// Returns the fully resolved address and flags for each of the given /// symbols. /// /// This method will return an error if any of the given symbols can not be /// resolved, or if the resolution process itself triggers an error. virtual void lookup(const LookupSet &Symbols, OnResolvedFunction OnResolved) = 0; /// Returns the subset of the given symbols that should be materialized by /// the caller. Only weak/common symbols should be looked up, as strong /// definitions are implicitly always part of the caller's responsibility. virtual Expected<LookupSet> getResponsibilitySet(const LookupSet &Symbols) = 0; private: virtual void anchor(); }; /// Legacy symbol resolution interface. class LegacyJITSymbolResolver : public JITSymbolResolver { public: /// Performs lookup by, for each symbol, first calling /// findSymbolInLogicalDylib and if that fails calling /// findSymbol. void lookup(const LookupSet &Symbols, OnResolvedFunction OnResolved) final; /// Performs flags lookup by calling findSymbolInLogicalDylib and /// returning the flags value for that symbol. Expected<LookupSet> getResponsibilitySet(const LookupSet &Symbols) final; /// This method returns the address of the specified symbol if it exists /// within the logical dynamic library represented by this JITSymbolResolver. /// Unlike findSymbol, queries through this interface should return addresses /// for hidden symbols. /// /// This is of particular importance for the Orc JIT APIs, which support lazy /// compilation by breaking up modules: Each of those broken out modules /// must be able to resolve hidden symbols provided by the others. Clients /// writing memory managers for MCJIT can usually ignore this method. /// /// This method will be queried by RuntimeDyld when checking for previous /// definitions of common symbols. virtual JITSymbol findSymbolInLogicalDylib(const std::string &Name) = 0; /// This method returns the address of the specified function or variable. /// It is used to resolve symbols during module linking. /// /// If the returned symbol's address is equal to ~0ULL then RuntimeDyld will /// skip all relocations for that symbol, and the client will be responsible /// for handling them manually. virtual JITSymbol findSymbol(const std::string &Name) = 0; private: virtual void anchor(); }; } // end namespace llvm #endif // LLVM_EXECUTIONENGINE_JITSYMBOL_H