//===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file provides a simple and efficient mechanism for performing general // tree-based pattern matches on the LLVM IR. The power of these routines is // that it allows you to write concise patterns that are expressive and easy to // understand. The other major advantage of this is that it allows you to // trivially capture/bind elements in the pattern to variables. For example, // you can do something like this: // // Value *Exp = ... // Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2) // if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)), // m_And(m_Value(Y), m_ConstantInt(C2))))) { // ... Pattern is matched and variables are bound ... // } // // This is primarily useful to things like the instruction combiner, but can // also be useful for static analysis tools or code generators. // //===----------------------------------------------------------------------===// #ifndef LLVM_IR_PATTERNMATCH_H #define LLVM_IR_PATTERNMATCH_H #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Operator.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include <cstdint> namespace llvm { namespace PatternMatch { template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) { return const_cast<Pattern &>(P).match(V); } template <typename SubPattern_t> struct OneUse_match { SubPattern_t SubPattern; OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {} template <typename OpTy> bool match(OpTy *V) { return V->hasOneUse() && SubPattern.match(V); } }; template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) { return SubPattern; } template <typename Class> struct class_match { template <typename ITy> bool match(ITy *V) { return isa<Class>(V); } }; /// Match an arbitrary value and ignore it. inline class_match<Value> m_Value() { return class_match<Value>(); } /// Match an arbitrary binary operation and ignore it. inline class_match<BinaryOperator> m_BinOp() { return class_match<BinaryOperator>(); } /// Matches any compare instruction and ignore it. inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); } /// Match an arbitrary ConstantInt and ignore it. inline class_match<ConstantInt> m_ConstantInt() { return class_match<ConstantInt>(); } /// Match an arbitrary undef constant. inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); } /// Match an arbitrary Constant and ignore it. inline class_match<Constant> m_Constant() { return class_match<Constant>(); } /// Matching combinators template <typename LTy, typename RTy> struct match_combine_or { LTy L; RTy R; match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {} template <typename ITy> bool match(ITy *V) { if (L.match(V)) return true; if (R.match(V)) return true; return false; } }; template <typename LTy, typename RTy> struct match_combine_and { LTy L; RTy R; match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {} template <typename ITy> bool match(ITy *V) { if (L.match(V)) if (R.match(V)) return true; return false; } }; /// Combine two pattern matchers matching L || R template <typename LTy, typename RTy> inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) { return match_combine_or<LTy, RTy>(L, R); } /// Combine two pattern matchers matching L && R template <typename LTy, typename RTy> inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) { return match_combine_and<LTy, RTy>(L, R); } struct apint_match { const APInt *&Res; apint_match(const APInt *&R) : Res(R) {} template <typename ITy> bool match(ITy *V) { if (auto *CI = dyn_cast<ConstantInt>(V)) { Res = &CI->getValue(); return true; } if (V->getType()->isVectorTy()) if (const auto *C = dyn_cast<Constant>(V)) if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) { Res = &CI->getValue(); return true; } return false; } }; // Either constexpr if or renaming ConstantFP::getValueAPF to // ConstantFP::getValue is needed to do it via single template // function for both apint/apfloat. struct apfloat_match { const APFloat *&Res; apfloat_match(const APFloat *&R) : Res(R) {} template <typename ITy> bool match(ITy *V) { if (auto *CI = dyn_cast<ConstantFP>(V)) { Res = &CI->getValueAPF(); return true; } if (V->getType()->isVectorTy()) if (const auto *C = dyn_cast<Constant>(V)) if (auto *CI = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) { Res = &CI->getValueAPF(); return true; } return false; } }; /// Match a ConstantInt or splatted ConstantVector, binding the /// specified pointer to the contained APInt. inline apint_match m_APInt(const APInt *&Res) { return Res; } /// Match a ConstantFP or splatted ConstantVector, binding the /// specified pointer to the contained APFloat. inline apfloat_match m_APFloat(const APFloat *&Res) { return Res; } template <int64_t Val> struct constantint_match { template <typename ITy> bool match(ITy *V) { if (const auto *CI = dyn_cast<ConstantInt>(V)) { const APInt &CIV = CI->getValue(); if (Val >= 0) return CIV == static_cast<uint64_t>(Val); // If Val is negative, and CI is shorter than it, truncate to the right // number of bits. If it is larger, then we have to sign extend. Just // compare their negated values. return -CIV == -Val; } return false; } }; /// Match a ConstantInt with a specific value. template <int64_t Val> inline constantint_match<Val> m_ConstantInt() { return constantint_match<Val>(); } /// This helper class is used to match scalar and vector integer constants that /// satisfy a specified predicate. /// For vector constants, undefined elements are ignored. template <typename Predicate> struct cst_pred_ty : public Predicate { template <typename ITy> bool match(ITy *V) { if (const auto *CI = dyn_cast<ConstantInt>(V)) return this->isValue(CI->getValue()); if (V->getType()->isVectorTy()) { if (const auto *C = dyn_cast<Constant>(V)) { if (const auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) return this->isValue(CI->getValue()); // Non-splat vector constant: check each element for a match. unsigned NumElts = V->getType()->getVectorNumElements(); assert(NumElts != 0 && "Constant vector with no elements?"); bool HasNonUndefElements = false; for (unsigned i = 0; i != NumElts; ++i) { Constant *Elt = C->getAggregateElement(i); if (!Elt) return false; if (isa<UndefValue>(Elt)) continue; auto *CI = dyn_cast<ConstantInt>(Elt); if (!CI || !this->isValue(CI->getValue())) return false; HasNonUndefElements = true; } return HasNonUndefElements; } } return false; } }; /// This helper class is used to match scalar and vector constants that /// satisfy a specified predicate, and bind them to an APInt. template <typename Predicate> struct api_pred_ty : public Predicate { const APInt *&Res; api_pred_ty(const APInt *&R) : Res(R) {} template <typename ITy> bool match(ITy *V) { if (const auto *CI = dyn_cast<ConstantInt>(V)) if (this->isValue(CI->getValue())) { Res = &CI->getValue(); return true; } if (V->getType()->isVectorTy()) if (const auto *C = dyn_cast<Constant>(V)) if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) if (this->isValue(CI->getValue())) { Res = &CI->getValue(); return true; } return false; } }; /// This helper class is used to match scalar and vector floating-point /// constants that satisfy a specified predicate. /// For vector constants, undefined elements are ignored. template <typename Predicate> struct cstfp_pred_ty : public Predicate { template <typename ITy> bool match(ITy *V) { if (const auto *CF = dyn_cast<ConstantFP>(V)) return this->isValue(CF->getValueAPF()); if (V->getType()->isVectorTy()) { if (const auto *C = dyn_cast<Constant>(V)) { if (const auto *CF = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) return this->isValue(CF->getValueAPF()); // Non-splat vector constant: check each element for a match. unsigned NumElts = V->getType()->getVectorNumElements(); assert(NumElts != 0 && "Constant vector with no elements?"); bool HasNonUndefElements = false; for (unsigned i = 0; i != NumElts; ++i) { Constant *Elt = C->getAggregateElement(i); if (!Elt) return false; if (isa<UndefValue>(Elt)) continue; auto *CF = dyn_cast<ConstantFP>(Elt); if (!CF || !this->isValue(CF->getValueAPF())) return false; HasNonUndefElements = true; } return HasNonUndefElements; } } return false; } }; /////////////////////////////////////////////////////////////////////////////// // // Encapsulate constant value queries for use in templated predicate matchers. // This allows checking if constants match using compound predicates and works // with vector constants, possibly with relaxed constraints. For example, ignore // undef values. // /////////////////////////////////////////////////////////////////////////////// struct is_all_ones { bool isValue(const APInt &C) { return C.isAllOnesValue(); } }; /// Match an integer or vector with all bits set. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty<is_all_ones> m_AllOnes() { return cst_pred_ty<is_all_ones>(); } struct is_maxsignedvalue { bool isValue(const APInt &C) { return C.isMaxSignedValue(); } }; /// Match an integer or vector with values having all bits except for the high /// bit set (0x7f...). /// For vectors, this includes constants with undefined elements. inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() { return cst_pred_ty<is_maxsignedvalue>(); } inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) { return V; } struct is_negative { bool isValue(const APInt &C) { return C.isNegative(); } }; /// Match an integer or vector of negative values. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty<is_negative> m_Negative() { return cst_pred_ty<is_negative>(); } inline api_pred_ty<is_negative> m_Negative(const APInt *&V) { return V; } struct is_nonnegative { bool isValue(const APInt &C) { return C.isNonNegative(); } }; /// Match an integer or vector of nonnegative values. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty<is_nonnegative> m_NonNegative() { return cst_pred_ty<is_nonnegative>(); } inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) { return V; } struct is_one { bool isValue(const APInt &C) { return C.isOneValue(); } }; /// Match an integer 1 or a vector with all elements equal to 1. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); } struct is_zero_int { bool isValue(const APInt &C) { return C.isNullValue(); } }; /// Match an integer 0 or a vector with all elements equal to 0. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty<is_zero_int> m_ZeroInt() { return cst_pred_ty<is_zero_int>(); } struct is_zero { template <typename ITy> bool match(ITy *V) { auto *C = dyn_cast<Constant>(V); return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C)); } }; /// Match any null constant or a vector with all elements equal to 0. /// For vectors, this includes constants with undefined elements. inline is_zero m_Zero() { return is_zero(); } struct is_power2 { bool isValue(const APInt &C) { return C.isPowerOf2(); } }; /// Match an integer or vector power-of-2. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); } inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; } struct is_power2_or_zero { bool isValue(const APInt &C) { return !C || C.isPowerOf2(); } }; /// Match an integer or vector of 0 or power-of-2 values. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() { return cst_pred_ty<is_power2_or_zero>(); } inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) { return V; } struct is_sign_mask { bool isValue(const APInt &C) { return C.isSignMask(); } }; /// Match an integer or vector with only the sign bit(s) set. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty<is_sign_mask> m_SignMask() { return cst_pred_ty<is_sign_mask>(); } struct is_lowbit_mask { bool isValue(const APInt &C) { return C.isMask(); } }; /// Match an integer or vector with only the low bit(s) set. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() { return cst_pred_ty<is_lowbit_mask>(); } struct is_nan { bool isValue(const APFloat &C) { return C.isNaN(); } }; /// Match an arbitrary NaN constant. This includes quiet and signalling nans. /// For vectors, this includes constants with undefined elements. inline cstfp_pred_ty<is_nan> m_NaN() { return cstfp_pred_ty<is_nan>(); } struct is_any_zero_fp { bool isValue(const APFloat &C) { return C.isZero(); } }; /// Match a floating-point negative zero or positive zero. /// For vectors, this includes constants with undefined elements. inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() { return cstfp_pred_ty<is_any_zero_fp>(); } struct is_pos_zero_fp { bool isValue(const APFloat &C) { return C.isPosZero(); } }; /// Match a floating-point positive zero. /// For vectors, this includes constants with undefined elements. inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() { return cstfp_pred_ty<is_pos_zero_fp>(); } struct is_neg_zero_fp { bool isValue(const APFloat &C) { return C.isNegZero(); } }; /// Match a floating-point negative zero. /// For vectors, this includes constants with undefined elements. inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() { return cstfp_pred_ty<is_neg_zero_fp>(); } /////////////////////////////////////////////////////////////////////////////// template <typename Class> struct bind_ty { Class *&VR; bind_ty(Class *&V) : VR(V) {} template <typename ITy> bool match(ITy *V) { if (auto *CV = dyn_cast<Class>(V)) { VR = CV; return true; } return false; } }; /// Match a value, capturing it if we match. inline bind_ty<Value> m_Value(Value *&V) { return V; } inline bind_ty<const Value> m_Value(const Value *&V) { return V; } /// Match an instruction, capturing it if we match. inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; } /// Match a binary operator, capturing it if we match. inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; } /// Match a ConstantInt, capturing the value if we match. inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; } /// Match a Constant, capturing the value if we match. inline bind_ty<Constant> m_Constant(Constant *&C) { return C; } /// Match a ConstantFP, capturing the value if we match. inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; } /// Match a specified Value*. struct specificval_ty { const Value *Val; specificval_ty(const Value *V) : Val(V) {} template <typename ITy> bool match(ITy *V) { return V == Val; } }; /// Match if we have a specific specified value. inline specificval_ty m_Specific(const Value *V) { return V; } /// Stores a reference to the Value *, not the Value * itself, /// thus can be used in commutative matchers. template <typename Class> struct deferredval_ty { Class *const &Val; deferredval_ty(Class *const &V) : Val(V) {} template <typename ITy> bool match(ITy *const V) { return V == Val; } }; /// A commutative-friendly version of m_Specific(). inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; } inline deferredval_ty<const Value> m_Deferred(const Value *const &V) { return V; } /// Match a specified floating point value or vector of all elements of /// that value. struct specific_fpval { double Val; specific_fpval(double V) : Val(V) {} template <typename ITy> bool match(ITy *V) { if (const auto *CFP = dyn_cast<ConstantFP>(V)) return CFP->isExactlyValue(Val); if (V->getType()->isVectorTy()) if (const auto *C = dyn_cast<Constant>(V)) if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) return CFP->isExactlyValue(Val); return false; } }; /// Match a specific floating point value or vector with all elements /// equal to the value. inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); } /// Match a float 1.0 or vector with all elements equal to 1.0. inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); } struct bind_const_intval_ty { uint64_t &VR; bind_const_intval_ty(uint64_t &V) : VR(V) {} template <typename ITy> bool match(ITy *V) { if (const auto *CV = dyn_cast<ConstantInt>(V)) if (CV->getValue().ule(UINT64_MAX)) { VR = CV->getZExtValue(); return true; } return false; } }; /// Match a specified integer value or vector of all elements of that // value. struct specific_intval { uint64_t Val; specific_intval(uint64_t V) : Val(V) {} template <typename ITy> bool match(ITy *V) { const auto *CI = dyn_cast<ConstantInt>(V); if (!CI && V->getType()->isVectorTy()) if (const auto *C = dyn_cast<Constant>(V)) CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()); return CI && CI->getValue() == Val; } }; /// Match a specific integer value or vector with all elements equal to /// the value. inline specific_intval m_SpecificInt(uint64_t V) { return specific_intval(V); } /// Match a ConstantInt and bind to its value. This does not match /// ConstantInts wider than 64-bits. inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; } //===----------------------------------------------------------------------===// // Matcher for any binary operator. // template <typename LHS_t, typename RHS_t, bool Commutable = false> struct AnyBinaryOp_match { LHS_t L; RHS_t R; // The evaluation order is always stable, regardless of Commutability. // The LHS is always matched first. AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} template <typename OpTy> bool match(OpTy *V) { if (auto *I = dyn_cast<BinaryOperator>(V)) return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || (Commutable && L.match(I->getOperand(1)) && R.match(I->getOperand(0))); return false; } }; template <typename LHS, typename RHS> inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) { return AnyBinaryOp_match<LHS, RHS>(L, R); } //===----------------------------------------------------------------------===// // Matchers for specific binary operators. // template <typename LHS_t, typename RHS_t, unsigned Opcode, bool Commutable = false> struct BinaryOp_match { LHS_t L; RHS_t R; // The evaluation order is always stable, regardless of Commutability. // The LHS is always matched first. BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} template <typename OpTy> bool match(OpTy *V) { if (V->getValueID() == Value::InstructionVal + Opcode) { auto *I = cast<BinaryOperator>(V); return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || (Commutable && L.match(I->getOperand(1)) && R.match(I->getOperand(0))); } if (auto *CE = dyn_cast<ConstantExpr>(V)) return CE->getOpcode() == Opcode && ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) || (Commutable && L.match(CE->getOperand(1)) && R.match(CE->getOperand(0)))); return false; } }; template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R); } template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R); } template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R); } template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R); } template <typename Op_t> struct FNeg_match { Op_t X; FNeg_match(const Op_t &Op) : X(Op) {} template <typename OpTy> bool match(OpTy *V) { auto *FPMO = dyn_cast<FPMathOperator>(V); if (!FPMO || FPMO->getOpcode() != Instruction::FSub) return false; if (FPMO->hasNoSignedZeros()) { // With 'nsz', any zero goes. if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0))) return false; } else { // Without 'nsz', we need fsub -0.0, X exactly. if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0))) return false; } return X.match(FPMO->getOperand(1)); } }; /// Match 'fneg X' as 'fsub -0.0, X'. template <typename OpTy> inline FNeg_match<OpTy> m_FNeg(const OpTy &X) { return FNeg_match<OpTy>(X); } /// Match 'fneg X' as 'fsub +-0.0, X'. template <typename RHS> inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub> m_FNegNSZ(const RHS &X) { return m_FSub(m_AnyZeroFP(), X); } template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R); } template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R); } template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R); } template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R); } template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R); } template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R); } template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R); } template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R); } template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::And>(L, R); } template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R); } template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R); } template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R); } template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R); } template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R); } template <typename LHS_t, typename RHS_t, unsigned Opcode, unsigned WrapFlags = 0> struct OverflowingBinaryOp_match { LHS_t L; RHS_t R; OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} template <typename OpTy> bool match(OpTy *V) { if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) { if (Op->getOpcode() != Opcode) return false; if (WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap && !Op->hasNoUnsignedWrap()) return false; if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap && !Op->hasNoSignedWrap()) return false; return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1)); } return false; } }; template <typename LHS, typename RHS> inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap> m_NSWAdd(const LHS &L, const RHS &R) { return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap>( L, R); } template <typename LHS, typename RHS> inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap> m_NSWSub(const LHS &L, const RHS &R) { return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap>( L, R); } template <typename LHS, typename RHS> inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoSignedWrap> m_NSWMul(const LHS &L, const RHS &R) { return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoSignedWrap>( L, R); } template <typename LHS, typename RHS> inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoSignedWrap> m_NSWShl(const LHS &L, const RHS &R) { return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoSignedWrap>( L, R); } template <typename LHS, typename RHS> inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap> m_NUWAdd(const LHS &L, const RHS &R) { return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap>( L, R); } template <typename LHS, typename RHS> inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap> m_NUWSub(const LHS &L, const RHS &R) { return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap>( L, R); } template <typename LHS, typename RHS> inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoUnsignedWrap> m_NUWMul(const LHS &L, const RHS &R) { return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoUnsignedWrap>( L, R); } template <typename LHS, typename RHS> inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoUnsignedWrap> m_NUWShl(const LHS &L, const RHS &R) { return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoUnsignedWrap>( L, R); } //===----------------------------------------------------------------------===// // Class that matches a group of binary opcodes. // template <typename LHS_t, typename RHS_t, typename Predicate> struct BinOpPred_match : Predicate { LHS_t L; RHS_t R; BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} template <typename OpTy> bool match(OpTy *V) { if (auto *I = dyn_cast<Instruction>(V)) return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) && R.match(I->getOperand(1)); if (auto *CE = dyn_cast<ConstantExpr>(V)) return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) && R.match(CE->getOperand(1)); return false; } }; struct is_shift_op { bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); } }; struct is_right_shift_op { bool isOpType(unsigned Opcode) { return Opcode == Instruction::LShr || Opcode == Instruction::AShr; } }; struct is_logical_shift_op { bool isOpType(unsigned Opcode) { return Opcode == Instruction::LShr || Opcode == Instruction::Shl; } }; struct is_bitwiselogic_op { bool isOpType(unsigned Opcode) { return Instruction::isBitwiseLogicOp(Opcode); } }; struct is_idiv_op { bool isOpType(unsigned Opcode) { return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv; } }; /// Matches shift operations. template <typename LHS, typename RHS> inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L, const RHS &R) { return BinOpPred_match<LHS, RHS, is_shift_op>(L, R); } /// Matches logical shift operations. template <typename LHS, typename RHS> inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L, const RHS &R) { return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R); } /// Matches logical shift operations. template <typename LHS, typename RHS> inline BinOpPred_match<LHS, RHS, is_logical_shift_op> m_LogicalShift(const LHS &L, const RHS &R) { return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R); } /// Matches bitwise logic operations. template <typename LHS, typename RHS> inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op> m_BitwiseLogic(const LHS &L, const RHS &R) { return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R); } /// Matches integer division operations. template <typename LHS, typename RHS> inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L, const RHS &R) { return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R); } //===----------------------------------------------------------------------===// // Class that matches exact binary ops. // template <typename SubPattern_t> struct Exact_match { SubPattern_t SubPattern; Exact_match(const SubPattern_t &SP) : SubPattern(SP) {} template <typename OpTy> bool match(OpTy *V) { if (auto *PEO = dyn_cast<PossiblyExactOperator>(V)) return PEO->isExact() && SubPattern.match(V); return false; } }; template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) { return SubPattern; } //===----------------------------------------------------------------------===// // Matchers for CmpInst classes // template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy, bool Commutable = false> struct CmpClass_match { PredicateTy &Predicate; LHS_t L; RHS_t R; // The evaluation order is always stable, regardless of Commutability. // The LHS is always matched first. CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS) : Predicate(Pred), L(LHS), R(RHS) {} template <typename OpTy> bool match(OpTy *V) { if (auto *I = dyn_cast<Class>(V)) if ((L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || (Commutable && L.match(I->getOperand(1)) && R.match(I->getOperand(0)))) { Predicate = I->getPredicate(); return true; } return false; } }; template <typename LHS, typename RHS> inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate> m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) { return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R); } template <typename LHS, typename RHS> inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate> m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R); } template <typename LHS, typename RHS> inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate> m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) { return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R); } //===----------------------------------------------------------------------===// // Matchers for instructions with a given opcode and number of operands. // /// Matches instructions with Opcode and three operands. template <typename T0, unsigned Opcode> struct OneOps_match { T0 Op1; OneOps_match(const T0 &Op1) : Op1(Op1) {} template <typename OpTy> bool match(OpTy *V) { if (V->getValueID() == Value::InstructionVal + Opcode) { auto *I = cast<Instruction>(V); return Op1.match(I->getOperand(0)); } return false; } }; /// Matches instructions with Opcode and three operands. template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match { T0 Op1; T1 Op2; TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {} template <typename OpTy> bool match(OpTy *V) { if (V->getValueID() == Value::InstructionVal + Opcode) { auto *I = cast<Instruction>(V); return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)); } return false; } }; /// Matches instructions with Opcode and three operands. template <typename T0, typename T1, typename T2, unsigned Opcode> struct ThreeOps_match { T0 Op1; T1 Op2; T2 Op3; ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3) : Op1(Op1), Op2(Op2), Op3(Op3) {} template <typename OpTy> bool match(OpTy *V) { if (V->getValueID() == Value::InstructionVal + Opcode) { auto *I = cast<Instruction>(V); return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) && Op3.match(I->getOperand(2)); } return false; } }; /// Matches SelectInst. template <typename Cond, typename LHS, typename RHS> inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select> m_Select(const Cond &C, const LHS &L, const RHS &R) { return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R); } /// This matches a select of two constants, e.g.: /// m_SelectCst<-1, 0>(m_Value(V)) template <int64_t L, int64_t R, typename Cond> inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>, Instruction::Select> m_SelectCst(const Cond &C) { return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>()); } /// Matches InsertElementInst. template <typename Val_t, typename Elt_t, typename Idx_t> inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement> m_InsertElement(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) { return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>( Val, Elt, Idx); } /// Matches ExtractElementInst. template <typename Val_t, typename Idx_t> inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement> m_ExtractElement(const Val_t &Val, const Idx_t &Idx) { return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx); } /// Matches ShuffleVectorInst. template <typename V1_t, typename V2_t, typename Mask_t> inline ThreeOps_match<V1_t, V2_t, Mask_t, Instruction::ShuffleVector> m_ShuffleVector(const V1_t &v1, const V2_t &v2, const Mask_t &m) { return ThreeOps_match<V1_t, V2_t, Mask_t, Instruction::ShuffleVector>(v1, v2, m); } /// Matches LoadInst. template <typename OpTy> inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) { return OneOps_match<OpTy, Instruction::Load>(Op); } /// Matches StoreInst. template <typename ValueOpTy, typename PointerOpTy> inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store> m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) { return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp, PointerOp); } //===----------------------------------------------------------------------===// // Matchers for CastInst classes // template <typename Op_t, unsigned Opcode> struct CastClass_match { Op_t Op; CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {} template <typename OpTy> bool match(OpTy *V) { if (auto *O = dyn_cast<Operator>(V)) return O->getOpcode() == Opcode && Op.match(O->getOperand(0)); return false; } }; /// Matches BitCast. template <typename OpTy> inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) { return CastClass_match<OpTy, Instruction::BitCast>(Op); } /// Matches PtrToInt. template <typename OpTy> inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) { return CastClass_match<OpTy, Instruction::PtrToInt>(Op); } /// Matches Trunc. template <typename OpTy> inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) { return CastClass_match<OpTy, Instruction::Trunc>(Op); } /// Matches SExt. template <typename OpTy> inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) { return CastClass_match<OpTy, Instruction::SExt>(Op); } /// Matches ZExt. template <typename OpTy> inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) { return CastClass_match<OpTy, Instruction::ZExt>(Op); } template <typename OpTy> inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, CastClass_match<OpTy, Instruction::SExt>> m_ZExtOrSExt(const OpTy &Op) { return m_CombineOr(m_ZExt(Op), m_SExt(Op)); } /// Matches UIToFP. template <typename OpTy> inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) { return CastClass_match<OpTy, Instruction::UIToFP>(Op); } /// Matches SIToFP. template <typename OpTy> inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) { return CastClass_match<OpTy, Instruction::SIToFP>(Op); } /// Matches FPTrunc template <typename OpTy> inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) { return CastClass_match<OpTy, Instruction::FPTrunc>(Op); } /// Matches FPExt template <typename OpTy> inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) { return CastClass_match<OpTy, Instruction::FPExt>(Op); } //===----------------------------------------------------------------------===// // Matchers for control flow. // struct br_match { BasicBlock *&Succ; br_match(BasicBlock *&Succ) : Succ(Succ) {} template <typename OpTy> bool match(OpTy *V) { if (auto *BI = dyn_cast<BranchInst>(V)) if (BI->isUnconditional()) { Succ = BI->getSuccessor(0); return true; } return false; } }; inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); } template <typename Cond_t> struct brc_match { Cond_t Cond; BasicBlock *&T, *&F; brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f) : Cond(C), T(t), F(f) {} template <typename OpTy> bool match(OpTy *V) { if (auto *BI = dyn_cast<BranchInst>(V)) if (BI->isConditional() && Cond.match(BI->getCondition())) { T = BI->getSuccessor(0); F = BI->getSuccessor(1); return true; } return false; } }; template <typename Cond_t> inline brc_match<Cond_t> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) { return brc_match<Cond_t>(C, T, F); } //===----------------------------------------------------------------------===// // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y). // template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t, bool Commutable = false> struct MaxMin_match { LHS_t L; RHS_t R; // The evaluation order is always stable, regardless of Commutability. // The LHS is always matched first. MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} template <typename OpTy> bool match(OpTy *V) { // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x". auto *SI = dyn_cast<SelectInst>(V); if (!SI) return false; auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition()); if (!Cmp) return false; // At this point we have a select conditioned on a comparison. Check that // it is the values returned by the select that are being compared. Value *TrueVal = SI->getTrueValue(); Value *FalseVal = SI->getFalseValue(); Value *LHS = Cmp->getOperand(0); Value *RHS = Cmp->getOperand(1); if ((TrueVal != LHS || FalseVal != RHS) && (TrueVal != RHS || FalseVal != LHS)) return false; typename CmpInst_t::Predicate Pred = LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate(); // Does "(x pred y) ? x : y" represent the desired max/min operation? if (!Pred_t::match(Pred)) return false; // It does! Bind the operands. return (L.match(LHS) && R.match(RHS)) || (Commutable && L.match(RHS) && R.match(LHS)); } }; /// Helper class for identifying signed max predicates. struct smax_pred_ty { static bool match(ICmpInst::Predicate Pred) { return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE; } }; /// Helper class for identifying signed min predicates. struct smin_pred_ty { static bool match(ICmpInst::Predicate Pred) { return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE; } }; /// Helper class for identifying unsigned max predicates. struct umax_pred_ty { static bool match(ICmpInst::Predicate Pred) { return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE; } }; /// Helper class for identifying unsigned min predicates. struct umin_pred_ty { static bool match(ICmpInst::Predicate Pred) { return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE; } }; /// Helper class for identifying ordered max predicates. struct ofmax_pred_ty { static bool match(FCmpInst::Predicate Pred) { return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE; } }; /// Helper class for identifying ordered min predicates. struct ofmin_pred_ty { static bool match(FCmpInst::Predicate Pred) { return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE; } }; /// Helper class for identifying unordered max predicates. struct ufmax_pred_ty { static bool match(FCmpInst::Predicate Pred) { return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE; } }; /// Helper class for identifying unordered min predicates. struct ufmin_pred_ty { static bool match(FCmpInst::Predicate Pred) { return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE; } }; template <typename LHS, typename RHS> inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L, const RHS &R) { return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R); } template <typename LHS, typename RHS> inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L, const RHS &R) { return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R); } template <typename LHS, typename RHS> inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L, const RHS &R) { return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R); } template <typename LHS, typename RHS> inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L, const RHS &R) { return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R); } /// Match an 'ordered' floating point maximum function. /// Floating point has one special value 'NaN'. Therefore, there is no total /// order. However, if we can ignore the 'NaN' value (for example, because of a /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum' /// semantics. In the presence of 'NaN' we have to preserve the original /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate. /// /// max(L, R) iff L and R are not NaN /// m_OrdFMax(L, R) = R iff L or R are NaN template <typename LHS, typename RHS> inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L, const RHS &R) { return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R); } /// Match an 'ordered' floating point minimum function. /// Floating point has one special value 'NaN'. Therefore, there is no total /// order. However, if we can ignore the 'NaN' value (for example, because of a /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum' /// semantics. In the presence of 'NaN' we have to preserve the original /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate. /// /// min(L, R) iff L and R are not NaN /// m_OrdFMin(L, R) = R iff L or R are NaN template <typename LHS, typename RHS> inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L, const RHS &R) { return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R); } /// Match an 'unordered' floating point maximum function. /// Floating point has one special value 'NaN'. Therefore, there is no total /// order. However, if we can ignore the 'NaN' value (for example, because of a /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum' /// semantics. In the presence of 'NaN' we have to preserve the original /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate. /// /// max(L, R) iff L and R are not NaN /// m_UnordFMax(L, R) = L iff L or R are NaN template <typename LHS, typename RHS> inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty> m_UnordFMax(const LHS &L, const RHS &R) { return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R); } /// Match an 'unordered' floating point minimum function. /// Floating point has one special value 'NaN'. Therefore, there is no total /// order. However, if we can ignore the 'NaN' value (for example, because of a /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum' /// semantics. In the presence of 'NaN' we have to preserve the original /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate. /// /// min(L, R) iff L and R are not NaN /// m_UnordFMin(L, R) = L iff L or R are NaN template <typename LHS, typename RHS> inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty> m_UnordFMin(const LHS &L, const RHS &R) { return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R); } //===----------------------------------------------------------------------===// // Matchers for overflow check patterns: e.g. (a + b) u< a // template <typename LHS_t, typename RHS_t, typename Sum_t> struct UAddWithOverflow_match { LHS_t L; RHS_t R; Sum_t S; UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S) : L(L), R(R), S(S) {} template <typename OpTy> bool match(OpTy *V) { Value *ICmpLHS, *ICmpRHS; ICmpInst::Predicate Pred; if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V)) return false; Value *AddLHS, *AddRHS; auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS)); // (a + b) u< a, (a + b) u< b if (Pred == ICmpInst::ICMP_ULT) if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS)) return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS); // a >u (a + b), b >u (a + b) if (Pred == ICmpInst::ICMP_UGT) if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS)) return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS); return false; } }; /// Match an icmp instruction checking for unsigned overflow on addition. /// /// S is matched to the addition whose result is being checked for overflow, and /// L and R are matched to the LHS and RHS of S. template <typename LHS_t, typename RHS_t, typename Sum_t> UAddWithOverflow_match<LHS_t, RHS_t, Sum_t> m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) { return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S); } template <typename Opnd_t> struct Argument_match { unsigned OpI; Opnd_t Val; Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {} template <typename OpTy> bool match(OpTy *V) { CallSite CS(V); return CS.isCall() && Val.match(CS.getArgument(OpI)); } }; /// Match an argument. template <unsigned OpI, typename Opnd_t> inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) { return Argument_match<Opnd_t>(OpI, Op); } /// Intrinsic matchers. struct IntrinsicID_match { unsigned ID; IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {} template <typename OpTy> bool match(OpTy *V) { if (const auto *CI = dyn_cast<CallInst>(V)) if (const auto *F = CI->getCalledFunction()) return F->getIntrinsicID() == ID; return false; } }; /// Intrinsic matches are combinations of ID matchers, and argument /// matchers. Higher arity matcher are defined recursively in terms of and-ing /// them with lower arity matchers. Here's some convenient typedefs for up to /// several arguments, and more can be added as needed template <typename T0 = void, typename T1 = void, typename T2 = void, typename T3 = void, typename T4 = void, typename T5 = void, typename T6 = void, typename T7 = void, typename T8 = void, typename T9 = void, typename T10 = void> struct m_Intrinsic_Ty; template <typename T0> struct m_Intrinsic_Ty<T0> { using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>; }; template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> { using Ty = match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>; }; template <typename T0, typename T1, typename T2> struct m_Intrinsic_Ty<T0, T1, T2> { using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty, Argument_match<T2>>; }; template <typename T0, typename T1, typename T2, typename T3> struct m_Intrinsic_Ty<T0, T1, T2, T3> { using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty, Argument_match<T3>>; }; /// Match intrinsic calls like this: /// m_Intrinsic<Intrinsic::fabs>(m_Value(X)) template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() { return IntrinsicID_match(IntrID); } template <Intrinsic::ID IntrID, typename T0> inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) { return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0)); } template <Intrinsic::ID IntrID, typename T0, typename T1> inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0, const T1 &Op1) { return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1)); } template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2> inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) { return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2)); } template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2, typename T3> inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) { return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3)); } // Helper intrinsic matching specializations. template <typename Opnd0> inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) { return m_Intrinsic<Intrinsic::bitreverse>(Op0); } template <typename Opnd0> inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) { return m_Intrinsic<Intrinsic::bswap>(Op0); } template <typename Opnd0> inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) { return m_Intrinsic<Intrinsic::fabs>(Op0); } template <typename Opnd0> inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) { return m_Intrinsic<Intrinsic::canonicalize>(Op0); } template <typename Opnd0, typename Opnd1> inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0, const Opnd1 &Op1) { return m_Intrinsic<Intrinsic::minnum>(Op0, Op1); } template <typename Opnd0, typename Opnd1> inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0, const Opnd1 &Op1) { return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1); } //===----------------------------------------------------------------------===// // Matchers for two-operands operators with the operators in either order // /// Matches a BinaryOperator with LHS and RHS in either order. template <typename LHS, typename RHS> inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) { return AnyBinaryOp_match<LHS, RHS, true>(L, R); } /// Matches an ICmp with a predicate over LHS and RHS in either order. /// Does not swap the predicate. template <typename LHS, typename RHS> inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true> m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L, R); } /// Matches a Add with LHS and RHS in either order. template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R); } /// Matches a Mul with LHS and RHS in either order. template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R); } /// Matches an And with LHS and RHS in either order. template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R); } /// Matches an Or with LHS and RHS in either order. template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R); } /// Matches an Xor with LHS and RHS in either order. template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R); } /// Matches a 'Neg' as 'sub 0, V'. template <typename ValTy> inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub> m_Neg(const ValTy &V) { return m_Sub(m_ZeroInt(), V); } /// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'. template <typename ValTy> inline BinaryOp_match<ValTy, cst_pred_ty<is_all_ones>, Instruction::Xor, true> m_Not(const ValTy &V) { return m_c_Xor(V, m_AllOnes()); } /// Matches an SMin with LHS and RHS in either order. template <typename LHS, typename RHS> inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true> m_c_SMin(const LHS &L, const RHS &R) { return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R); } /// Matches an SMax with LHS and RHS in either order. template <typename LHS, typename RHS> inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true> m_c_SMax(const LHS &L, const RHS &R) { return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R); } /// Matches a UMin with LHS and RHS in either order. template <typename LHS, typename RHS> inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true> m_c_UMin(const LHS &L, const RHS &R) { return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R); } /// Matches a UMax with LHS and RHS in either order. template <typename LHS, typename RHS> inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true> m_c_UMax(const LHS &L, const RHS &R) { return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R); } /// Matches FAdd with LHS and RHS in either order. template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true> m_c_FAdd(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R); } /// Matches FMul with LHS and RHS in either order. template <typename LHS, typename RHS> inline BinaryOp_match<LHS, RHS, Instruction::FMul, true> m_c_FMul(const LHS &L, const RHS &R) { return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R); } template <typename Opnd_t> struct Signum_match { Opnd_t Val; Signum_match(const Opnd_t &V) : Val(V) {} template <typename OpTy> bool match(OpTy *V) { unsigned TypeSize = V->getType()->getScalarSizeInBits(); if (TypeSize == 0) return false; unsigned ShiftWidth = TypeSize - 1; Value *OpL = nullptr, *OpR = nullptr; // This is the representation of signum we match: // // signum(x) == (x >> 63) | (-x >>u 63) // // An i1 value is its own signum, so it's correct to match // // signum(x) == (x >> 0) | (-x >>u 0) // // for i1 values. auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth)); auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth)); auto Signum = m_Or(LHS, RHS); return Signum.match(V) && OpL == OpR && Val.match(OpL); } }; /// Matches a signum pattern. /// /// signum(x) = /// x > 0 -> 1 /// x == 0 -> 0 /// x < 0 -> -1 template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) { return Signum_match<Val_t>(V); } } // end namespace PatternMatch } // end namespace llvm #endif // LLVM_IR_PATTERNMATCH_H