//===- TargetGlobalISel.td - Common code for GlobalISel ----*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the target-independent interfaces used to support // SelectionDAG instruction selection patterns (specified in // TargetSelectionDAG.td) when generating GlobalISel instruction selectors. // // This is intended as a compatibility layer, to enable reuse of target // descriptions written for SelectionDAG without requiring explicit GlobalISel // support. It will eventually supersede SelectionDAG patterns. // //===----------------------------------------------------------------------===// // Declare that a generic Instruction is 'equivalent' to an SDNode, that is, // SelectionDAG patterns involving the SDNode can be transformed to match the // Instruction instead. class GINodeEquiv<Instruction i, SDNode node> { Instruction I = i; SDNode Node = node; // SelectionDAG has separate nodes for atomic and non-atomic memory operations // (ISD::LOAD, ISD::ATOMIC_LOAD, ISD::STORE, ISD::ATOMIC_STORE) but GlobalISel // stores this information in the MachineMemoryOperand. bit CheckMMOIsNonAtomic = 0; // SelectionDAG has one node for all loads and uses predicates to // differentiate them. GlobalISel on the other hand uses separate opcodes. // When this is true, the resulting opcode is G_LOAD/G_SEXTLOAD/G_ZEXTLOAD // depending on the predicates on the node. Instruction IfSignExtend = ?; Instruction IfZeroExtend = ?; } // These are defined in the same order as the G_* instructions. def : GINodeEquiv<G_ANYEXT, anyext>; def : GINodeEquiv<G_SEXT, sext>; def : GINodeEquiv<G_ZEXT, zext>; def : GINodeEquiv<G_TRUNC, trunc>; def : GINodeEquiv<G_BITCAST, bitconvert>; // G_INTTOPTR - SelectionDAG has no equivalent. // G_PTRTOINT - SelectionDAG has no equivalent. def : GINodeEquiv<G_CONSTANT, imm>; def : GINodeEquiv<G_FCONSTANT, fpimm>; def : GINodeEquiv<G_ADD, add>; def : GINodeEquiv<G_SUB, sub>; def : GINodeEquiv<G_MUL, mul>; def : GINodeEquiv<G_SDIV, sdiv>; def : GINodeEquiv<G_UDIV, udiv>; def : GINodeEquiv<G_SREM, srem>; def : GINodeEquiv<G_UREM, urem>; def : GINodeEquiv<G_AND, and>; def : GINodeEquiv<G_OR, or>; def : GINodeEquiv<G_XOR, xor>; def : GINodeEquiv<G_SHL, shl>; def : GINodeEquiv<G_LSHR, srl>; def : GINodeEquiv<G_ASHR, sra>; def : GINodeEquiv<G_SELECT, select>; def : GINodeEquiv<G_FNEG, fneg>; def : GINodeEquiv<G_FPEXT, fpextend>; def : GINodeEquiv<G_FPTRUNC, fpround>; def : GINodeEquiv<G_FPTOSI, fp_to_sint>; def : GINodeEquiv<G_FPTOUI, fp_to_uint>; def : GINodeEquiv<G_SITOFP, sint_to_fp>; def : GINodeEquiv<G_UITOFP, uint_to_fp>; def : GINodeEquiv<G_FADD, fadd>; def : GINodeEquiv<G_FSUB, fsub>; def : GINodeEquiv<G_FMA, fma>; def : GINodeEquiv<G_FMUL, fmul>; def : GINodeEquiv<G_FDIV, fdiv>; def : GINodeEquiv<G_FREM, frem>; def : GINodeEquiv<G_FPOW, fpow>; def : GINodeEquiv<G_FEXP2, fexp2>; def : GINodeEquiv<G_FLOG2, flog2>; def : GINodeEquiv<G_INTRINSIC, intrinsic_wo_chain>; // ISD::INTRINSIC_VOID can also be handled with G_INTRINSIC_W_SIDE_EFFECTS. def : GINodeEquiv<G_INTRINSIC_W_SIDE_EFFECTS, intrinsic_void>; def : GINodeEquiv<G_INTRINSIC_W_SIDE_EFFECTS, intrinsic_w_chain>; def : GINodeEquiv<G_BR, br>; def : GINodeEquiv<G_BSWAP, bswap>; def : GINodeEquiv<G_CTLZ, ctlz>; def : GINodeEquiv<G_CTTZ, cttz>; def : GINodeEquiv<G_CTLZ_ZERO_UNDEF, ctlz_zero_undef>; def : GINodeEquiv<G_CTTZ_ZERO_UNDEF, cttz_zero_undef>; def : GINodeEquiv<G_CTPOP, ctpop>; def : GINodeEquiv<G_EXTRACT_VECTOR_ELT, vector_extract>; // Broadly speaking G_LOAD is equivalent to ISD::LOAD but there are some // complications that tablegen must take care of. For example, Predicates such // as isSignExtLoad require that this is not a perfect 1:1 mapping since a // sign-extending load is (G_SEXTLOAD x) in GlobalISel. Additionally, // G_LOAD handles both atomic and non-atomic loads where as SelectionDAG had // separate nodes for them. This GINodeEquiv maps the non-atomic loads to // G_LOAD with a non-atomic MachineMemOperand. def : GINodeEquiv<G_LOAD, ld> { let CheckMMOIsNonAtomic = 1; let IfSignExtend = G_SEXTLOAD; let IfZeroExtend = G_ZEXTLOAD; } // Broadly speaking G_STORE is equivalent to ISD::STORE but there are some // complications that tablegen must take care of. For example, predicates such // as isTruncStore require that this is not a perfect 1:1 mapping since a // truncating store is (G_STORE (G_TRUNCATE x)) in GlobalISel. Additionally, // G_STORE handles both atomic and non-atomic stores where as SelectionDAG had // separate nodes for them. This GINodeEquiv maps the non-atomic stores to // G_STORE with a non-atomic MachineMemOperand. def : GINodeEquiv<G_STORE, st> { let CheckMMOIsNonAtomic = 1; } def : GINodeEquiv<G_ATOMIC_CMPXCHG, atomic_cmp_swap>; def : GINodeEquiv<G_ATOMICRMW_XCHG, atomic_swap>; def : GINodeEquiv<G_ATOMICRMW_ADD, atomic_load_add>; def : GINodeEquiv<G_ATOMICRMW_SUB, atomic_load_sub>; def : GINodeEquiv<G_ATOMICRMW_AND, atomic_load_and>; def : GINodeEquiv<G_ATOMICRMW_NAND, atomic_load_nand>; def : GINodeEquiv<G_ATOMICRMW_OR, atomic_load_or>; def : GINodeEquiv<G_ATOMICRMW_XOR, atomic_load_xor>; def : GINodeEquiv<G_ATOMICRMW_MIN, atomic_load_min>; def : GINodeEquiv<G_ATOMICRMW_MAX, atomic_load_max>; def : GINodeEquiv<G_ATOMICRMW_UMIN, atomic_load_umin>; def : GINodeEquiv<G_ATOMICRMW_UMAX, atomic_load_umax>; // Specifies the GlobalISel equivalents for SelectionDAG's ComplexPattern. // Should be used on defs that subclass GIComplexOperandMatcher<>. class GIComplexPatternEquiv<ComplexPattern seldag> { ComplexPattern SelDAGEquivalent = seldag; } // Specifies the GlobalISel equivalents for SelectionDAG's SDNodeXForm. // Should be used on defs that subclass GICustomOperandRenderer<>. class GISDNodeXFormEquiv<SDNodeXForm seldag> { SDNodeXForm SelDAGEquivalent = seldag; }