//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the generic AliasAnalysis interface, which is used as the // common interface used by all clients of alias analysis information, and // implemented by all alias analysis implementations. Mod/Ref information is // also captured by this interface. // // Implementations of this interface must implement the various virtual methods, // which automatically provides functionality for the entire suite of client // APIs. // // This API identifies memory regions with the MemoryLocation class. The pointer // component specifies the base memory address of the region. The Size specifies // the maximum size (in address units) of the memory region, or // MemoryLocation::UnknownSize if the size is not known. The TBAA tag // identifies the "type" of the memory reference; see the // TypeBasedAliasAnalysis class for details. // // Some non-obvious details include: // - Pointers that point to two completely different objects in memory never // alias, regardless of the value of the Size component. // - NoAlias doesn't imply inequal pointers. The most obvious example of this // is two pointers to constant memory. Even if they are equal, constant // memory is never stored to, so there will never be any dependencies. // In this and other situations, the pointers may be both NoAlias and // MustAlias at the same time. The current API can only return one result, // though this is rarely a problem in practice. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_ALIASANALYSIS_H #define LLVM_ANALYSIS_ALIASANALYSIS_H #include "llvm/ADT/None.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/MemoryLocation.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/PassManager.h" #include "llvm/Pass.h" #include <cstdint> #include <functional> #include <memory> #include <vector> namespace llvm { class AnalysisUsage; class BasicAAResult; class BasicBlock; class DominatorTree; class OrderedBasicBlock; class Value; /// The possible results of an alias query. /// /// These results are always computed between two MemoryLocation objects as /// a query to some alias analysis. /// /// Note that these are unscoped enumerations because we would like to support /// implicitly testing a result for the existence of any possible aliasing with /// a conversion to bool, but an "enum class" doesn't support this. The /// canonical names from the literature are suffixed and unique anyways, and so /// they serve as global constants in LLVM for these results. /// /// See docs/AliasAnalysis.html for more information on the specific meanings /// of these values. enum AliasResult : uint8_t { /// The two locations do not alias at all. /// /// This value is arranged to convert to false, while all other values /// convert to true. This allows a boolean context to convert the result to /// a binary flag indicating whether there is the possibility of aliasing. NoAlias = 0, /// The two locations may or may not alias. This is the least precise result. MayAlias, /// The two locations alias, but only due to a partial overlap. PartialAlias, /// The two locations precisely alias each other. MustAlias, }; /// Flags indicating whether a memory access modifies or references memory. /// /// This is no access at all, a modification, a reference, or both /// a modification and a reference. These are specifically structured such that /// they form a three bit matrix and bit-tests for 'mod' or 'ref' or 'must' /// work with any of the possible values. enum class ModRefInfo : uint8_t { /// Must is provided for completeness, but no routines will return only /// Must today. See definition of Must below. Must = 0, /// The access may reference the value stored in memory, /// a mustAlias relation was found, and no mayAlias or partialAlias found. MustRef = 1, /// The access may modify the value stored in memory, /// a mustAlias relation was found, and no mayAlias or partialAlias found. MustMod = 2, /// The access may reference, modify or both the value stored in memory, /// a mustAlias relation was found, and no mayAlias or partialAlias found. MustModRef = MustRef | MustMod, /// The access neither references nor modifies the value stored in memory. NoModRef = 4, /// The access may reference the value stored in memory. Ref = NoModRef | MustRef, /// The access may modify the value stored in memory. Mod = NoModRef | MustMod, /// The access may reference and may modify the value stored in memory. ModRef = Ref | Mod, /// About Must: /// Must is set in a best effort manner. /// We usually do not try our best to infer Must, instead it is merely /// another piece of "free" information that is presented when available. /// Must set means there was certainly a MustAlias found. For calls, /// where multiple arguments are checked (argmemonly), this translates to /// only MustAlias or NoAlias was found. /// Must is not set for RAR accesses, even if the two locations must /// alias. The reason is that two read accesses translate to an early return /// of NoModRef. An additional alias check to set Must may be /// expensive. Other cases may also not set Must(e.g. callCapturesBefore). /// We refer to Must being *set* when the most significant bit is *cleared*. /// Conversely we *clear* Must information by *setting* the Must bit to 1. }; LLVM_NODISCARD inline bool isNoModRef(const ModRefInfo MRI) { return (static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)) == static_cast<int>(ModRefInfo::Must); } LLVM_NODISCARD inline bool isModOrRefSet(const ModRefInfo MRI) { return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef); } LLVM_NODISCARD inline bool isModAndRefSet(const ModRefInfo MRI) { return (static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)) == static_cast<int>(ModRefInfo::MustModRef); } LLVM_NODISCARD inline bool isModSet(const ModRefInfo MRI) { return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustMod); } LLVM_NODISCARD inline bool isRefSet(const ModRefInfo MRI) { return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustRef); } LLVM_NODISCARD inline bool isMustSet(const ModRefInfo MRI) { return !(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::NoModRef)); } LLVM_NODISCARD inline ModRefInfo setMod(const ModRefInfo MRI) { return ModRefInfo(static_cast<int>(MRI) | static_cast<int>(ModRefInfo::MustMod)); } LLVM_NODISCARD inline ModRefInfo setRef(const ModRefInfo MRI) { return ModRefInfo(static_cast<int>(MRI) | static_cast<int>(ModRefInfo::MustRef)); } LLVM_NODISCARD inline ModRefInfo setMust(const ModRefInfo MRI) { return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)); } LLVM_NODISCARD inline ModRefInfo setModAndRef(const ModRefInfo MRI) { return ModRefInfo(static_cast<int>(MRI) | static_cast<int>(ModRefInfo::MustModRef)); } LLVM_NODISCARD inline ModRefInfo clearMod(const ModRefInfo MRI) { return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::Ref)); } LLVM_NODISCARD inline ModRefInfo clearRef(const ModRefInfo MRI) { return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::Mod)); } LLVM_NODISCARD inline ModRefInfo clearMust(const ModRefInfo MRI) { return ModRefInfo(static_cast<int>(MRI) | static_cast<int>(ModRefInfo::NoModRef)); } LLVM_NODISCARD inline ModRefInfo unionModRef(const ModRefInfo MRI1, const ModRefInfo MRI2) { return ModRefInfo(static_cast<int>(MRI1) | static_cast<int>(MRI2)); } LLVM_NODISCARD inline ModRefInfo intersectModRef(const ModRefInfo MRI1, const ModRefInfo MRI2) { return ModRefInfo(static_cast<int>(MRI1) & static_cast<int>(MRI2)); } /// The locations at which a function might access memory. /// /// These are primarily used in conjunction with the \c AccessKind bits to /// describe both the nature of access and the locations of access for a /// function call. enum FunctionModRefLocation { /// Base case is no access to memory. FMRL_Nowhere = 0, /// Access to memory via argument pointers. FMRL_ArgumentPointees = 8, /// Memory that is inaccessible via LLVM IR. FMRL_InaccessibleMem = 16, /// Access to any memory. FMRL_Anywhere = 32 | FMRL_InaccessibleMem | FMRL_ArgumentPointees }; /// Summary of how a function affects memory in the program. /// /// Loads from constant globals are not considered memory accesses for this /// interface. Also, functions may freely modify stack space local to their /// invocation without having to report it through these interfaces. enum FunctionModRefBehavior { /// This function does not perform any non-local loads or stores to memory. /// /// This property corresponds to the GCC 'const' attribute. /// This property corresponds to the LLVM IR 'readnone' attribute. /// This property corresponds to the IntrNoMem LLVM intrinsic flag. FMRB_DoesNotAccessMemory = FMRL_Nowhere | static_cast<int>(ModRefInfo::NoModRef), /// The only memory references in this function (if it has any) are /// non-volatile loads from objects pointed to by its pointer-typed /// arguments, with arbitrary offsets. /// /// This property corresponds to the IntrReadArgMem LLVM intrinsic flag. FMRB_OnlyReadsArgumentPointees = FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::Ref), /// The only memory references in this function (if it has any) are /// non-volatile loads and stores from objects pointed to by its /// pointer-typed arguments, with arbitrary offsets. /// /// This property corresponds to the IntrArgMemOnly LLVM intrinsic flag. FMRB_OnlyAccessesArgumentPointees = FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::ModRef), /// The only memory references in this function (if it has any) are /// references of memory that is otherwise inaccessible via LLVM IR. /// /// This property corresponds to the LLVM IR inaccessiblememonly attribute. FMRB_OnlyAccessesInaccessibleMem = FMRL_InaccessibleMem | static_cast<int>(ModRefInfo::ModRef), /// The function may perform non-volatile loads and stores of objects /// pointed to by its pointer-typed arguments, with arbitrary offsets, and /// it may also perform loads and stores of memory that is otherwise /// inaccessible via LLVM IR. /// /// This property corresponds to the LLVM IR /// inaccessiblemem_or_argmemonly attribute. FMRB_OnlyAccessesInaccessibleOrArgMem = FMRL_InaccessibleMem | FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::ModRef), /// This function does not perform any non-local stores or volatile loads, /// but may read from any memory location. /// /// This property corresponds to the GCC 'pure' attribute. /// This property corresponds to the LLVM IR 'readonly' attribute. /// This property corresponds to the IntrReadMem LLVM intrinsic flag. FMRB_OnlyReadsMemory = FMRL_Anywhere | static_cast<int>(ModRefInfo::Ref), // This function does not read from memory anywhere, but may write to any // memory location. // // This property corresponds to the LLVM IR 'writeonly' attribute. // This property corresponds to the IntrWriteMem LLVM intrinsic flag. FMRB_DoesNotReadMemory = FMRL_Anywhere | static_cast<int>(ModRefInfo::Mod), /// This indicates that the function could not be classified into one of the /// behaviors above. FMRB_UnknownModRefBehavior = FMRL_Anywhere | static_cast<int>(ModRefInfo::ModRef) }; // Wrapper method strips bits significant only in FunctionModRefBehavior, // to obtain a valid ModRefInfo. The benefit of using the wrapper is that if // ModRefInfo enum changes, the wrapper can be updated to & with the new enum // entry with all bits set to 1. LLVM_NODISCARD inline ModRefInfo createModRefInfo(const FunctionModRefBehavior FMRB) { return ModRefInfo(FMRB & static_cast<int>(ModRefInfo::ModRef)); } class AAResults { public: // Make these results default constructable and movable. We have to spell // these out because MSVC won't synthesize them. AAResults(const TargetLibraryInfo &TLI) : TLI(TLI) {} AAResults(AAResults &&Arg); ~AAResults(); /// Register a specific AA result. template <typename AAResultT> void addAAResult(AAResultT &AAResult) { // FIXME: We should use a much lighter weight system than the usual // polymorphic pattern because we don't own AAResult. It should // ideally involve two pointers and no separate allocation. AAs.emplace_back(new Model<AAResultT>(AAResult, *this)); } /// Register a function analysis ID that the results aggregation depends on. /// /// This is used in the new pass manager to implement the invalidation logic /// where we must invalidate the results aggregation if any of our component /// analyses become invalid. void addAADependencyID(AnalysisKey *ID) { AADeps.push_back(ID); } /// Handle invalidation events in the new pass manager. /// /// The aggregation is invalidated if any of the underlying analyses is /// invalidated. bool invalidate(Function &F, const PreservedAnalyses &PA, FunctionAnalysisManager::Invalidator &Inv); //===--------------------------------------------------------------------===// /// \name Alias Queries /// @{ /// The main low level interface to the alias analysis implementation. /// Returns an AliasResult indicating whether the two pointers are aliased to /// each other. This is the interface that must be implemented by specific /// alias analysis implementations. AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB); /// A convenience wrapper around the primary \c alias interface. AliasResult alias(const Value *V1, uint64_t V1Size, const Value *V2, uint64_t V2Size) { return alias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size)); } /// A convenience wrapper around the primary \c alias interface. AliasResult alias(const Value *V1, const Value *V2) { return alias(V1, MemoryLocation::UnknownSize, V2, MemoryLocation::UnknownSize); } /// A trivial helper function to check to see if the specified pointers are /// no-alias. bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) { return alias(LocA, LocB) == NoAlias; } /// A convenience wrapper around the \c isNoAlias helper interface. bool isNoAlias(const Value *V1, uint64_t V1Size, const Value *V2, uint64_t V2Size) { return isNoAlias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size)); } /// A convenience wrapper around the \c isNoAlias helper interface. bool isNoAlias(const Value *V1, const Value *V2) { return isNoAlias(MemoryLocation(V1), MemoryLocation(V2)); } /// A trivial helper function to check to see if the specified pointers are /// must-alias. bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) { return alias(LocA, LocB) == MustAlias; } /// A convenience wrapper around the \c isMustAlias helper interface. bool isMustAlias(const Value *V1, const Value *V2) { return alias(V1, 1, V2, 1) == MustAlias; } /// Checks whether the given location points to constant memory, or if /// \p OrLocal is true whether it points to a local alloca. bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false); /// A convenience wrapper around the primary \c pointsToConstantMemory /// interface. bool pointsToConstantMemory(const Value *P, bool OrLocal = false) { return pointsToConstantMemory(MemoryLocation(P), OrLocal); } /// @} //===--------------------------------------------------------------------===// /// \name Simple mod/ref information /// @{ /// Get the ModRef info associated with a pointer argument of a callsite. The /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note /// that these bits do not necessarily account for the overall behavior of /// the function, but rather only provide additional per-argument /// information. This never sets ModRefInfo::Must. ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx); /// Return the behavior of the given call site. FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS); /// Return the behavior when calling the given function. FunctionModRefBehavior getModRefBehavior(const Function *F); /// Checks if the specified call is known to never read or write memory. /// /// Note that if the call only reads from known-constant memory, it is also /// legal to return true. Also, calls that unwind the stack are legal for /// this predicate. /// /// Many optimizations (such as CSE and LICM) can be performed on such calls /// without worrying about aliasing properties, and many calls have this /// property (e.g. calls to 'sin' and 'cos'). /// /// This property corresponds to the GCC 'const' attribute. bool doesNotAccessMemory(ImmutableCallSite CS) { return getModRefBehavior(CS) == FMRB_DoesNotAccessMemory; } /// Checks if the specified function is known to never read or write memory. /// /// Note that if the function only reads from known-constant memory, it is /// also legal to return true. Also, function that unwind the stack are legal /// for this predicate. /// /// Many optimizations (such as CSE and LICM) can be performed on such calls /// to such functions without worrying about aliasing properties, and many /// functions have this property (e.g. 'sin' and 'cos'). /// /// This property corresponds to the GCC 'const' attribute. bool doesNotAccessMemory(const Function *F) { return getModRefBehavior(F) == FMRB_DoesNotAccessMemory; } /// Checks if the specified call is known to only read from non-volatile /// memory (or not access memory at all). /// /// Calls that unwind the stack are legal for this predicate. /// /// This property allows many common optimizations to be performed in the /// absence of interfering store instructions, such as CSE of strlen calls. /// /// This property corresponds to the GCC 'pure' attribute. bool onlyReadsMemory(ImmutableCallSite CS) { return onlyReadsMemory(getModRefBehavior(CS)); } /// Checks if the specified function is known to only read from non-volatile /// memory (or not access memory at all). /// /// Functions that unwind the stack are legal for this predicate. /// /// This property allows many common optimizations to be performed in the /// absence of interfering store instructions, such as CSE of strlen calls. /// /// This property corresponds to the GCC 'pure' attribute. bool onlyReadsMemory(const Function *F) { return onlyReadsMemory(getModRefBehavior(F)); } /// Checks if functions with the specified behavior are known to only read /// from non-volatile memory (or not access memory at all). static bool onlyReadsMemory(FunctionModRefBehavior MRB) { return !isModSet(createModRefInfo(MRB)); } /// Checks if functions with the specified behavior are known to only write /// memory (or not access memory at all). static bool doesNotReadMemory(FunctionModRefBehavior MRB) { return !isRefSet(createModRefInfo(MRB)); } /// Checks if functions with the specified behavior are known to read and /// write at most from objects pointed to by their pointer-typed arguments /// (with arbitrary offsets). static bool onlyAccessesArgPointees(FunctionModRefBehavior MRB) { return !(MRB & FMRL_Anywhere & ~FMRL_ArgumentPointees); } /// Checks if functions with the specified behavior are known to potentially /// read or write from objects pointed to be their pointer-typed arguments /// (with arbitrary offsets). static bool doesAccessArgPointees(FunctionModRefBehavior MRB) { return isModOrRefSet(createModRefInfo(MRB)) && (MRB & FMRL_ArgumentPointees); } /// Checks if functions with the specified behavior are known to read and /// write at most from memory that is inaccessible from LLVM IR. static bool onlyAccessesInaccessibleMem(FunctionModRefBehavior MRB) { return !(MRB & FMRL_Anywhere & ~FMRL_InaccessibleMem); } /// Checks if functions with the specified behavior are known to potentially /// read or write from memory that is inaccessible from LLVM IR. static bool doesAccessInaccessibleMem(FunctionModRefBehavior MRB) { return isModOrRefSet(createModRefInfo(MRB)) && (MRB & FMRL_InaccessibleMem); } /// Checks if functions with the specified behavior are known to read and /// write at most from memory that is inaccessible from LLVM IR or objects /// pointed to by their pointer-typed arguments (with arbitrary offsets). static bool onlyAccessesInaccessibleOrArgMem(FunctionModRefBehavior MRB) { return !(MRB & FMRL_Anywhere & ~(FMRL_InaccessibleMem | FMRL_ArgumentPointees)); } /// getModRefInfo (for call sites) - Return information about whether /// a particular call site modifies or reads the specified memory location. ModRefInfo getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc); /// getModRefInfo (for call sites) - A convenience wrapper. ModRefInfo getModRefInfo(ImmutableCallSite CS, const Value *P, uint64_t Size) { return getModRefInfo(CS, MemoryLocation(P, Size)); } /// getModRefInfo (for calls) - Return information about whether /// a particular call modifies or reads the specified memory location. ModRefInfo getModRefInfo(const CallInst *C, const MemoryLocation &Loc) { return getModRefInfo(ImmutableCallSite(C), Loc); } /// getModRefInfo (for calls) - A convenience wrapper. ModRefInfo getModRefInfo(const CallInst *C, const Value *P, uint64_t Size) { return getModRefInfo(C, MemoryLocation(P, Size)); } /// getModRefInfo (for invokes) - Return information about whether /// a particular invoke modifies or reads the specified memory location. ModRefInfo getModRefInfo(const InvokeInst *I, const MemoryLocation &Loc) { return getModRefInfo(ImmutableCallSite(I), Loc); } /// getModRefInfo (for invokes) - A convenience wrapper. ModRefInfo getModRefInfo(const InvokeInst *I, const Value *P, uint64_t Size) { return getModRefInfo(I, MemoryLocation(P, Size)); } /// getModRefInfo (for loads) - Return information about whether /// a particular load modifies or reads the specified memory location. ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc); /// getModRefInfo (for loads) - A convenience wrapper. ModRefInfo getModRefInfo(const LoadInst *L, const Value *P, uint64_t Size) { return getModRefInfo(L, MemoryLocation(P, Size)); } /// getModRefInfo (for stores) - Return information about whether /// a particular store modifies or reads the specified memory location. ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc); /// getModRefInfo (for stores) - A convenience wrapper. ModRefInfo getModRefInfo(const StoreInst *S, const Value *P, uint64_t Size) { return getModRefInfo(S, MemoryLocation(P, Size)); } /// getModRefInfo (for fences) - Return information about whether /// a particular store modifies or reads the specified memory location. ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc); /// getModRefInfo (for fences) - A convenience wrapper. ModRefInfo getModRefInfo(const FenceInst *S, const Value *P, uint64_t Size) { return getModRefInfo(S, MemoryLocation(P, Size)); } /// getModRefInfo (for cmpxchges) - Return information about whether /// a particular cmpxchg modifies or reads the specified memory location. ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX, const MemoryLocation &Loc); /// getModRefInfo (for cmpxchges) - A convenience wrapper. ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX, const Value *P, unsigned Size) { return getModRefInfo(CX, MemoryLocation(P, Size)); } /// getModRefInfo (for atomicrmws) - Return information about whether /// a particular atomicrmw modifies or reads the specified memory location. ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc); /// getModRefInfo (for atomicrmws) - A convenience wrapper. ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const Value *P, unsigned Size) { return getModRefInfo(RMW, MemoryLocation(P, Size)); } /// getModRefInfo (for va_args) - Return information about whether /// a particular va_arg modifies or reads the specified memory location. ModRefInfo getModRefInfo(const VAArgInst *I, const MemoryLocation &Loc); /// getModRefInfo (for va_args) - A convenience wrapper. ModRefInfo getModRefInfo(const VAArgInst *I, const Value *P, uint64_t Size) { return getModRefInfo(I, MemoryLocation(P, Size)); } /// getModRefInfo (for catchpads) - Return information about whether /// a particular catchpad modifies or reads the specified memory location. ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc); /// getModRefInfo (for catchpads) - A convenience wrapper. ModRefInfo getModRefInfo(const CatchPadInst *I, const Value *P, uint64_t Size) { return getModRefInfo(I, MemoryLocation(P, Size)); } /// getModRefInfo (for catchrets) - Return information about whether /// a particular catchret modifies or reads the specified memory location. ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc); /// getModRefInfo (for catchrets) - A convenience wrapper. ModRefInfo getModRefInfo(const CatchReturnInst *I, const Value *P, uint64_t Size) { return getModRefInfo(I, MemoryLocation(P, Size)); } /// Check whether or not an instruction may read or write the optionally /// specified memory location. /// /// /// An instruction that doesn't read or write memory may be trivially LICM'd /// for example. /// /// For function calls, this delegates to the alias-analysis specific /// call-site mod-ref behavior queries. Otherwise it delegates to the specific /// helpers above. ModRefInfo getModRefInfo(const Instruction *I, const Optional<MemoryLocation> &OptLoc) { if (OptLoc == None) { if (auto CS = ImmutableCallSite(I)) { return createModRefInfo(getModRefBehavior(CS)); } } const MemoryLocation &Loc = OptLoc.getValueOr(MemoryLocation()); switch (I->getOpcode()) { case Instruction::VAArg: return getModRefInfo((const VAArgInst*)I, Loc); case Instruction::Load: return getModRefInfo((const LoadInst*)I, Loc); case Instruction::Store: return getModRefInfo((const StoreInst*)I, Loc); case Instruction::Fence: return getModRefInfo((const FenceInst*)I, Loc); case Instruction::AtomicCmpXchg: return getModRefInfo((const AtomicCmpXchgInst*)I, Loc); case Instruction::AtomicRMW: return getModRefInfo((const AtomicRMWInst*)I, Loc); case Instruction::Call: return getModRefInfo((const CallInst*)I, Loc); case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,Loc); case Instruction::CatchPad: return getModRefInfo((const CatchPadInst *)I, Loc); case Instruction::CatchRet: return getModRefInfo((const CatchReturnInst *)I, Loc); default: return ModRefInfo::NoModRef; } } /// A convenience wrapper for constructing the memory location. ModRefInfo getModRefInfo(const Instruction *I, const Value *P, uint64_t Size) { return getModRefInfo(I, MemoryLocation(P, Size)); } /// Return information about whether a call and an instruction may refer to /// the same memory locations. ModRefInfo getModRefInfo(Instruction *I, ImmutableCallSite Call); /// Return information about whether two call sites may refer to the same set /// of memory locations. See the AA documentation for details: /// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo ModRefInfo getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2); /// \brief Return information about whether a particular call site modifies /// or reads the specified memory location \p MemLoc before instruction \p I /// in a BasicBlock. An ordered basic block \p OBB can be used to speed up /// instruction ordering queries inside the BasicBlock containing \p I. /// Early exits in callCapturesBefore may lead to ModRefInfo::Must not being /// set. ModRefInfo callCapturesBefore(const Instruction *I, const MemoryLocation &MemLoc, DominatorTree *DT, OrderedBasicBlock *OBB = nullptr); /// \brief A convenience wrapper to synthesize a memory location. ModRefInfo callCapturesBefore(const Instruction *I, const Value *P, uint64_t Size, DominatorTree *DT, OrderedBasicBlock *OBB = nullptr) { return callCapturesBefore(I, MemoryLocation(P, Size), DT, OBB); } /// @} //===--------------------------------------------------------------------===// /// \name Higher level methods for querying mod/ref information. /// @{ /// Check if it is possible for execution of the specified basic block to /// modify the location Loc. bool canBasicBlockModify(const BasicBlock &BB, const MemoryLocation &Loc); /// A convenience wrapper synthesizing a memory location. bool canBasicBlockModify(const BasicBlock &BB, const Value *P, uint64_t Size) { return canBasicBlockModify(BB, MemoryLocation(P, Size)); } /// Check if it is possible for the execution of the specified instructions /// to mod\ref (according to the mode) the location Loc. /// /// The instructions to consider are all of the instructions in the range of /// [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block. bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2, const MemoryLocation &Loc, const ModRefInfo Mode); /// A convenience wrapper synthesizing a memory location. bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2, const Value *Ptr, uint64_t Size, const ModRefInfo Mode) { return canInstructionRangeModRef(I1, I2, MemoryLocation(Ptr, Size), Mode); } private: class Concept; template <typename T> class Model; template <typename T> friend class AAResultBase; const TargetLibraryInfo &TLI; std::vector<std::unique_ptr<Concept>> AAs; std::vector<AnalysisKey *> AADeps; }; /// Temporary typedef for legacy code that uses a generic \c AliasAnalysis /// pointer or reference. using AliasAnalysis = AAResults; /// A private abstract base class describing the concept of an individual alias /// analysis implementation. /// /// This interface is implemented by any \c Model instantiation. It is also the /// interface which a type used to instantiate the model must provide. /// /// All of these methods model methods by the same name in the \c /// AAResults class. Only differences and specifics to how the /// implementations are called are documented here. class AAResults::Concept { public: virtual ~Concept() = 0; /// An update API used internally by the AAResults to provide /// a handle back to the top level aggregation. virtual void setAAResults(AAResults *NewAAR) = 0; //===--------------------------------------------------------------------===// /// \name Alias Queries /// @{ /// The main low level interface to the alias analysis implementation. /// Returns an AliasResult indicating whether the two pointers are aliased to /// each other. This is the interface that must be implemented by specific /// alias analysis implementations. virtual AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) = 0; /// Checks whether the given location points to constant memory, or if /// \p OrLocal is true whether it points to a local alloca. virtual bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal) = 0; /// @} //===--------------------------------------------------------------------===// /// \name Simple mod/ref information /// @{ /// Get the ModRef info associated with a pointer argument of a callsite. The /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note /// that these bits do not necessarily account for the overall behavior of /// the function, but rather only provide additional per-argument /// information. virtual ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) = 0; /// Return the behavior of the given call site. virtual FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) = 0; /// Return the behavior when calling the given function. virtual FunctionModRefBehavior getModRefBehavior(const Function *F) = 0; /// getModRefInfo (for call sites) - Return information about whether /// a particular call site modifies or reads the specified memory location. virtual ModRefInfo getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc) = 0; /// Return information about whether two call sites may refer to the same set /// of memory locations. See the AA documentation for details: /// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo virtual ModRefInfo getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) = 0; /// @} }; /// A private class template which derives from \c Concept and wraps some other /// type. /// /// This models the concept by directly forwarding each interface point to the /// wrapped type which must implement a compatible interface. This provides /// a type erased binding. template <typename AAResultT> class AAResults::Model final : public Concept { AAResultT &Result; public: explicit Model(AAResultT &Result, AAResults &AAR) : Result(Result) { Result.setAAResults(&AAR); } ~Model() override = default; void setAAResults(AAResults *NewAAR) override { Result.setAAResults(NewAAR); } AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) override { return Result.alias(LocA, LocB); } bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal) override { return Result.pointsToConstantMemory(Loc, OrLocal); } ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) override { return Result.getArgModRefInfo(CS, ArgIdx); } FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) override { return Result.getModRefBehavior(CS); } FunctionModRefBehavior getModRefBehavior(const Function *F) override { return Result.getModRefBehavior(F); } ModRefInfo getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc) override { return Result.getModRefInfo(CS, Loc); } ModRefInfo getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) override { return Result.getModRefInfo(CS1, CS2); } }; /// A CRTP-driven "mixin" base class to help implement the function alias /// analysis results concept. /// /// Because of the nature of many alias analysis implementations, they often /// only implement a subset of the interface. This base class will attempt to /// implement the remaining portions of the interface in terms of simpler forms /// of the interface where possible, and otherwise provide conservatively /// correct fallback implementations. /// /// Implementors of an alias analysis should derive from this CRTP, and then /// override specific methods that they wish to customize. There is no need to /// use virtual anywhere, the CRTP base class does static dispatch to the /// derived type passed into it. template <typename DerivedT> class AAResultBase { // Expose some parts of the interface only to the AAResults::Model // for wrapping. Specifically, this allows the model to call our // setAAResults method without exposing it as a fully public API. friend class AAResults::Model<DerivedT>; /// A pointer to the AAResults object that this AAResult is /// aggregated within. May be null if not aggregated. AAResults *AAR; /// Helper to dispatch calls back through the derived type. DerivedT &derived() { return static_cast<DerivedT &>(*this); } /// A setter for the AAResults pointer, which is used to satisfy the /// AAResults::Model contract. void setAAResults(AAResults *NewAAR) { AAR = NewAAR; } protected: /// This proxy class models a common pattern where we delegate to either the /// top-level \c AAResults aggregation if one is registered, or to the /// current result if none are registered. class AAResultsProxy { AAResults *AAR; DerivedT &CurrentResult; public: AAResultsProxy(AAResults *AAR, DerivedT &CurrentResult) : AAR(AAR), CurrentResult(CurrentResult) {} AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) { return AAR ? AAR->alias(LocA, LocB) : CurrentResult.alias(LocA, LocB); } bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal) { return AAR ? AAR->pointsToConstantMemory(Loc, OrLocal) : CurrentResult.pointsToConstantMemory(Loc, OrLocal); } ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) { return AAR ? AAR->getArgModRefInfo(CS, ArgIdx) : CurrentResult.getArgModRefInfo(CS, ArgIdx); } FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) { return AAR ? AAR->getModRefBehavior(CS) : CurrentResult.getModRefBehavior(CS); } FunctionModRefBehavior getModRefBehavior(const Function *F) { return AAR ? AAR->getModRefBehavior(F) : CurrentResult.getModRefBehavior(F); } ModRefInfo getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc) { return AAR ? AAR->getModRefInfo(CS, Loc) : CurrentResult.getModRefInfo(CS, Loc); } ModRefInfo getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) { return AAR ? AAR->getModRefInfo(CS1, CS2) : CurrentResult.getModRefInfo(CS1, CS2); } }; explicit AAResultBase() = default; // Provide all the copy and move constructors so that derived types aren't // constrained. AAResultBase(const AAResultBase &Arg) {} AAResultBase(AAResultBase &&Arg) {} /// Get a proxy for the best AA result set to query at this time. /// /// When this result is part of a larger aggregation, this will proxy to that /// aggregation. When this result is used in isolation, it will just delegate /// back to the derived class's implementation. /// /// Note that callers of this need to take considerable care to not cause /// performance problems when they use this routine, in the case of a large /// number of alias analyses being aggregated, it can be expensive to walk /// back across the chain. AAResultsProxy getBestAAResults() { return AAResultsProxy(AAR, derived()); } public: AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) { return MayAlias; } bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal) { return false; } ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) { return ModRefInfo::ModRef; } FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) { return FMRB_UnknownModRefBehavior; } FunctionModRefBehavior getModRefBehavior(const Function *F) { return FMRB_UnknownModRefBehavior; } ModRefInfo getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc) { return ModRefInfo::ModRef; } ModRefInfo getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) { return ModRefInfo::ModRef; } }; /// Return true if this pointer is returned by a noalias function. bool isNoAliasCall(const Value *V); /// Return true if this is an argument with the noalias attribute. bool isNoAliasArgument(const Value *V); /// Return true if this pointer refers to a distinct and identifiable object. /// This returns true for: /// Global Variables and Functions (but not Global Aliases) /// Allocas /// ByVal and NoAlias Arguments /// NoAlias returns (e.g. calls to malloc) /// bool isIdentifiedObject(const Value *V); /// Return true if V is umabigously identified at the function-level. /// Different IdentifiedFunctionLocals can't alias. /// Further, an IdentifiedFunctionLocal can not alias with any function /// arguments other than itself, which is not necessarily true for /// IdentifiedObjects. bool isIdentifiedFunctionLocal(const Value *V); /// A manager for alias analyses. /// /// This class can have analyses registered with it and when run, it will run /// all of them and aggregate their results into single AA results interface /// that dispatches across all of the alias analysis results available. /// /// Note that the order in which analyses are registered is very significant. /// That is the order in which the results will be aggregated and queried. /// /// This manager effectively wraps the AnalysisManager for registering alias /// analyses. When you register your alias analysis with this manager, it will /// ensure the analysis itself is registered with its AnalysisManager. class AAManager : public AnalysisInfoMixin<AAManager> { public: using Result = AAResults; /// Register a specific AA result. template <typename AnalysisT> void registerFunctionAnalysis() { ResultGetters.push_back(&getFunctionAAResultImpl<AnalysisT>); } /// Register a specific AA result. template <typename AnalysisT> void registerModuleAnalysis() { ResultGetters.push_back(&getModuleAAResultImpl<AnalysisT>); } Result run(Function &F, FunctionAnalysisManager &AM) { Result R(AM.getResult<TargetLibraryAnalysis>(F)); for (auto &Getter : ResultGetters) (*Getter)(F, AM, R); return R; } private: friend AnalysisInfoMixin<AAManager>; static AnalysisKey Key; SmallVector<void (*)(Function &F, FunctionAnalysisManager &AM, AAResults &AAResults), 4> ResultGetters; template <typename AnalysisT> static void getFunctionAAResultImpl(Function &F, FunctionAnalysisManager &AM, AAResults &AAResults) { AAResults.addAAResult(AM.template getResult<AnalysisT>(F)); AAResults.addAADependencyID(AnalysisT::ID()); } template <typename AnalysisT> static void getModuleAAResultImpl(Function &F, FunctionAnalysisManager &AM, AAResults &AAResults) { auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); auto &MAM = MAMProxy.getManager(); if (auto *R = MAM.template getCachedResult<AnalysisT>(*F.getParent())) { AAResults.addAAResult(*R); MAMProxy .template registerOuterAnalysisInvalidation<AnalysisT, AAManager>(); } } }; /// A wrapper pass to provide the legacy pass manager access to a suitably /// prepared AAResults object. class AAResultsWrapperPass : public FunctionPass { std::unique_ptr<AAResults> AAR; public: static char ID; AAResultsWrapperPass(); AAResults &getAAResults() { return *AAR; } const AAResults &getAAResults() const { return *AAR; } bool runOnFunction(Function &F) override; void getAnalysisUsage(AnalysisUsage &AU) const override; }; FunctionPass *createAAResultsWrapperPass(); /// A wrapper pass around a callback which can be used to populate the /// AAResults in the AAResultsWrapperPass from an external AA. /// /// The callback provided here will be used each time we prepare an AAResults /// object, and will receive a reference to the function wrapper pass, the /// function, and the AAResults object to populate. This should be used when /// setting up a custom pass pipeline to inject a hook into the AA results. ImmutablePass *createExternalAAWrapperPass( std::function<void(Pass &, Function &, AAResults &)> Callback); /// A helper for the legacy pass manager to create a \c AAResults /// object populated to the best of our ability for a particular function when /// inside of a \c ModulePass or a \c CallGraphSCCPass. /// /// If a \c ModulePass or a \c CallGraphSCCPass calls \p /// createLegacyPMAAResults, it also needs to call \p addUsedAAAnalyses in \p /// getAnalysisUsage. AAResults createLegacyPMAAResults(Pass &P, Function &F, BasicAAResult &BAR); /// A helper for the legacy pass manager to populate \p AU to add uses to make /// sure the analyses required by \p createLegacyPMAAResults are available. void getAAResultsAnalysisUsage(AnalysisUsage &AU); } // end namespace llvm #endif // LLVM_ANALYSIS_ALIASANALYSIS_H