//===- ValueLattice.h - Value constraint analysis ---------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_VALUELATTICE_H #define LLVM_ANALYSIS_VALUELATTICE_H #include "llvm/IR/ConstantRange.h" #include "llvm/IR/Constants.h" // //===----------------------------------------------------------------------===// // ValueLatticeElement //===----------------------------------------------------------------------===// /// This class represents lattice values for constants. /// /// FIXME: This is basically just for bringup, this can be made a lot more rich /// in the future. /// namespace llvm { class ValueLatticeElement { enum ValueLatticeElementTy { /// This Value has no known value yet. As a result, this implies the /// producing instruction is dead. Caution: We use this as the starting /// state in our local meet rules. In this usage, it's taken to mean /// "nothing known yet". undefined, /// This Value has a specific constant value. (For constant integers, /// constantrange is used instead. Integer typed constantexprs can appear /// as constant.) constant, /// This Value is known to not have the specified value. (For constant /// integers, constantrange is used instead. As above, integer typed /// constantexprs can appear here.) notconstant, /// The Value falls within this range. (Used only for integer typed values.) constantrange, /// We can not precisely model the dynamic values this value might take. overdefined }; ValueLatticeElementTy Tag; /// The union either stores a pointer to a constant or a constant range, /// associated to the lattice element. We have to ensure that Range is /// initialized or destroyed when changing state to or from constantrange. union { Constant *ConstVal; ConstantRange Range; }; public: // Const and Range are initialized on-demand. ValueLatticeElement() : Tag(undefined) {} /// Custom destructor to ensure Range is properly destroyed, when the object /// is deallocated. ~ValueLatticeElement() { switch (Tag) { case overdefined: case undefined: case constant: case notconstant: break; case constantrange: Range.~ConstantRange(); break; }; } /// Custom copy constructor, to ensure Range gets initialized when /// copying a constant range lattice element. ValueLatticeElement(const ValueLatticeElement &Other) : Tag(undefined) { *this = Other; } /// Custom assignment operator, to ensure Range gets initialized when /// assigning a constant range lattice element. ValueLatticeElement &operator=(const ValueLatticeElement &Other) { // If we change the state of this from constant range to non constant range, // destroy Range. if (isConstantRange() && !Other.isConstantRange()) Range.~ConstantRange(); // If we change the state of this from a valid ConstVal to another a state // without a valid ConstVal, zero the pointer. if ((isConstant() || isNotConstant()) && !Other.isConstant() && !Other.isNotConstant()) ConstVal = nullptr; switch (Other.Tag) { case constantrange: if (!isConstantRange()) new (&Range) ConstantRange(Other.Range); else Range = Other.Range; break; case constant: case notconstant: ConstVal = Other.ConstVal; break; case overdefined: case undefined: break; } Tag = Other.Tag; return *this; } static ValueLatticeElement get(Constant *C) { ValueLatticeElement Res; if (!isa<UndefValue>(C)) Res.markConstant(C); return Res; } static ValueLatticeElement getNot(Constant *C) { ValueLatticeElement Res; if (!isa<UndefValue>(C)) Res.markNotConstant(C); return Res; } static ValueLatticeElement getRange(ConstantRange CR) { ValueLatticeElement Res; Res.markConstantRange(std::move(CR)); return Res; } static ValueLatticeElement getOverdefined() { ValueLatticeElement Res; Res.markOverdefined(); return Res; } bool isUndefined() const { return Tag == undefined; } bool isConstant() const { return Tag == constant; } bool isNotConstant() const { return Tag == notconstant; } bool isConstantRange() const { return Tag == constantrange; } bool isOverdefined() const { return Tag == overdefined; } Constant *getConstant() const { assert(isConstant() && "Cannot get the constant of a non-constant!"); return ConstVal; } Constant *getNotConstant() const { assert(isNotConstant() && "Cannot get the constant of a non-notconstant!"); return ConstVal; } const ConstantRange &getConstantRange() const { assert(isConstantRange() && "Cannot get the constant-range of a non-constant-range!"); return Range; } Optional<APInt> asConstantInteger() const { if (isConstant() && isa<ConstantInt>(getConstant())) { return cast<ConstantInt>(getConstant())->getValue(); } else if (isConstantRange() && getConstantRange().isSingleElement()) { return *getConstantRange().getSingleElement(); } return None; } private: void markOverdefined() { if (isOverdefined()) return; if (isConstant() || isNotConstant()) ConstVal = nullptr; if (isConstantRange()) Range.~ConstantRange(); Tag = overdefined; } void markConstant(Constant *V) { assert(V && "Marking constant with NULL"); if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { markConstantRange(ConstantRange(CI->getValue())); return; } if (isa<UndefValue>(V)) return; assert((!isConstant() || getConstant() == V) && "Marking constant with different value"); assert(isUndefined()); Tag = constant; ConstVal = V; } void markNotConstant(Constant *V) { assert(V && "Marking constant with NULL"); if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { markConstantRange(ConstantRange(CI->getValue() + 1, CI->getValue())); return; } if (isa<UndefValue>(V)) return; assert((!isConstant() || getConstant() != V) && "Marking constant !constant with same value"); assert((!isNotConstant() || getNotConstant() == V) && "Marking !constant with different value"); assert(isUndefined() || isConstant()); Tag = notconstant; ConstVal = V; } void markConstantRange(ConstantRange NewR) { if (isConstantRange()) { if (NewR.isEmptySet()) markOverdefined(); else { Range = std::move(NewR); } return; } assert(isUndefined()); if (NewR.isEmptySet()) markOverdefined(); else { Tag = constantrange; new (&Range) ConstantRange(std::move(NewR)); } } public: /// Updates this object to approximate both this object and RHS. Returns /// true if this object has been changed. bool mergeIn(const ValueLatticeElement &RHS, const DataLayout &DL) { if (RHS.isUndefined() || isOverdefined()) return false; if (RHS.isOverdefined()) { markOverdefined(); return true; } if (isUndefined()) { *this = RHS; return !RHS.isUndefined(); } if (isConstant()) { if (RHS.isConstant() && getConstant() == RHS.getConstant()) return false; markOverdefined(); return true; } if (isNotConstant()) { if (RHS.isNotConstant() && getNotConstant() == RHS.getNotConstant()) return false; markOverdefined(); return true; } assert(isConstantRange() && "New ValueLattice type?"); if (!RHS.isConstantRange()) { // We can get here if we've encountered a constantexpr of integer type // and merge it with a constantrange. markOverdefined(); return true; } ConstantRange NewR = getConstantRange().unionWith(RHS.getConstantRange()); if (NewR.isFullSet()) markOverdefined(); else markConstantRange(std::move(NewR)); return true; } ConstantInt *getConstantInt() const { assert(isConstant() && isa<ConstantInt>(getConstant()) && "No integer constant"); return cast<ConstantInt>(getConstant()); } /// Compares this symbolic value with Other using Pred and returns either /// true, false or undef constants, or nullptr if the comparison cannot be /// evaluated. Constant *getCompare(CmpInst::Predicate Pred, Type *Ty, const ValueLatticeElement &Other) const { if (isUndefined() || Other.isUndefined()) return UndefValue::get(Ty); if (isConstant() && Other.isConstant()) return ConstantExpr::getCompare(Pred, getConstant(), Other.getConstant()); // Integer constants are represented as ConstantRanges with single // elements. if (!isConstantRange() || !Other.isConstantRange()) return nullptr; const auto &CR = getConstantRange(); const auto &OtherCR = Other.getConstantRange(); if (ConstantRange::makeSatisfyingICmpRegion(Pred, OtherCR).contains(CR)) return ConstantInt::getTrue(Ty); if (ConstantRange::makeSatisfyingICmpRegion( CmpInst::getInversePredicate(Pred), OtherCR) .contains(CR)) return ConstantInt::getFalse(Ty); return nullptr; } }; raw_ostream &operator<<(raw_ostream &OS, const ValueLatticeElement &Val); } // end namespace llvm #endif