//===--------------------- Instruction.h ------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// /// This file defines abstractions used by the Pipeline to model register reads, /// register writes and instructions. /// //===----------------------------------------------------------------------===// #ifndef LLVM_MCA_INSTRUCTION_H #define LLVM_MCA_INSTRUCTION_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/MathExtras.h" #ifndef NDEBUG #include "llvm/Support/raw_ostream.h" #endif #include <memory> namespace llvm { namespace mca { constexpr int UNKNOWN_CYCLES = -512; /// A register write descriptor. struct WriteDescriptor { // Operand index. The index is negative for implicit writes only. // For implicit writes, the actual operand index is computed performing // a bitwise not of the OpIndex. int OpIndex; // Write latency. Number of cycles before write-back stage. unsigned Latency; // This field is set to a value different than zero only if this // is an implicit definition. unsigned RegisterID; // Instruction itineraries would set this field to the SchedClass ID. // Otherwise, it defaults to the WriteResourceID from the MCWriteLatencyEntry // element associated to this write. // When computing read latencies, this value is matched against the // "ReadAdvance" information. The hardware backend may implement // dedicated forwarding paths to quickly propagate write results to dependent // instructions waiting in the reservation station (effectively bypassing the // write-back stage). unsigned SClassOrWriteResourceID; // True only if this is a write obtained from an optional definition. // Optional definitions are allowed to reference regID zero (i.e. "no // register"). bool IsOptionalDef; bool isImplicitWrite() const { return OpIndex < 0; }; }; /// A register read descriptor. struct ReadDescriptor { // A MCOperand index. This is used by the Dispatch logic to identify register // reads. Implicit reads have negative indices. The actual operand index of an // implicit read is the bitwise not of field OpIndex. int OpIndex; // The actual "UseIdx". This is used to query the ReadAdvance table. Explicit // uses always come first in the sequence of uses. unsigned UseIndex; // This field is only set if this is an implicit read. unsigned RegisterID; // Scheduling Class Index. It is used to query the scheduling model for the // MCSchedClassDesc object. unsigned SchedClassID; bool isImplicitRead() const { return OpIndex < 0; }; }; class ReadState; /// Tracks uses of a register definition (e.g. register write). /// /// Each implicit/explicit register write is associated with an instance of /// this class. A WriteState object tracks the dependent users of a /// register write. It also tracks how many cycles are left before the write /// back stage. class WriteState { const WriteDescriptor *WD; // On instruction issue, this field is set equal to the write latency. // Before instruction issue, this field defaults to -512, a special // value that represents an "unknown" number of cycles. int CyclesLeft; // Actual register defined by this write. This field is only used // to speedup queries on the register file. // For implicit writes, this field always matches the value of // field RegisterID from WD. unsigned RegisterID; // Physical register file that serves register RegisterID. unsigned PRFID; // True if this write implicitly clears the upper portion of RegisterID's // super-registers. bool ClearsSuperRegs; // True if this write is from a dependency breaking zero-idiom instruction. bool WritesZero; // True if this write has been eliminated at register renaming stage. // Example: a register move doesn't consume scheduler/pipleline resources if // it is eliminated at register renaming stage. It still consumes // decode bandwidth, and ROB entries. bool IsEliminated; // This field is set if this is a partial register write, and it has a false // dependency on any previous write of the same register (or a portion of it). // DependentWrite must be able to complete before this write completes, so // that we don't break the WAW, and the two writes can be merged together. const WriteState *DependentWrite; // A partial write that is in a false dependency with this write. WriteState *PartialWrite; unsigned DependentWriteCyclesLeft; // A list of dependent reads. Users is a set of dependent // reads. A dependent read is added to the set only if CyclesLeft // is "unknown". As soon as CyclesLeft is 'known', each user in the set // gets notified with the actual CyclesLeft. // The 'second' element of a pair is a "ReadAdvance" number of cycles. SmallVector<std::pair<ReadState *, int>, 4> Users; public: WriteState(const WriteDescriptor &Desc, unsigned RegID, bool clearsSuperRegs = false, bool writesZero = false) : WD(&Desc), CyclesLeft(UNKNOWN_CYCLES), RegisterID(RegID), PRFID(0), ClearsSuperRegs(clearsSuperRegs), WritesZero(writesZero), IsEliminated(false), DependentWrite(nullptr), PartialWrite(nullptr), DependentWriteCyclesLeft(0) {} WriteState(const WriteState &Other) = default; WriteState &operator=(const WriteState &Other) = default; int getCyclesLeft() const { return CyclesLeft; } unsigned getWriteResourceID() const { return WD->SClassOrWriteResourceID; } unsigned getRegisterID() const { return RegisterID; } unsigned getRegisterFileID() const { return PRFID; } unsigned getLatency() const { return WD->Latency; } void addUser(ReadState *Use, int ReadAdvance); void addUser(WriteState *Use); unsigned getDependentWriteCyclesLeft() const { return DependentWriteCyclesLeft; } unsigned getNumUsers() const { unsigned NumUsers = Users.size(); if (PartialWrite) ++NumUsers; return NumUsers; } bool clearsSuperRegisters() const { return ClearsSuperRegs; } bool isWriteZero() const { return WritesZero; } bool isEliminated() const { return IsEliminated; } bool isExecuted() const { return CyclesLeft != UNKNOWN_CYCLES && CyclesLeft <= 0; } const WriteState *getDependentWrite() const { return DependentWrite; } void setDependentWrite(WriteState *Other) { DependentWrite = Other; } void writeStartEvent(unsigned Cycles) { DependentWriteCyclesLeft = Cycles; DependentWrite = nullptr; } void setWriteZero() { WritesZero = true; } void setEliminated() { assert(Users.empty() && "Write is in an inconsistent state."); CyclesLeft = 0; IsEliminated = true; } void setPRF(unsigned PRF) { PRFID = PRF; } // On every cycle, update CyclesLeft and notify dependent users. void cycleEvent(); void onInstructionIssued(); #ifndef NDEBUG void dump() const; #endif }; /// Tracks register operand latency in cycles. /// /// A read may be dependent on more than one write. This occurs when some /// writes only partially update the register associated to this read. class ReadState { const ReadDescriptor *RD; // Physical register identified associated to this read. unsigned RegisterID; // Physical register file that serves register RegisterID. unsigned PRFID; // Number of writes that contribute to the definition of RegisterID. // In the absence of partial register updates, the number of DependentWrites // cannot be more than one. unsigned DependentWrites; // Number of cycles left before RegisterID can be read. This value depends on // the latency of all the dependent writes. It defaults to UNKNOWN_CYCLES. // It gets set to the value of field TotalCycles only when the 'CyclesLeft' of // every dependent write is known. int CyclesLeft; // This field is updated on every writeStartEvent(). When the number of // dependent writes (i.e. field DependentWrite) is zero, this value is // propagated to field CyclesLeft. unsigned TotalCycles; // This field is set to true only if there are no dependent writes, and // there are no `CyclesLeft' to wait. bool IsReady; // True if this is a read from a known zero register. bool IsZero; // True if this register read is from a dependency-breaking instruction. bool IndependentFromDef; public: ReadState(const ReadDescriptor &Desc, unsigned RegID) : RD(&Desc), RegisterID(RegID), PRFID(0), DependentWrites(0), CyclesLeft(UNKNOWN_CYCLES), TotalCycles(0), IsReady(true), IsZero(false), IndependentFromDef(false) {} const ReadDescriptor &getDescriptor() const { return *RD; } unsigned getSchedClass() const { return RD->SchedClassID; } unsigned getRegisterID() const { return RegisterID; } unsigned getRegisterFileID() const { return PRFID; } bool isReady() const { return IsReady; } bool isImplicitRead() const { return RD->isImplicitRead(); } bool isIndependentFromDef() const { return IndependentFromDef; } void setIndependentFromDef() { IndependentFromDef = true; } void cycleEvent(); void writeStartEvent(unsigned Cycles); void setDependentWrites(unsigned Writes) { DependentWrites = Writes; IsReady = !Writes; } bool isReadZero() const { return IsZero; } void setReadZero() { IsZero = true; } void setPRF(unsigned ID) { PRFID = ID; } }; /// A sequence of cycles. /// /// This class can be used as a building block to construct ranges of cycles. class CycleSegment { unsigned Begin; // Inclusive. unsigned End; // Exclusive. bool Reserved; // Resources associated to this segment must be reserved. public: CycleSegment(unsigned StartCycle, unsigned EndCycle, bool IsReserved = false) : Begin(StartCycle), End(EndCycle), Reserved(IsReserved) {} bool contains(unsigned Cycle) const { return Cycle >= Begin && Cycle < End; } bool startsAfter(const CycleSegment &CS) const { return End <= CS.Begin; } bool endsBefore(const CycleSegment &CS) const { return Begin >= CS.End; } bool overlaps(const CycleSegment &CS) const { return !startsAfter(CS) && !endsBefore(CS); } bool isExecuting() const { return Begin == 0 && End != 0; } bool isExecuted() const { return End == 0; } bool operator<(const CycleSegment &Other) const { return Begin < Other.Begin; } CycleSegment &operator--(void) { if (Begin) Begin--; if (End) End--; return *this; } bool isValid() const { return Begin <= End; } unsigned size() const { return End - Begin; }; void subtract(unsigned Cycles) { assert(End >= Cycles); End -= Cycles; } unsigned begin() const { return Begin; } unsigned end() const { return End; } void setEnd(unsigned NewEnd) { End = NewEnd; } bool isReserved() const { return Reserved; } void setReserved() { Reserved = true; } }; /// Helper used by class InstrDesc to describe how hardware resources /// are used. /// /// This class describes how many resource units of a specific resource kind /// (and how many cycles) are "used" by an instruction. struct ResourceUsage { CycleSegment CS; unsigned NumUnits; ResourceUsage(CycleSegment Cycles, unsigned Units = 1) : CS(Cycles), NumUnits(Units) {} unsigned size() const { return CS.size(); } bool isReserved() const { return CS.isReserved(); } void setReserved() { CS.setReserved(); } }; /// An instruction descriptor struct InstrDesc { SmallVector<WriteDescriptor, 4> Writes; // Implicit writes are at the end. SmallVector<ReadDescriptor, 4> Reads; // Implicit reads are at the end. // For every resource used by an instruction of this kind, this vector // reports the number of "consumed cycles". SmallVector<std::pair<uint64_t, ResourceUsage>, 4> Resources; // A list of buffered resources consumed by this instruction. SmallVector<uint64_t, 4> Buffers; unsigned MaxLatency; // Number of MicroOps for this instruction. unsigned NumMicroOps; bool MayLoad; bool MayStore; bool HasSideEffects; bool BeginGroup; bool EndGroup; // A zero latency instruction doesn't consume any scheduler resources. bool isZeroLatency() const { return !MaxLatency && Resources.empty(); } InstrDesc() = default; InstrDesc(const InstrDesc &Other) = delete; InstrDesc &operator=(const InstrDesc &Other) = delete; }; /// Base class for instructions consumed by the simulation pipeline. /// /// This class tracks data dependencies as well as generic properties /// of the instruction. class InstructionBase { const InstrDesc &Desc; // This field is set for instructions that are candidates for move // elimination. For more information about move elimination, see the // definition of RegisterMappingTracker in RegisterFile.h bool IsOptimizableMove; // Output dependencies. // One entry per each implicit and explicit register definition. SmallVector<WriteState, 4> Defs; // Input dependencies. // One entry per each implicit and explicit register use. SmallVector<ReadState, 4> Uses; public: InstructionBase(const InstrDesc &D) : Desc(D), IsOptimizableMove(false) {} SmallVectorImpl<WriteState> &getDefs() { return Defs; } const ArrayRef<WriteState> getDefs() const { return Defs; } SmallVectorImpl<ReadState> &getUses() { return Uses; } const ArrayRef<ReadState> getUses() const { return Uses; } const InstrDesc &getDesc() const { return Desc; } unsigned getLatency() const { return Desc.MaxLatency; } bool hasDependentUsers() const { return any_of(Defs, [](const WriteState &Def) { return Def.getNumUsers() > 0; }); } unsigned getNumUsers() const { unsigned NumUsers = 0; for (const WriteState &Def : Defs) NumUsers += Def.getNumUsers(); return NumUsers; } // Returns true if this instruction is a candidate for move elimination. bool isOptimizableMove() const { return IsOptimizableMove; } void setOptimizableMove() { IsOptimizableMove = true; } }; /// An instruction propagated through the simulated instruction pipeline. /// /// This class is used to monitor changes to the internal state of instructions /// that are sent to the various components of the simulated hardware pipeline. class Instruction : public InstructionBase { enum InstrStage { IS_INVALID, // Instruction in an invalid state. IS_AVAILABLE, // Instruction dispatched but operands are not ready. IS_READY, // Instruction dispatched and operands ready. IS_EXECUTING, // Instruction issued. IS_EXECUTED, // Instruction executed. Values are written back. IS_RETIRED // Instruction retired. }; // The current instruction stage. enum InstrStage Stage; // This value defaults to the instruction latency. This instruction is // considered executed when field CyclesLeft goes to zero. int CyclesLeft; // Retire Unit token ID for this instruction. unsigned RCUTokenID; public: Instruction(const InstrDesc &D) : InstructionBase(D), Stage(IS_INVALID), CyclesLeft(UNKNOWN_CYCLES), RCUTokenID(0) {} unsigned getRCUTokenID() const { return RCUTokenID; } int getCyclesLeft() const { return CyclesLeft; } // Transition to the dispatch stage, and assign a RCUToken to this // instruction. The RCUToken is used to track the completion of every // register write performed by this instruction. void dispatch(unsigned RCUTokenID); // Instruction issued. Transition to the IS_EXECUTING state, and update // all the definitions. void execute(); // Force a transition from the IS_AVAILABLE state to the IS_READY state if // input operands are all ready. State transitions normally occur at the // beginning of a new cycle (see method cycleEvent()). However, the scheduler // may decide to promote instructions from the wait queue to the ready queue // as the result of another issue event. This method is called every time the // instruction might have changed in state. void update(); bool isDispatched() const { return Stage == IS_AVAILABLE; } bool isReady() const { return Stage == IS_READY; } bool isExecuting() const { return Stage == IS_EXECUTING; } bool isExecuted() const { return Stage == IS_EXECUTED; } bool isRetired() const { return Stage == IS_RETIRED; } bool isEliminated() const { return isReady() && getDefs().size() && all_of(getDefs(), [](const WriteState &W) { return W.isEliminated(); }); } // Forces a transition from state IS_AVAILABLE to state IS_EXECUTED. void forceExecuted(); void retire() { assert(isExecuted() && "Instruction is in an invalid state!"); Stage = IS_RETIRED; } void cycleEvent(); }; /// An InstRef contains both a SourceMgr index and Instruction pair. The index /// is used as a unique identifier for the instruction. MCA will make use of /// this index as a key throughout MCA. class InstRef { std::pair<unsigned, Instruction *> Data; public: InstRef() : Data(std::make_pair(0, nullptr)) {} InstRef(unsigned Index, Instruction *I) : Data(std::make_pair(Index, I)) {} bool operator==(const InstRef &Other) const { return Data == Other.Data; } unsigned getSourceIndex() const { return Data.first; } Instruction *getInstruction() { return Data.second; } const Instruction *getInstruction() const { return Data.second; } /// Returns true if this references a valid instruction. operator bool() const { return Data.second != nullptr; } /// Invalidate this reference. void invalidate() { Data.second = nullptr; } #ifndef NDEBUG void print(raw_ostream &OS) const { OS << getSourceIndex(); } #endif }; #ifndef NDEBUG inline raw_ostream &operator<<(raw_ostream &OS, const InstRef &IR) { IR.print(OS); return OS; } #endif /// A reference to a register write. /// /// This class is mainly used by the register file to describe register /// mappings. It correlates a register write to the source index of the /// defining instruction. class WriteRef { std::pair<unsigned, WriteState *> Data; static const unsigned INVALID_IID; public: WriteRef() : Data(INVALID_IID, nullptr) {} WriteRef(unsigned SourceIndex, WriteState *WS) : Data(SourceIndex, WS) {} unsigned getSourceIndex() const { return Data.first; } const WriteState *getWriteState() const { return Data.second; } WriteState *getWriteState() { return Data.second; } void invalidate() { Data.second = nullptr; } bool isWriteZero() const { assert(isValid() && "Invalid null WriteState found!"); return getWriteState()->isWriteZero(); } /// Returns true if this register write has been executed, and the new /// register value is therefore available to users. bool isAvailable() const { if (getSourceIndex() == INVALID_IID) return false; const WriteState *WS = getWriteState(); return !WS || WS->isExecuted(); } bool isValid() const { return Data.first != INVALID_IID && Data.second; } bool operator==(const WriteRef &Other) const { return Data == Other.Data; } #ifndef NDEBUG void dump() const; #endif }; } // namespace mca } // namespace llvm #endif // LLVM_MCA_INSTRUCTION_H