//===- OrcRemoteTargetClient.h - Orc Remote-target Client -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the OrcRemoteTargetClient class and helpers. This class // can be used to communicate over an RawByteChannel with an // OrcRemoteTargetServer instance to support remote-JITing. // //===----------------------------------------------------------------------===// #ifndef LLVM_EXECUTIONENGINE_ORC_ORCREMOTETARGETCLIENT_H #define LLVM_EXECUTIONENGINE_ORC_ORCREMOTETARGETCLIENT_H #include "llvm/ADT/Optional.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/ExecutionEngine/JITSymbol.h" #include "llvm/ExecutionEngine/Orc/IndirectionUtils.h" #include "llvm/ExecutionEngine/Orc/OrcRemoteTargetRPCAPI.h" #include "llvm/ExecutionEngine/RuntimeDyld.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Error.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Format.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/Memory.h" #include "llvm/Support/raw_ostream.h" #include <algorithm> #include <cassert> #include <cstdint> #include <memory> #include <string> #include <tuple> #include <utility> #include <vector> #define DEBUG_TYPE "orc-remote" namespace llvm { namespace orc { namespace remote { /// This class provides utilities (including memory manager, indirect stubs /// manager, and compile callback manager types) that support remote JITing /// in ORC. /// /// Each of the utility classes talks to a JIT server (an instance of the /// OrcRemoteTargetServer class) via an RPC system (see RPCUtils.h) to carry out /// its actions. class OrcRemoteTargetClient : public rpc::SingleThreadedRPCEndpoint<rpc::RawByteChannel> { public: /// Remote-mapped RuntimeDyld-compatible memory manager. class RemoteRTDyldMemoryManager : public RuntimeDyld::MemoryManager { friend class OrcRemoteTargetClient; public: ~RemoteRTDyldMemoryManager() { Client.destroyRemoteAllocator(Id); LLVM_DEBUG(dbgs() << "Destroyed remote allocator " << Id << "\n"); } RemoteRTDyldMemoryManager(const RemoteRTDyldMemoryManager &) = delete; RemoteRTDyldMemoryManager & operator=(const RemoteRTDyldMemoryManager &) = delete; RemoteRTDyldMemoryManager(RemoteRTDyldMemoryManager &&) = default; RemoteRTDyldMemoryManager &operator=(RemoteRTDyldMemoryManager &&) = delete; uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment, unsigned SectionID, StringRef SectionName) override { Unmapped.back().CodeAllocs.emplace_back(Size, Alignment); uint8_t *Alloc = reinterpret_cast<uint8_t *>( Unmapped.back().CodeAllocs.back().getLocalAddress()); LLVM_DEBUG(dbgs() << "Allocator " << Id << " allocated code for " << SectionName << ": " << Alloc << " (" << Size << " bytes, alignment " << Alignment << ")\n"); return Alloc; } uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment, unsigned SectionID, StringRef SectionName, bool IsReadOnly) override { if (IsReadOnly) { Unmapped.back().RODataAllocs.emplace_back(Size, Alignment); uint8_t *Alloc = reinterpret_cast<uint8_t *>( Unmapped.back().RODataAllocs.back().getLocalAddress()); LLVM_DEBUG(dbgs() << "Allocator " << Id << " allocated ro-data for " << SectionName << ": " << Alloc << " (" << Size << " bytes, alignment " << Alignment << ")\n"); return Alloc; } // else... Unmapped.back().RWDataAllocs.emplace_back(Size, Alignment); uint8_t *Alloc = reinterpret_cast<uint8_t *>( Unmapped.back().RWDataAllocs.back().getLocalAddress()); LLVM_DEBUG(dbgs() << "Allocator " << Id << " allocated rw-data for " << SectionName << ": " << Alloc << " (" << Size << " bytes, alignment " << Alignment << ")\n"); return Alloc; } void reserveAllocationSpace(uintptr_t CodeSize, uint32_t CodeAlign, uintptr_t RODataSize, uint32_t RODataAlign, uintptr_t RWDataSize, uint32_t RWDataAlign) override { Unmapped.push_back(ObjectAllocs()); LLVM_DEBUG(dbgs() << "Allocator " << Id << " reserved:\n"); if (CodeSize != 0) { Unmapped.back().RemoteCodeAddr = Client.reserveMem(Id, CodeSize, CodeAlign); LLVM_DEBUG( dbgs() << " code: " << format("0x%016" PRIx64, Unmapped.back().RemoteCodeAddr) << " (" << CodeSize << " bytes, alignment " << CodeAlign << ")\n"); } if (RODataSize != 0) { Unmapped.back().RemoteRODataAddr = Client.reserveMem(Id, RODataSize, RODataAlign); LLVM_DEBUG( dbgs() << " ro-data: " << format("0x%016" PRIx64, Unmapped.back().RemoteRODataAddr) << " (" << RODataSize << " bytes, alignment " << RODataAlign << ")\n"); } if (RWDataSize != 0) { Unmapped.back().RemoteRWDataAddr = Client.reserveMem(Id, RWDataSize, RWDataAlign); LLVM_DEBUG( dbgs() << " rw-data: " << format("0x%016" PRIx64, Unmapped.back().RemoteRWDataAddr) << " (" << RWDataSize << " bytes, alignment " << RWDataAlign << ")\n"); } } bool needsToReserveAllocationSpace() override { return true; } void registerEHFrames(uint8_t *Addr, uint64_t LoadAddr, size_t Size) override { UnfinalizedEHFrames.push_back({LoadAddr, Size}); } void deregisterEHFrames() override { for (auto &Frame : RegisteredEHFrames) { // FIXME: Add error poll. Client.deregisterEHFrames(Frame.Addr, Frame.Size); } } void notifyObjectLoaded(RuntimeDyld &Dyld, const object::ObjectFile &Obj) override { LLVM_DEBUG(dbgs() << "Allocator " << Id << " applied mappings:\n"); for (auto &ObjAllocs : Unmapped) { mapAllocsToRemoteAddrs(Dyld, ObjAllocs.CodeAllocs, ObjAllocs.RemoteCodeAddr); mapAllocsToRemoteAddrs(Dyld, ObjAllocs.RODataAllocs, ObjAllocs.RemoteRODataAddr); mapAllocsToRemoteAddrs(Dyld, ObjAllocs.RWDataAllocs, ObjAllocs.RemoteRWDataAddr); Unfinalized.push_back(std::move(ObjAllocs)); } Unmapped.clear(); } bool finalizeMemory(std::string *ErrMsg = nullptr) override { LLVM_DEBUG(dbgs() << "Allocator " << Id << " finalizing:\n"); for (auto &ObjAllocs : Unfinalized) { if (copyAndProtect(ObjAllocs.CodeAllocs, ObjAllocs.RemoteCodeAddr, sys::Memory::MF_READ | sys::Memory::MF_EXEC)) return true; if (copyAndProtect(ObjAllocs.RODataAllocs, ObjAllocs.RemoteRODataAddr, sys::Memory::MF_READ)) return true; if (copyAndProtect(ObjAllocs.RWDataAllocs, ObjAllocs.RemoteRWDataAddr, sys::Memory::MF_READ | sys::Memory::MF_WRITE)) return true; } Unfinalized.clear(); for (auto &EHFrame : UnfinalizedEHFrames) { if (auto Err = Client.registerEHFrames(EHFrame.Addr, EHFrame.Size)) { // FIXME: Replace this once finalizeMemory can return an Error. handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { if (ErrMsg) { raw_string_ostream ErrOut(*ErrMsg); EIB.log(ErrOut); } }); return false; } } RegisteredEHFrames = std::move(UnfinalizedEHFrames); UnfinalizedEHFrames = {}; return false; } private: class Alloc { public: Alloc(uint64_t Size, unsigned Align) : Size(Size), Align(Align), Contents(new char[Size + Align - 1]) {} Alloc(const Alloc &) = delete; Alloc &operator=(const Alloc &) = delete; Alloc(Alloc &&) = default; Alloc &operator=(Alloc &&) = default; uint64_t getSize() const { return Size; } unsigned getAlign() const { return Align; } char *getLocalAddress() const { uintptr_t LocalAddr = reinterpret_cast<uintptr_t>(Contents.get()); LocalAddr = alignTo(LocalAddr, Align); return reinterpret_cast<char *>(LocalAddr); } void setRemoteAddress(JITTargetAddress RemoteAddr) { this->RemoteAddr = RemoteAddr; } JITTargetAddress getRemoteAddress() const { return RemoteAddr; } private: uint64_t Size; unsigned Align; std::unique_ptr<char[]> Contents; JITTargetAddress RemoteAddr = 0; }; struct ObjectAllocs { ObjectAllocs() = default; ObjectAllocs(const ObjectAllocs &) = delete; ObjectAllocs &operator=(const ObjectAllocs &) = delete; ObjectAllocs(ObjectAllocs &&) = default; ObjectAllocs &operator=(ObjectAllocs &&) = default; JITTargetAddress RemoteCodeAddr = 0; JITTargetAddress RemoteRODataAddr = 0; JITTargetAddress RemoteRWDataAddr = 0; std::vector<Alloc> CodeAllocs, RODataAllocs, RWDataAllocs; }; RemoteRTDyldMemoryManager(OrcRemoteTargetClient &Client, ResourceIdMgr::ResourceId Id) : Client(Client), Id(Id) { LLVM_DEBUG(dbgs() << "Created remote allocator " << Id << "\n"); } // Maps all allocations in Allocs to aligned blocks void mapAllocsToRemoteAddrs(RuntimeDyld &Dyld, std::vector<Alloc> &Allocs, JITTargetAddress NextAddr) { for (auto &Alloc : Allocs) { NextAddr = alignTo(NextAddr, Alloc.getAlign()); Dyld.mapSectionAddress(Alloc.getLocalAddress(), NextAddr); LLVM_DEBUG( dbgs() << " " << static_cast<void *>(Alloc.getLocalAddress()) << " -> " << format("0x%016" PRIx64, NextAddr) << "\n"); Alloc.setRemoteAddress(NextAddr); // Only advance NextAddr if it was non-null to begin with, // otherwise leave it as null. if (NextAddr) NextAddr += Alloc.getSize(); } } // Copies data for each alloc in the list, then set permissions on the // segment. bool copyAndProtect(const std::vector<Alloc> &Allocs, JITTargetAddress RemoteSegmentAddr, unsigned Permissions) { if (RemoteSegmentAddr) { assert(!Allocs.empty() && "No sections in allocated segment"); for (auto &Alloc : Allocs) { LLVM_DEBUG(dbgs() << " copying section: " << static_cast<void *>(Alloc.getLocalAddress()) << " -> " << format("0x%016" PRIx64, Alloc.getRemoteAddress()) << " (" << Alloc.getSize() << " bytes)\n";); if (Client.writeMem(Alloc.getRemoteAddress(), Alloc.getLocalAddress(), Alloc.getSize())) return true; } LLVM_DEBUG(dbgs() << " setting " << (Permissions & sys::Memory::MF_READ ? 'R' : '-') << (Permissions & sys::Memory::MF_WRITE ? 'W' : '-') << (Permissions & sys::Memory::MF_EXEC ? 'X' : '-') << " permissions on block: " << format("0x%016" PRIx64, RemoteSegmentAddr) << "\n"); if (Client.setProtections(Id, RemoteSegmentAddr, Permissions)) return true; } return false; } OrcRemoteTargetClient &Client; ResourceIdMgr::ResourceId Id; std::vector<ObjectAllocs> Unmapped; std::vector<ObjectAllocs> Unfinalized; struct EHFrame { JITTargetAddress Addr; uint64_t Size; }; std::vector<EHFrame> UnfinalizedEHFrames; std::vector<EHFrame> RegisteredEHFrames; }; /// Remote indirect stubs manager. class RemoteIndirectStubsManager : public IndirectStubsManager { public: RemoteIndirectStubsManager(OrcRemoteTargetClient &Client, ResourceIdMgr::ResourceId Id) : Client(Client), Id(Id) {} ~RemoteIndirectStubsManager() override { Client.destroyIndirectStubsManager(Id); } Error createStub(StringRef StubName, JITTargetAddress StubAddr, JITSymbolFlags StubFlags) override { if (auto Err = reserveStubs(1)) return Err; return createStubInternal(StubName, StubAddr, StubFlags); } Error createStubs(const StubInitsMap &StubInits) override { if (auto Err = reserveStubs(StubInits.size())) return Err; for (auto &Entry : StubInits) if (auto Err = createStubInternal(Entry.first(), Entry.second.first, Entry.second.second)) return Err; return Error::success(); } JITEvaluatedSymbol findStub(StringRef Name, bool ExportedStubsOnly) override { auto I = StubIndexes.find(Name); if (I == StubIndexes.end()) return nullptr; auto Key = I->second.first; auto Flags = I->second.second; auto StubSymbol = JITEvaluatedSymbol(getStubAddr(Key), Flags); if (ExportedStubsOnly && !StubSymbol.getFlags().isExported()) return nullptr; return StubSymbol; } JITEvaluatedSymbol findPointer(StringRef Name) override { auto I = StubIndexes.find(Name); if (I == StubIndexes.end()) return nullptr; auto Key = I->second.first; auto Flags = I->second.second; return JITEvaluatedSymbol(getPtrAddr(Key), Flags); } Error updatePointer(StringRef Name, JITTargetAddress NewAddr) override { auto I = StubIndexes.find(Name); assert(I != StubIndexes.end() && "No stub pointer for symbol"); auto Key = I->second.first; return Client.writePointer(getPtrAddr(Key), NewAddr); } private: struct RemoteIndirectStubsInfo { JITTargetAddress StubBase; JITTargetAddress PtrBase; unsigned NumStubs; }; using StubKey = std::pair<uint16_t, uint16_t>; Error reserveStubs(unsigned NumStubs) { if (NumStubs <= FreeStubs.size()) return Error::success(); unsigned NewStubsRequired = NumStubs - FreeStubs.size(); JITTargetAddress StubBase; JITTargetAddress PtrBase; unsigned NumStubsEmitted; if (auto StubInfoOrErr = Client.emitIndirectStubs(Id, NewStubsRequired)) std::tie(StubBase, PtrBase, NumStubsEmitted) = *StubInfoOrErr; else return StubInfoOrErr.takeError(); unsigned NewBlockId = RemoteIndirectStubsInfos.size(); RemoteIndirectStubsInfos.push_back({StubBase, PtrBase, NumStubsEmitted}); for (unsigned I = 0; I < NumStubsEmitted; ++I) FreeStubs.push_back(std::make_pair(NewBlockId, I)); return Error::success(); } Error createStubInternal(StringRef StubName, JITTargetAddress InitAddr, JITSymbolFlags StubFlags) { auto Key = FreeStubs.back(); FreeStubs.pop_back(); StubIndexes[StubName] = std::make_pair(Key, StubFlags); return Client.writePointer(getPtrAddr(Key), InitAddr); } JITTargetAddress getStubAddr(StubKey K) { assert(RemoteIndirectStubsInfos[K.first].StubBase != 0 && "Missing stub address"); return RemoteIndirectStubsInfos[K.first].StubBase + K.second * Client.getIndirectStubSize(); } JITTargetAddress getPtrAddr(StubKey K) { assert(RemoteIndirectStubsInfos[K.first].PtrBase != 0 && "Missing pointer address"); return RemoteIndirectStubsInfos[K.first].PtrBase + K.second * Client.getPointerSize(); } OrcRemoteTargetClient &Client; ResourceIdMgr::ResourceId Id; std::vector<RemoteIndirectStubsInfo> RemoteIndirectStubsInfos; std::vector<StubKey> FreeStubs; StringMap<std::pair<StubKey, JITSymbolFlags>> StubIndexes; }; class RemoteTrampolinePool : public TrampolinePool { public: RemoteTrampolinePool(OrcRemoteTargetClient &Client) : Client(Client) {} Expected<JITTargetAddress> getTrampoline() override { std::lock_guard<std::mutex> Lock(RTPMutex); if (AvailableTrampolines.empty()) { if (auto Err = grow()) return std::move(Err); } assert(!AvailableTrampolines.empty() && "Failed to grow trampoline pool"); auto TrampolineAddr = AvailableTrampolines.back(); AvailableTrampolines.pop_back(); return TrampolineAddr; } private: Error grow() { JITTargetAddress BlockAddr = 0; uint32_t NumTrampolines = 0; if (auto TrampolineInfoOrErr = Client.emitTrampolineBlock()) std::tie(BlockAddr, NumTrampolines) = *TrampolineInfoOrErr; else return TrampolineInfoOrErr.takeError(); uint32_t TrampolineSize = Client.getTrampolineSize(); for (unsigned I = 0; I < NumTrampolines; ++I) this->AvailableTrampolines.push_back(BlockAddr + (I * TrampolineSize)); return Error::success(); } std::mutex RTPMutex; OrcRemoteTargetClient &Client; std::vector<JITTargetAddress> AvailableTrampolines; }; /// Remote compile callback manager. class RemoteCompileCallbackManager : public JITCompileCallbackManager { public: RemoteCompileCallbackManager(OrcRemoteTargetClient &Client, ExecutionSession &ES, JITTargetAddress ErrorHandlerAddress) : JITCompileCallbackManager( llvm::make_unique<RemoteTrampolinePool>(Client), ES, ErrorHandlerAddress) {} }; /// Create an OrcRemoteTargetClient. /// Channel is the ChannelT instance to communicate on. It is assumed that /// the channel is ready to be read from and written to. static Expected<std::unique_ptr<OrcRemoteTargetClient>> Create(rpc::RawByteChannel &Channel, ExecutionSession &ES) { Error Err = Error::success(); auto Client = std::unique_ptr<OrcRemoteTargetClient>( new OrcRemoteTargetClient(Channel, ES, Err)); if (Err) return std::move(Err); return std::move(Client); } /// Call the int(void) function at the given address in the target and return /// its result. Expected<int> callIntVoid(JITTargetAddress Addr) { LLVM_DEBUG(dbgs() << "Calling int(*)(void) " << format("0x%016" PRIx64, Addr) << "\n"); return callB<exec::CallIntVoid>(Addr); } /// Call the int(int, char*[]) function at the given address in the target and /// return its result. Expected<int> callMain(JITTargetAddress Addr, const std::vector<std::string> &Args) { LLVM_DEBUG(dbgs() << "Calling int(*)(int, char*[]) " << format("0x%016" PRIx64, Addr) << "\n"); return callB<exec::CallMain>(Addr, Args); } /// Call the void() function at the given address in the target and wait for /// it to finish. Error callVoidVoid(JITTargetAddress Addr) { LLVM_DEBUG(dbgs() << "Calling void(*)(void) " << format("0x%016" PRIx64, Addr) << "\n"); return callB<exec::CallVoidVoid>(Addr); } /// Create an RCMemoryManager which will allocate its memory on the remote /// target. Expected<std::unique_ptr<RemoteRTDyldMemoryManager>> createRemoteMemoryManager() { auto Id = AllocatorIds.getNext(); if (auto Err = callB<mem::CreateRemoteAllocator>(Id)) return std::move(Err); return std::unique_ptr<RemoteRTDyldMemoryManager>( new RemoteRTDyldMemoryManager(*this, Id)); } /// Create an RCIndirectStubsManager that will allocate stubs on the remote /// target. Expected<std::unique_ptr<RemoteIndirectStubsManager>> createIndirectStubsManager() { auto Id = IndirectStubOwnerIds.getNext(); if (auto Err = callB<stubs::CreateIndirectStubsOwner>(Id)) return std::move(Err); return llvm::make_unique<RemoteIndirectStubsManager>(*this, Id); } Expected<RemoteCompileCallbackManager &> enableCompileCallbacks(JITTargetAddress ErrorHandlerAddress) { assert(!CallbackManager && "CallbackManager already obtained"); // Emit the resolver block on the JIT server. if (auto Err = callB<stubs::EmitResolverBlock>()) return std::move(Err); // Create the callback manager. CallbackManager.emplace(*this, ES, ErrorHandlerAddress); RemoteCompileCallbackManager &Mgr = *CallbackManager; return Mgr; } /// Search for symbols in the remote process. Note: This should be used by /// symbol resolvers *after* they've searched the local symbol table in the /// JIT stack. Expected<JITTargetAddress> getSymbolAddress(StringRef Name) { return callB<utils::GetSymbolAddress>(Name); } /// Get the triple for the remote target. const std::string &getTargetTriple() const { return RemoteTargetTriple; } Error terminateSession() { return callB<utils::TerminateSession>(); } private: OrcRemoteTargetClient(rpc::RawByteChannel &Channel, ExecutionSession &ES, Error &Err) : rpc::SingleThreadedRPCEndpoint<rpc::RawByteChannel>(Channel, true), ES(ES) { ErrorAsOutParameter EAO(&Err); addHandler<utils::RequestCompile>( [this](JITTargetAddress Addr) -> JITTargetAddress { if (CallbackManager) return CallbackManager->executeCompileCallback(Addr); return 0; }); if (auto RIOrErr = callB<utils::GetRemoteInfo>()) { std::tie(RemoteTargetTriple, RemotePointerSize, RemotePageSize, RemoteTrampolineSize, RemoteIndirectStubSize) = *RIOrErr; Err = Error::success(); } else Err = RIOrErr.takeError(); } void deregisterEHFrames(JITTargetAddress Addr, uint32_t Size) { if (auto Err = callB<eh::RegisterEHFrames>(Addr, Size)) ES.reportError(std::move(Err)); } void destroyRemoteAllocator(ResourceIdMgr::ResourceId Id) { if (auto Err = callB<mem::DestroyRemoteAllocator>(Id)) { // FIXME: This will be triggered by a removeModuleSet call: Propagate // error return up through that. llvm_unreachable("Failed to destroy remote allocator."); AllocatorIds.release(Id); } } void destroyIndirectStubsManager(ResourceIdMgr::ResourceId Id) { IndirectStubOwnerIds.release(Id); if (auto Err = callB<stubs::DestroyIndirectStubsOwner>(Id)) ES.reportError(std::move(Err)); } Expected<std::tuple<JITTargetAddress, JITTargetAddress, uint32_t>> emitIndirectStubs(ResourceIdMgr::ResourceId Id, uint32_t NumStubsRequired) { return callB<stubs::EmitIndirectStubs>(Id, NumStubsRequired); } Expected<std::tuple<JITTargetAddress, uint32_t>> emitTrampolineBlock() { return callB<stubs::EmitTrampolineBlock>(); } uint32_t getIndirectStubSize() const { return RemoteIndirectStubSize; } uint32_t getPageSize() const { return RemotePageSize; } uint32_t getPointerSize() const { return RemotePointerSize; } uint32_t getTrampolineSize() const { return RemoteTrampolineSize; } Expected<std::vector<uint8_t>> readMem(char *Dst, JITTargetAddress Src, uint64_t Size) { return callB<mem::ReadMem>(Src, Size); } Error registerEHFrames(JITTargetAddress &RAddr, uint32_t Size) { // FIXME: Duplicate error and report it via ReportError too? return callB<eh::RegisterEHFrames>(RAddr, Size); } JITTargetAddress reserveMem(ResourceIdMgr::ResourceId Id, uint64_t Size, uint32_t Align) { if (auto AddrOrErr = callB<mem::ReserveMem>(Id, Size, Align)) return *AddrOrErr; else { ES.reportError(AddrOrErr.takeError()); return 0; } } bool setProtections(ResourceIdMgr::ResourceId Id, JITTargetAddress RemoteSegAddr, unsigned ProtFlags) { if (auto Err = callB<mem::SetProtections>(Id, RemoteSegAddr, ProtFlags)) { ES.reportError(std::move(Err)); return true; } else return false; } bool writeMem(JITTargetAddress Addr, const char *Src, uint64_t Size) { if (auto Err = callB<mem::WriteMem>(DirectBufferWriter(Src, Addr, Size))) { ES.reportError(std::move(Err)); return true; } else return false; } Error writePointer(JITTargetAddress Addr, JITTargetAddress PtrVal) { return callB<mem::WritePtr>(Addr, PtrVal); } static Error doNothing() { return Error::success(); } ExecutionSession &ES; std::function<void(Error)> ReportError; std::string RemoteTargetTriple; uint32_t RemotePointerSize = 0; uint32_t RemotePageSize = 0; uint32_t RemoteTrampolineSize = 0; uint32_t RemoteIndirectStubSize = 0; ResourceIdMgr AllocatorIds, IndirectStubOwnerIds; Optional<RemoteCompileCallbackManager> CallbackManager; }; } // end namespace remote } // end namespace orc } // end namespace llvm #undef DEBUG_TYPE #endif // LLVM_EXECUTIONENGINE_ORC_ORCREMOTETARGETCLIENT_H