//===- InstVisitor.h - Instruction visitor templates ------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef LLVM_IR_INSTVISITOR_H #define LLVM_IR_INSTVISITOR_H #include "llvm/IR/CallSite.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Module.h" #include "llvm/Support/ErrorHandling.h" namespace llvm { // We operate on opaque instruction classes, so forward declare all instruction // types now... // #define HANDLE_INST(NUM, OPCODE, CLASS) class CLASS; #include "llvm/IR/Instruction.def" #define DELEGATE(CLASS_TO_VISIT) \ return static_cast<SubClass*>(this)-> \ visit##CLASS_TO_VISIT(static_cast<CLASS_TO_VISIT&>(I)) /// Base class for instruction visitors /// /// Instruction visitors are used when you want to perform different actions /// for different kinds of instructions without having to use lots of casts /// and a big switch statement (in your code, that is). /// /// To define your own visitor, inherit from this class, specifying your /// new type for the 'SubClass' template parameter, and "override" visitXXX /// functions in your class. I say "override" because this class is defined /// in terms of statically resolved overloading, not virtual functions. /// /// For example, here is a visitor that counts the number of malloc /// instructions processed: /// /// /// Declare the class. Note that we derive from InstVisitor instantiated /// /// with _our new subclasses_ type. /// /// /// struct CountAllocaVisitor : public InstVisitor<CountAllocaVisitor> { /// unsigned Count; /// CountAllocaVisitor() : Count(0) {} /// /// void visitAllocaInst(AllocaInst &AI) { ++Count; } /// }; /// /// And this class would be used like this: /// CountAllocaVisitor CAV; /// CAV.visit(function); /// NumAllocas = CAV.Count; /// /// The defined has 'visit' methods for Instruction, and also for BasicBlock, /// Function, and Module, which recursively process all contained instructions. /// /// Note that if you don't implement visitXXX for some instruction type, /// the visitXXX method for instruction superclass will be invoked. So /// if instructions are added in the future, they will be automatically /// supported, if you handle one of their superclasses. /// /// The optional second template argument specifies the type that instruction /// visitation functions should return. If you specify this, you *MUST* provide /// an implementation of visitInstruction though!. /// /// Note that this class is specifically designed as a template to avoid /// virtual function call overhead. Defining and using an InstVisitor is just /// as efficient as having your own switch statement over the instruction /// opcode. template<typename SubClass, typename RetTy=void> class InstVisitor { //===--------------------------------------------------------------------===// // Interface code - This is the public interface of the InstVisitor that you // use to visit instructions... // public: // Generic visit method - Allow visitation to all instructions in a range template<class Iterator> void visit(Iterator Start, Iterator End) { while (Start != End) static_cast<SubClass*>(this)->visit(*Start++); } // Define visitors for functions and basic blocks... // void visit(Module &M) { static_cast<SubClass*>(this)->visitModule(M); visit(M.begin(), M.end()); } void visit(Function &F) { static_cast<SubClass*>(this)->visitFunction(F); visit(F.begin(), F.end()); } void visit(BasicBlock &BB) { static_cast<SubClass*>(this)->visitBasicBlock(BB); visit(BB.begin(), BB.end()); } // Forwarding functions so that the user can visit with pointers AND refs. void visit(Module *M) { visit(*M); } void visit(Function *F) { visit(*F); } void visit(BasicBlock *BB) { visit(*BB); } RetTy visit(Instruction *I) { return visit(*I); } // visit - Finally, code to visit an instruction... // RetTy visit(Instruction &I) { static_assert(std::is_base_of<InstVisitor, SubClass>::value, "Must pass the derived type to this template!"); switch (I.getOpcode()) { default: llvm_unreachable("Unknown instruction type encountered!"); // Build the switch statement using the Instruction.def file... #define HANDLE_INST(NUM, OPCODE, CLASS) \ case Instruction::OPCODE: return \ static_cast<SubClass*>(this)-> \ visit##OPCODE(static_cast<CLASS&>(I)); #include "llvm/IR/Instruction.def" } } //===--------------------------------------------------------------------===// // Visitation functions... these functions provide default fallbacks in case // the user does not specify what to do for a particular instruction type. // The default behavior is to generalize the instruction type to its subtype // and try visiting the subtype. All of this should be inlined perfectly, // because there are no virtual functions to get in the way. // // When visiting a module, function or basic block directly, these methods get // called to indicate when transitioning into a new unit. // void visitModule (Module &M) {} void visitFunction (Function &F) {} void visitBasicBlock(BasicBlock &BB) {} // Define instruction specific visitor functions that can be overridden to // handle SPECIFIC instructions. These functions automatically define // visitMul to proxy to visitBinaryOperator for instance in case the user does // not need this generality. // // These functions can also implement fan-out, when a single opcode and // instruction have multiple more specific Instruction subclasses. The Call // instruction currently supports this. We implement that by redirecting that // instruction to a special delegation helper. #define HANDLE_INST(NUM, OPCODE, CLASS) \ RetTy visit##OPCODE(CLASS &I) { \ if (NUM == Instruction::Call) \ return delegateCallInst(I); \ else \ DELEGATE(CLASS); \ } #include "llvm/IR/Instruction.def" // Specific Instruction type classes... note that all of the casts are // necessary because we use the instruction classes as opaque types... // RetTy visitICmpInst(ICmpInst &I) { DELEGATE(CmpInst);} RetTy visitFCmpInst(FCmpInst &I) { DELEGATE(CmpInst);} RetTy visitAllocaInst(AllocaInst &I) { DELEGATE(UnaryInstruction);} RetTy visitLoadInst(LoadInst &I) { DELEGATE(UnaryInstruction);} RetTy visitStoreInst(StoreInst &I) { DELEGATE(Instruction);} RetTy visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { DELEGATE(Instruction);} RetTy visitAtomicRMWInst(AtomicRMWInst &I) { DELEGATE(Instruction);} RetTy visitFenceInst(FenceInst &I) { DELEGATE(Instruction);} RetTy visitGetElementPtrInst(GetElementPtrInst &I){ DELEGATE(Instruction);} RetTy visitPHINode(PHINode &I) { DELEGATE(Instruction);} RetTy visitTruncInst(TruncInst &I) { DELEGATE(CastInst);} RetTy visitZExtInst(ZExtInst &I) { DELEGATE(CastInst);} RetTy visitSExtInst(SExtInst &I) { DELEGATE(CastInst);} RetTy visitFPTruncInst(FPTruncInst &I) { DELEGATE(CastInst);} RetTy visitFPExtInst(FPExtInst &I) { DELEGATE(CastInst);} RetTy visitFPToUIInst(FPToUIInst &I) { DELEGATE(CastInst);} RetTy visitFPToSIInst(FPToSIInst &I) { DELEGATE(CastInst);} RetTy visitUIToFPInst(UIToFPInst &I) { DELEGATE(CastInst);} RetTy visitSIToFPInst(SIToFPInst &I) { DELEGATE(CastInst);} RetTy visitPtrToIntInst(PtrToIntInst &I) { DELEGATE(CastInst);} RetTy visitIntToPtrInst(IntToPtrInst &I) { DELEGATE(CastInst);} RetTy visitBitCastInst(BitCastInst &I) { DELEGATE(CastInst);} RetTy visitAddrSpaceCastInst(AddrSpaceCastInst &I) { DELEGATE(CastInst);} RetTy visitSelectInst(SelectInst &I) { DELEGATE(Instruction);} RetTy visitVAArgInst(VAArgInst &I) { DELEGATE(UnaryInstruction);} RetTy visitExtractElementInst(ExtractElementInst &I) { DELEGATE(Instruction);} RetTy visitInsertElementInst(InsertElementInst &I) { DELEGATE(Instruction);} RetTy visitShuffleVectorInst(ShuffleVectorInst &I) { DELEGATE(Instruction);} RetTy visitExtractValueInst(ExtractValueInst &I){ DELEGATE(UnaryInstruction);} RetTy visitInsertValueInst(InsertValueInst &I) { DELEGATE(Instruction); } RetTy visitLandingPadInst(LandingPadInst &I) { DELEGATE(Instruction); } RetTy visitFuncletPadInst(FuncletPadInst &I) { DELEGATE(Instruction); } RetTy visitCleanupPadInst(CleanupPadInst &I) { DELEGATE(FuncletPadInst); } RetTy visitCatchPadInst(CatchPadInst &I) { DELEGATE(FuncletPadInst); } // Handle the special instrinsic instruction classes. RetTy visitDbgDeclareInst(DbgDeclareInst &I) { DELEGATE(DbgVariableIntrinsic);} RetTy visitDbgValueInst(DbgValueInst &I) { DELEGATE(DbgVariableIntrinsic);} RetTy visitDbgVariableIntrinsic(DbgVariableIntrinsic &I) { DELEGATE(DbgInfoIntrinsic);} RetTy visitDbgLabelInst(DbgLabelInst &I) { DELEGATE(DbgInfoIntrinsic);} RetTy visitDbgInfoIntrinsic(DbgInfoIntrinsic &I){ DELEGATE(IntrinsicInst); } RetTy visitMemSetInst(MemSetInst &I) { DELEGATE(MemIntrinsic); } RetTy visitMemCpyInst(MemCpyInst &I) { DELEGATE(MemTransferInst); } RetTy visitMemMoveInst(MemMoveInst &I) { DELEGATE(MemTransferInst); } RetTy visitMemTransferInst(MemTransferInst &I) { DELEGATE(MemIntrinsic); } RetTy visitMemIntrinsic(MemIntrinsic &I) { DELEGATE(IntrinsicInst); } RetTy visitVAStartInst(VAStartInst &I) { DELEGATE(IntrinsicInst); } RetTy visitVAEndInst(VAEndInst &I) { DELEGATE(IntrinsicInst); } RetTy visitVACopyInst(VACopyInst &I) { DELEGATE(IntrinsicInst); } RetTy visitIntrinsicInst(IntrinsicInst &I) { DELEGATE(CallInst); } // Call and Invoke are slightly different as they delegate first through // a generic CallSite visitor. RetTy visitCallInst(CallInst &I) { return static_cast<SubClass*>(this)->visitCallSite(&I); } RetTy visitInvokeInst(InvokeInst &I) { return static_cast<SubClass*>(this)->visitCallSite(&I); } // While terminators don't have a distinct type modeling them, we support // intercepting them with dedicated a visitor callback. RetTy visitReturnInst(ReturnInst &I) { return static_cast<SubClass *>(this)->visitTerminator(I); } RetTy visitBranchInst(BranchInst &I) { return static_cast<SubClass *>(this)->visitTerminator(I); } RetTy visitSwitchInst(SwitchInst &I) { return static_cast<SubClass *>(this)->visitTerminator(I); } RetTy visitIndirectBrInst(IndirectBrInst &I) { return static_cast<SubClass *>(this)->visitTerminator(I); } RetTy visitResumeInst(ResumeInst &I) { return static_cast<SubClass *>(this)->visitTerminator(I); } RetTy visitUnreachableInst(UnreachableInst &I) { return static_cast<SubClass *>(this)->visitTerminator(I); } RetTy visitCleanupReturnInst(CleanupReturnInst &I) { return static_cast<SubClass *>(this)->visitTerminator(I); } RetTy visitCatchReturnInst(CatchReturnInst &I) { return static_cast<SubClass *>(this)->visitTerminator(I); } RetTy visitCatchSwitchInst(CatchSwitchInst &I) { return static_cast<SubClass *>(this)->visitTerminator(I); } RetTy visitTerminator(Instruction &I) { DELEGATE(Instruction);} // Next level propagators: If the user does not overload a specific // instruction type, they can overload one of these to get the whole class // of instructions... // RetTy visitCastInst(CastInst &I) { DELEGATE(UnaryInstruction);} RetTy visitUnaryOperator(UnaryOperator &I) { DELEGATE(UnaryInstruction);} RetTy visitBinaryOperator(BinaryOperator &I) { DELEGATE(Instruction);} RetTy visitCmpInst(CmpInst &I) { DELEGATE(Instruction);} RetTy visitUnaryInstruction(UnaryInstruction &I){ DELEGATE(Instruction);} // Provide a special visitor for a 'callsite' that visits both calls and // invokes. When unimplemented, properly delegates to either the terminator or // regular instruction visitor. RetTy visitCallSite(CallSite CS) { assert(CS); Instruction &I = *CS.getInstruction(); if (CS.isCall()) DELEGATE(Instruction); assert(CS.isInvoke()); return static_cast<SubClass *>(this)->visitTerminator(I); } // If the user wants a 'default' case, they can choose to override this // function. If this function is not overloaded in the user's subclass, then // this instruction just gets ignored. // // Note that you MUST override this function if your return type is not void. // void visitInstruction(Instruction &I) {} // Ignore unhandled instructions private: // Special helper function to delegate to CallInst subclass visitors. RetTy delegateCallInst(CallInst &I) { if (const Function *F = I.getCalledFunction()) { switch (F->getIntrinsicID()) { default: DELEGATE(IntrinsicInst); case Intrinsic::dbg_declare: DELEGATE(DbgDeclareInst); case Intrinsic::dbg_value: DELEGATE(DbgValueInst); case Intrinsic::dbg_label: DELEGATE(DbgLabelInst); case Intrinsic::memcpy: DELEGATE(MemCpyInst); case Intrinsic::memmove: DELEGATE(MemMoveInst); case Intrinsic::memset: DELEGATE(MemSetInst); case Intrinsic::vastart: DELEGATE(VAStartInst); case Intrinsic::vaend: DELEGATE(VAEndInst); case Intrinsic::vacopy: DELEGATE(VACopyInst); case Intrinsic::not_intrinsic: break; } } DELEGATE(CallInst); } // An overload that will never actually be called, it is used only from dead // code in the dispatching from opcodes to instruction subclasses. RetTy delegateCallInst(Instruction &I) { llvm_unreachable("delegateCallInst called for non-CallInst"); } }; #undef DELEGATE } // End llvm namespace #endif