//===--- TrailingObjects.h - Variable-length classes ------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// \file /// This header defines support for implementing classes that have /// some trailing object (or arrays of objects) appended to them. The /// main purpose is to make it obvious where this idiom is being used, /// and to make the usage more idiomatic and more difficult to get /// wrong. /// /// The TrailingObject template abstracts away the reinterpret_cast, /// pointer arithmetic, and size calculations used for the allocation /// and access of appended arrays of objects, and takes care that they /// are all allocated at their required alignment. Additionally, it /// ensures that the base type is final -- deriving from a class that /// expects data appended immediately after it is typically not safe. /// /// Users are expected to derive from this template, and provide /// numTrailingObjects implementations for each trailing type except /// the last, e.g. like this sample: /// /// \code /// class VarLengthObj : private TrailingObjects<VarLengthObj, int, double> { /// friend TrailingObjects; /// /// unsigned NumInts, NumDoubles; /// size_t numTrailingObjects(OverloadToken<int>) const { return NumInts; } /// }; /// \endcode /// /// You can access the appended arrays via 'getTrailingObjects', and /// determine the size needed for allocation via /// 'additionalSizeToAlloc' and 'totalSizeToAlloc'. /// /// All the methods implemented by this class are are intended for use /// by the implementation of the class, not as part of its interface /// (thus, private inheritance is suggested). /// //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_TRAILINGOBJECTS_H #define LLVM_SUPPORT_TRAILINGOBJECTS_H #include "llvm/Support/AlignOf.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/type_traits.h" #include <new> #include <type_traits> namespace llvm { namespace trailing_objects_internal { /// Helper template to calculate the max alignment requirement for a set of /// objects. template <typename First, typename... Rest> class AlignmentCalcHelper { private: enum { FirstAlignment = alignof(First), RestAlignment = AlignmentCalcHelper<Rest...>::Alignment, }; public: enum { Alignment = FirstAlignment > RestAlignment ? FirstAlignment : RestAlignment }; }; template <typename First> class AlignmentCalcHelper<First> { public: enum { Alignment = alignof(First) }; }; /// The base class for TrailingObjects* classes. class TrailingObjectsBase { protected: /// OverloadToken's purpose is to allow specifying function overloads /// for different types, without actually taking the types as /// parameters. (Necessary because member function templates cannot /// be specialized, so overloads must be used instead of /// specialization.) template <typename T> struct OverloadToken {}; }; /// This helper template works-around MSVC 2013's lack of useful /// alignas() support. The argument to alignas(), in MSVC, is /// required to be a literal integer. But, you *can* use template /// specialization to select between a bunch of different alignas() /// expressions... template <int Align> class TrailingObjectsAligner : public TrailingObjectsBase {}; template <> class alignas(1) TrailingObjectsAligner<1> : public TrailingObjectsBase {}; template <> class alignas(2) TrailingObjectsAligner<2> : public TrailingObjectsBase {}; template <> class alignas(4) TrailingObjectsAligner<4> : public TrailingObjectsBase {}; template <> class alignas(8) TrailingObjectsAligner<8> : public TrailingObjectsBase {}; template <> class alignas(16) TrailingObjectsAligner<16> : public TrailingObjectsBase { }; template <> class alignas(32) TrailingObjectsAligner<32> : public TrailingObjectsBase { }; // Just a little helper for transforming a type pack into the same // number of a different type. e.g.: // ExtractSecondType<Foo..., int>::type template <typename Ty1, typename Ty2> struct ExtractSecondType { typedef Ty2 type; }; // TrailingObjectsImpl is somewhat complicated, because it is a // recursively inheriting template, in order to handle the template // varargs. Each level of inheritance picks off a single trailing type // then recurses on the rest. The "Align", "BaseTy", and // "TopTrailingObj" arguments are passed through unchanged through the // recursion. "PrevTy" is, at each level, the type handled by the // level right above it. template <int Align, typename BaseTy, typename TopTrailingObj, typename PrevTy, typename... MoreTys> class TrailingObjectsImpl { // The main template definition is never used -- the two // specializations cover all possibilities. }; template <int Align, typename BaseTy, typename TopTrailingObj, typename PrevTy, typename NextTy, typename... MoreTys> class TrailingObjectsImpl<Align, BaseTy, TopTrailingObj, PrevTy, NextTy, MoreTys...> : public TrailingObjectsImpl<Align, BaseTy, TopTrailingObj, NextTy, MoreTys...> { typedef TrailingObjectsImpl<Align, BaseTy, TopTrailingObj, NextTy, MoreTys...> ParentType; struct RequiresRealignment { static const bool value = alignof(PrevTy) < alignof(NextTy); }; static constexpr bool requiresRealignment() { return RequiresRealignment::value; } protected: // Ensure the inherited getTrailingObjectsImpl is not hidden. using ParentType::getTrailingObjectsImpl; // These two functions are helper functions for // TrailingObjects::getTrailingObjects. They recurse to the left -- // the result for each type in the list of trailing types depends on // the result of calling the function on the type to the // left. However, the function for the type to the left is // implemented by a *subclass* of this class, so we invoke it via // the TopTrailingObj, which is, via the // curiously-recurring-template-pattern, the most-derived type in // this recursion, and thus, contains all the overloads. static const NextTy * getTrailingObjectsImpl(const BaseTy *Obj, TrailingObjectsBase::OverloadToken<NextTy>) { auto *Ptr = TopTrailingObj::getTrailingObjectsImpl( Obj, TrailingObjectsBase::OverloadToken<PrevTy>()) + TopTrailingObj::callNumTrailingObjects( Obj, TrailingObjectsBase::OverloadToken<PrevTy>()); if (requiresRealignment()) return reinterpret_cast<const NextTy *>( llvm::alignAddr(Ptr, alignof(NextTy))); else return reinterpret_cast<const NextTy *>(Ptr); } static NextTy * getTrailingObjectsImpl(BaseTy *Obj, TrailingObjectsBase::OverloadToken<NextTy>) { auto *Ptr = TopTrailingObj::getTrailingObjectsImpl( Obj, TrailingObjectsBase::OverloadToken<PrevTy>()) + TopTrailingObj::callNumTrailingObjects( Obj, TrailingObjectsBase::OverloadToken<PrevTy>()); if (requiresRealignment()) return reinterpret_cast<NextTy *>(llvm::alignAddr(Ptr, alignof(NextTy))); else return reinterpret_cast<NextTy *>(Ptr); } // Helper function for TrailingObjects::additionalSizeToAlloc: this // function recurses to superclasses, each of which requires one // fewer size_t argument, and adds its own size. static constexpr size_t additionalSizeToAllocImpl( size_t SizeSoFar, size_t Count1, typename ExtractSecondType<MoreTys, size_t>::type... MoreCounts) { return ParentType::additionalSizeToAllocImpl( (requiresRealignment() ? llvm::alignTo<alignof(NextTy)>(SizeSoFar) : SizeSoFar) + sizeof(NextTy) * Count1, MoreCounts...); } }; // The base case of the TrailingObjectsImpl inheritance recursion, // when there's no more trailing types. template <int Align, typename BaseTy, typename TopTrailingObj, typename PrevTy> class TrailingObjectsImpl<Align, BaseTy, TopTrailingObj, PrevTy> : public TrailingObjectsAligner<Align> { protected: // This is a dummy method, only here so the "using" doesn't fail -- // it will never be called, because this function recurses backwards // up the inheritance chain to subclasses. static void getTrailingObjectsImpl(); static constexpr size_t additionalSizeToAllocImpl(size_t SizeSoFar) { return SizeSoFar; } template <bool CheckAlignment> static void verifyTrailingObjectsAlignment() {} }; } // end namespace trailing_objects_internal // Finally, the main type defined in this file, the one intended for users... /// See the file comment for details on the usage of the /// TrailingObjects type. template <typename BaseTy, typename... TrailingTys> class TrailingObjects : private trailing_objects_internal::TrailingObjectsImpl< trailing_objects_internal::AlignmentCalcHelper< TrailingTys...>::Alignment, BaseTy, TrailingObjects<BaseTy, TrailingTys...>, BaseTy, TrailingTys...> { template <int A, typename B, typename T, typename P, typename... M> friend class trailing_objects_internal::TrailingObjectsImpl; template <typename... Tys> class Foo {}; typedef trailing_objects_internal::TrailingObjectsImpl< trailing_objects_internal::AlignmentCalcHelper<TrailingTys...>::Alignment, BaseTy, TrailingObjects<BaseTy, TrailingTys...>, BaseTy, TrailingTys...> ParentType; using TrailingObjectsBase = trailing_objects_internal::TrailingObjectsBase; using ParentType::getTrailingObjectsImpl; // This function contains only a static_assert BaseTy is final. The // static_assert must be in a function, and not at class-level // because BaseTy isn't complete at class instantiation time, but // will be by the time this function is instantiated. static void verifyTrailingObjectsAssertions() { #ifdef LLVM_IS_FINAL static_assert(LLVM_IS_FINAL(BaseTy), "BaseTy must be final."); #endif } // These two methods are the base of the recursion for this method. static const BaseTy * getTrailingObjectsImpl(const BaseTy *Obj, TrailingObjectsBase::OverloadToken<BaseTy>) { return Obj; } static BaseTy * getTrailingObjectsImpl(BaseTy *Obj, TrailingObjectsBase::OverloadToken<BaseTy>) { return Obj; } // callNumTrailingObjects simply calls numTrailingObjects on the // provided Obj -- except when the type being queried is BaseTy // itself. There is always only one of the base object, so that case // is handled here. (An additional benefit of indirecting through // this function is that consumers only say "friend // TrailingObjects", and thus, only this class itself can call the // numTrailingObjects function.) static size_t callNumTrailingObjects(const BaseTy *Obj, TrailingObjectsBase::OverloadToken<BaseTy>) { return 1; } template <typename T> static size_t callNumTrailingObjects(const BaseTy *Obj, TrailingObjectsBase::OverloadToken<T>) { return Obj->numTrailingObjects(TrailingObjectsBase::OverloadToken<T>()); } public: // Make this (privately inherited) member public. #ifndef _MSC_VER using ParentType::OverloadToken; #else // MSVC bug prevents the above from working, at least up through CL // 19.10.24629. template <typename T> using OverloadToken = typename ParentType::template OverloadToken<T>; #endif /// Returns a pointer to the trailing object array of the given type /// (which must be one of those specified in the class template). The /// array may have zero or more elements in it. template <typename T> const T *getTrailingObjects() const { verifyTrailingObjectsAssertions(); // Forwards to an impl function with overloads, since member // function templates can't be specialized. return this->getTrailingObjectsImpl( static_cast<const BaseTy *>(this), TrailingObjectsBase::OverloadToken<T>()); } /// Returns a pointer to the trailing object array of the given type /// (which must be one of those specified in the class template). The /// array may have zero or more elements in it. template <typename T> T *getTrailingObjects() { verifyTrailingObjectsAssertions(); // Forwards to an impl function with overloads, since member // function templates can't be specialized. return this->getTrailingObjectsImpl( static_cast<BaseTy *>(this), TrailingObjectsBase::OverloadToken<T>()); } /// Returns the size of the trailing data, if an object were /// allocated with the given counts (The counts are in the same order /// as the template arguments). This does not include the size of the /// base object. The template arguments must be the same as those /// used in the class; they are supplied here redundantly only so /// that it's clear what the counts are counting in callers. template <typename... Tys> static constexpr typename std::enable_if< std::is_same<Foo<TrailingTys...>, Foo<Tys...>>::value, size_t>::type additionalSizeToAlloc(typename trailing_objects_internal::ExtractSecondType< TrailingTys, size_t>::type... Counts) { return ParentType::additionalSizeToAllocImpl(0, Counts...); } /// Returns the total size of an object if it were allocated with the /// given trailing object counts. This is the same as /// additionalSizeToAlloc, except it *does* include the size of the base /// object. template <typename... Tys> static constexpr typename std::enable_if< std::is_same<Foo<TrailingTys...>, Foo<Tys...>>::value, size_t>::type totalSizeToAlloc(typename trailing_objects_internal::ExtractSecondType< TrailingTys, size_t>::type... Counts) { return sizeof(BaseTy) + ParentType::additionalSizeToAllocImpl(0, Counts...); } /// A type where its ::with_counts template member has a ::type member /// suitable for use as uninitialized storage for an object with the given /// trailing object counts. The template arguments are similar to those /// of additionalSizeToAlloc. /// /// Use with FixedSizeStorageOwner, e.g.: /// /// \code{.cpp} /// /// MyObj::FixedSizeStorage<void *>::with_counts<1u>::type myStackObjStorage; /// MyObj::FixedSizeStorageOwner /// myStackObjOwner(new ((void *)&myStackObjStorage) MyObj); /// MyObj *const myStackObjPtr = myStackObjOwner.get(); /// /// \endcode template <typename... Tys> struct FixedSizeStorage { template <size_t... Counts> struct with_counts { enum { Size = totalSizeToAlloc<Tys...>(Counts...) }; typedef llvm::AlignedCharArray<alignof(BaseTy), Size> type; }; }; /// A type that acts as the owner for an object placed into fixed storage. class FixedSizeStorageOwner { public: FixedSizeStorageOwner(BaseTy *p) : p(p) {} ~FixedSizeStorageOwner() { assert(p && "FixedSizeStorageOwner owns null?"); p->~BaseTy(); } BaseTy *get() { return p; } const BaseTy *get() const { return p; } private: FixedSizeStorageOwner(const FixedSizeStorageOwner &) = delete; FixedSizeStorageOwner(FixedSizeStorageOwner &&) = delete; FixedSizeStorageOwner &operator=(const FixedSizeStorageOwner &) = delete; FixedSizeStorageOwner &operator=(FixedSizeStorageOwner &&) = delete; BaseTy *const p; }; }; } // end namespace llvm #endif