//===- llvm/CodeGen/MachineFunction.h ---------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Collect native machine code for a function. This class contains a list of // MachineBasicBlock instances that make up the current compiled function. // // This class also contains pointers to various classes which hold // target-specific information about the generated code. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_MACHINEFUNCTION_H #define LLVM_CODEGEN_MACHINEFUNCTION_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/ilist.h" #include "llvm/ADT/iterator.h" #include "llvm/Analysis/EHPersonalities.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Metadata.h" #include "llvm/MC/MCDwarf.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/ArrayRecycler.h" #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Recycler.h" #include <cassert> #include <cstdint> #include <memory> #include <utility> #include <vector> namespace llvm { class BasicBlock; class BlockAddress; class DataLayout; class DIExpression; class DILocalVariable; class DILocation; class Function; class GlobalValue; class MachineConstantPool; class MachineFrameInfo; class MachineFunction; class MachineJumpTableInfo; class MachineModuleInfo; class MachineRegisterInfo; class MCContext; class MCInstrDesc; class Pass; class PseudoSourceValueManager; class raw_ostream; class SlotIndexes; class TargetMachine; class TargetRegisterClass; class TargetSubtargetInfo; struct WinEHFuncInfo; template <> struct ilist_alloc_traits<MachineBasicBlock> { void deleteNode(MachineBasicBlock *MBB); }; template <> struct ilist_callback_traits<MachineBasicBlock> { void addNodeToList(MachineBasicBlock* MBB); void removeNodeFromList(MachineBasicBlock* MBB); template <class Iterator> void transferNodesFromList(ilist_callback_traits &OldList, Iterator, Iterator) { llvm_unreachable("Never transfer between lists"); } }; /// MachineFunctionInfo - This class can be derived from and used by targets to /// hold private target-specific information for each MachineFunction. Objects /// of type are accessed/created with MF::getInfo and destroyed when the /// MachineFunction is destroyed. struct MachineFunctionInfo { virtual ~MachineFunctionInfo(); /// \brief Factory function: default behavior is to call new using the /// supplied allocator. /// /// This function can be overridden in a derive class. template<typename Ty> static Ty *create(BumpPtrAllocator &Allocator, MachineFunction &MF) { return new (Allocator.Allocate<Ty>()) Ty(MF); } }; /// Properties which a MachineFunction may have at a given point in time. /// Each of these has checking code in the MachineVerifier, and passes can /// require that a property be set. class MachineFunctionProperties { // Possible TODO: Allow targets to extend this (perhaps by allowing the // constructor to specify the size of the bit vector) // Possible TODO: Allow requiring the negative (e.g. VRegsAllocated could be // stated as the negative of "has vregs" public: // The properties are stated in "positive" form; i.e. a pass could require // that the property hold, but not that it does not hold. // Property descriptions: // IsSSA: True when the machine function is in SSA form and virtual registers // have a single def. // NoPHIs: The machine function does not contain any PHI instruction. // TracksLiveness: True when tracking register liveness accurately. // While this property is set, register liveness information in basic block // live-in lists and machine instruction operands (e.g. kill flags, implicit // defs) is accurate. This means it can be used to change the code in ways // that affect the values in registers, for example by the register // scavenger. // When this property is clear, liveness is no longer reliable. // NoVRegs: The machine function does not use any virtual registers. // Legalized: In GlobalISel: the MachineLegalizer ran and all pre-isel generic // instructions have been legalized; i.e., all instructions are now one of: // - generic and always legal (e.g., COPY) // - target-specific // - legal pre-isel generic instructions. // RegBankSelected: In GlobalISel: the RegBankSelect pass ran and all generic // virtual registers have been assigned to a register bank. // Selected: In GlobalISel: the InstructionSelect pass ran and all pre-isel // generic instructions have been eliminated; i.e., all instructions are now // target-specific or non-pre-isel generic instructions (e.g., COPY). // Since only pre-isel generic instructions can have generic virtual register // operands, this also means that all generic virtual registers have been // constrained to virtual registers (assigned to register classes) and that // all sizes attached to them have been eliminated. enum class Property : unsigned { IsSSA, NoPHIs, TracksLiveness, NoVRegs, FailedISel, Legalized, RegBankSelected, Selected, LastProperty = Selected, }; bool hasProperty(Property P) const { return Properties[static_cast<unsigned>(P)]; } MachineFunctionProperties &set(Property P) { Properties.set(static_cast<unsigned>(P)); return *this; } MachineFunctionProperties &reset(Property P) { Properties.reset(static_cast<unsigned>(P)); return *this; } /// Reset all the properties. MachineFunctionProperties &reset() { Properties.reset(); return *this; } MachineFunctionProperties &set(const MachineFunctionProperties &MFP) { Properties |= MFP.Properties; return *this; } MachineFunctionProperties &reset(const MachineFunctionProperties &MFP) { Properties.reset(MFP.Properties); return *this; } // Returns true if all properties set in V (i.e. required by a pass) are set // in this. bool verifyRequiredProperties(const MachineFunctionProperties &V) const { return !V.Properties.test(Properties); } /// Print the MachineFunctionProperties in human-readable form. void print(raw_ostream &OS) const; private: BitVector Properties = BitVector(static_cast<unsigned>(Property::LastProperty)+1); }; struct SEHHandler { /// Filter or finally function. Null indicates a catch-all. const Function *FilterOrFinally; /// Address of block to recover at. Null for a finally handler. const BlockAddress *RecoverBA; }; /// This structure is used to retain landing pad info for the current function. struct LandingPadInfo { MachineBasicBlock *LandingPadBlock; // Landing pad block. SmallVector<MCSymbol *, 1> BeginLabels; // Labels prior to invoke. SmallVector<MCSymbol *, 1> EndLabels; // Labels after invoke. SmallVector<SEHHandler, 1> SEHHandlers; // SEH handlers active at this lpad. MCSymbol *LandingPadLabel = nullptr; // Label at beginning of landing pad. std::vector<int> TypeIds; // List of type ids (filters negative). explicit LandingPadInfo(MachineBasicBlock *MBB) : LandingPadBlock(MBB) {} }; class MachineFunction { const Function &F; const TargetMachine &Target; const TargetSubtargetInfo *STI; MCContext &Ctx; MachineModuleInfo &MMI; // RegInfo - Information about each register in use in the function. MachineRegisterInfo *RegInfo; // Used to keep track of target-specific per-machine function information for // the target implementation. MachineFunctionInfo *MFInfo; // Keep track of objects allocated on the stack. MachineFrameInfo *FrameInfo; // Keep track of constants which are spilled to memory MachineConstantPool *ConstantPool; // Keep track of jump tables for switch instructions MachineJumpTableInfo *JumpTableInfo; // Keeps track of Windows exception handling related data. This will be null // for functions that aren't using a funclet-based EH personality. WinEHFuncInfo *WinEHInfo = nullptr; // Function-level unique numbering for MachineBasicBlocks. When a // MachineBasicBlock is inserted into a MachineFunction is it automatically // numbered and this vector keeps track of the mapping from ID's to MBB's. std::vector<MachineBasicBlock*> MBBNumbering; // Pool-allocate MachineFunction-lifetime and IR objects. BumpPtrAllocator Allocator; // Allocation management for instructions in function. Recycler<MachineInstr> InstructionRecycler; // Allocation management for operand arrays on instructions. ArrayRecycler<MachineOperand> OperandRecycler; // Allocation management for basic blocks in function. Recycler<MachineBasicBlock> BasicBlockRecycler; // List of machine basic blocks in function using BasicBlockListType = ilist<MachineBasicBlock>; BasicBlockListType BasicBlocks; /// FunctionNumber - This provides a unique ID for each function emitted in /// this translation unit. /// unsigned FunctionNumber; /// Alignment - The alignment of the function. unsigned Alignment; /// ExposesReturnsTwice - True if the function calls setjmp or related /// functions with attribute "returns twice", but doesn't have /// the attribute itself. /// This is used to limit optimizations which cannot reason /// about the control flow of such functions. bool ExposesReturnsTwice = false; /// True if the function includes any inline assembly. bool HasInlineAsm = false; /// True if any WinCFI instruction have been emitted in this function. Optional<bool> HasWinCFI; /// Current high-level properties of the IR of the function (e.g. is in SSA /// form or whether registers have been allocated) MachineFunctionProperties Properties; // Allocation management for pseudo source values. std::unique_ptr<PseudoSourceValueManager> PSVManager; /// List of moves done by a function's prolog. Used to construct frame maps /// by debug and exception handling consumers. std::vector<MCCFIInstruction> FrameInstructions; /// \name Exception Handling /// \{ /// List of LandingPadInfo describing the landing pad information. std::vector<LandingPadInfo> LandingPads; /// Map a landing pad's EH symbol to the call site indexes. DenseMap<MCSymbol*, SmallVector<unsigned, 4>> LPadToCallSiteMap; /// Map of invoke call site index values to associated begin EH_LABEL. DenseMap<MCSymbol*, unsigned> CallSiteMap; /// CodeView label annotations. std::vector<std::pair<MCSymbol *, MDNode *>> CodeViewAnnotations; bool CallsEHReturn = false; bool CallsUnwindInit = false; bool HasEHFunclets = false; /// List of C++ TypeInfo used. std::vector<const GlobalValue *> TypeInfos; /// List of typeids encoding filters used. std::vector<unsigned> FilterIds; /// List of the indices in FilterIds corresponding to filter terminators. std::vector<unsigned> FilterEnds; EHPersonality PersonalityTypeCache = EHPersonality::Unknown; /// \} /// Clear all the members of this MachineFunction, but the ones used /// to initialize again the MachineFunction. /// More specifically, this deallocates all the dynamically allocated /// objects and get rid of all the XXXInfo data structure, but keep /// unchanged the references to Fn, Target, MMI, and FunctionNumber. void clear(); /// Allocate and initialize the different members. /// In particular, the XXXInfo data structure. /// \pre Fn, Target, MMI, and FunctionNumber are properly set. void init(); public: struct VariableDbgInfo { const DILocalVariable *Var; const DIExpression *Expr; unsigned Slot; const DILocation *Loc; VariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr, unsigned Slot, const DILocation *Loc) : Var(Var), Expr(Expr), Slot(Slot), Loc(Loc) {} }; using VariableDbgInfoMapTy = SmallVector<VariableDbgInfo, 4>; VariableDbgInfoMapTy VariableDbgInfos; MachineFunction(const Function &F, const TargetMachine &TM, const TargetSubtargetInfo &STI, unsigned FunctionNum, MachineModuleInfo &MMI); MachineFunction(const MachineFunction &) = delete; MachineFunction &operator=(const MachineFunction &) = delete; ~MachineFunction(); /// Reset the instance as if it was just created. void reset() { clear(); init(); } MachineModuleInfo &getMMI() const { return MMI; } MCContext &getContext() const { return Ctx; } PseudoSourceValueManager &getPSVManager() const { return *PSVManager; } /// Return the DataLayout attached to the Module associated to this MF. const DataLayout &getDataLayout() const; /// Return the LLVM function that this machine code represents const Function &getFunction() const { return F; } /// getName - Return the name of the corresponding LLVM function. StringRef getName() const; /// getFunctionNumber - Return a unique ID for the current function. unsigned getFunctionNumber() const { return FunctionNumber; } /// getTarget - Return the target machine this machine code is compiled with const TargetMachine &getTarget() const { return Target; } /// getSubtarget - Return the subtarget for which this machine code is being /// compiled. const TargetSubtargetInfo &getSubtarget() const { return *STI; } void setSubtarget(const TargetSubtargetInfo *ST) { STI = ST; } /// getSubtarget - This method returns a pointer to the specified type of /// TargetSubtargetInfo. In debug builds, it verifies that the object being /// returned is of the correct type. template<typename STC> const STC &getSubtarget() const { return *static_cast<const STC *>(STI); } /// getRegInfo - Return information about the registers currently in use. MachineRegisterInfo &getRegInfo() { return *RegInfo; } const MachineRegisterInfo &getRegInfo() const { return *RegInfo; } /// getFrameInfo - Return the frame info object for the current function. /// This object contains information about objects allocated on the stack /// frame of the current function in an abstract way. MachineFrameInfo &getFrameInfo() { return *FrameInfo; } const MachineFrameInfo &getFrameInfo() const { return *FrameInfo; } /// getJumpTableInfo - Return the jump table info object for the current /// function. This object contains information about jump tables in the /// current function. If the current function has no jump tables, this will /// return null. const MachineJumpTableInfo *getJumpTableInfo() const { return JumpTableInfo; } MachineJumpTableInfo *getJumpTableInfo() { return JumpTableInfo; } /// getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it /// does already exist, allocate one. MachineJumpTableInfo *getOrCreateJumpTableInfo(unsigned JTEntryKind); /// getConstantPool - Return the constant pool object for the current /// function. MachineConstantPool *getConstantPool() { return ConstantPool; } const MachineConstantPool *getConstantPool() const { return ConstantPool; } /// getWinEHFuncInfo - Return information about how the current function uses /// Windows exception handling. Returns null for functions that don't use /// funclets for exception handling. const WinEHFuncInfo *getWinEHFuncInfo() const { return WinEHInfo; } WinEHFuncInfo *getWinEHFuncInfo() { return WinEHInfo; } /// getAlignment - Return the alignment (log2, not bytes) of the function. unsigned getAlignment() const { return Alignment; } /// setAlignment - Set the alignment (log2, not bytes) of the function. void setAlignment(unsigned A) { Alignment = A; } /// ensureAlignment - Make sure the function is at least 1 << A bytes aligned. void ensureAlignment(unsigned A) { if (Alignment < A) Alignment = A; } /// exposesReturnsTwice - Returns true if the function calls setjmp or /// any other similar functions with attribute "returns twice" without /// having the attribute itself. bool exposesReturnsTwice() const { return ExposesReturnsTwice; } /// setCallsSetJmp - Set a flag that indicates if there's a call to /// a "returns twice" function. void setExposesReturnsTwice(bool B) { ExposesReturnsTwice = B; } /// Returns true if the function contains any inline assembly. bool hasInlineAsm() const { return HasInlineAsm; } /// Set a flag that indicates that the function contains inline assembly. void setHasInlineAsm(bool B) { HasInlineAsm = B; } bool hasWinCFI() const { assert(HasWinCFI.hasValue() && "HasWinCFI not set yet!"); return *HasWinCFI; } void setHasWinCFI(bool v) { HasWinCFI = v; } /// Get the function properties const MachineFunctionProperties &getProperties() const { return Properties; } MachineFunctionProperties &getProperties() { return Properties; } /// getInfo - Keep track of various per-function pieces of information for /// backends that would like to do so. /// template<typename Ty> Ty *getInfo() { if (!MFInfo) MFInfo = Ty::template create<Ty>(Allocator, *this); return static_cast<Ty*>(MFInfo); } template<typename Ty> const Ty *getInfo() const { return const_cast<MachineFunction*>(this)->getInfo<Ty>(); } /// getBlockNumbered - MachineBasicBlocks are automatically numbered when they /// are inserted into the machine function. The block number for a machine /// basic block can be found by using the MBB::getNumber method, this method /// provides the inverse mapping. MachineBasicBlock *getBlockNumbered(unsigned N) const { assert(N < MBBNumbering.size() && "Illegal block number"); assert(MBBNumbering[N] && "Block was removed from the machine function!"); return MBBNumbering[N]; } /// Should we be emitting segmented stack stuff for the function bool shouldSplitStack() const; /// getNumBlockIDs - Return the number of MBB ID's allocated. unsigned getNumBlockIDs() const { return (unsigned)MBBNumbering.size(); } /// RenumberBlocks - This discards all of the MachineBasicBlock numbers and /// recomputes them. This guarantees that the MBB numbers are sequential, /// dense, and match the ordering of the blocks within the function. If a /// specific MachineBasicBlock is specified, only that block and those after /// it are renumbered. void RenumberBlocks(MachineBasicBlock *MBBFrom = nullptr); /// print - Print out the MachineFunction in a format suitable for debugging /// to the specified stream. void print(raw_ostream &OS, const SlotIndexes* = nullptr) const; /// viewCFG - This function is meant for use from the debugger. You can just /// say 'call F->viewCFG()' and a ghostview window should pop up from the /// program, displaying the CFG of the current function with the code for each /// basic block inside. This depends on there being a 'dot' and 'gv' program /// in your path. void viewCFG() const; /// viewCFGOnly - This function is meant for use from the debugger. It works /// just like viewCFG, but it does not include the contents of basic blocks /// into the nodes, just the label. If you are only interested in the CFG /// this can make the graph smaller. /// void viewCFGOnly() const; /// dump - Print the current MachineFunction to cerr, useful for debugger use. void dump() const; /// Run the current MachineFunction through the machine code verifier, useful /// for debugger use. /// \returns true if no problems were found. bool verify(Pass *p = nullptr, const char *Banner = nullptr, bool AbortOnError = true) const; // Provide accessors for the MachineBasicBlock list... using iterator = BasicBlockListType::iterator; using const_iterator = BasicBlockListType::const_iterator; using const_reverse_iterator = BasicBlockListType::const_reverse_iterator; using reverse_iterator = BasicBlockListType::reverse_iterator; /// Support for MachineBasicBlock::getNextNode(). static BasicBlockListType MachineFunction::* getSublistAccess(MachineBasicBlock *) { return &MachineFunction::BasicBlocks; } /// addLiveIn - Add the specified physical register as a live-in value and /// create a corresponding virtual register for it. unsigned addLiveIn(unsigned PReg, const TargetRegisterClass *RC); //===--------------------------------------------------------------------===// // BasicBlock accessor functions. // iterator begin() { return BasicBlocks.begin(); } const_iterator begin() const { return BasicBlocks.begin(); } iterator end () { return BasicBlocks.end(); } const_iterator end () const { return BasicBlocks.end(); } reverse_iterator rbegin() { return BasicBlocks.rbegin(); } const_reverse_iterator rbegin() const { return BasicBlocks.rbegin(); } reverse_iterator rend () { return BasicBlocks.rend(); } const_reverse_iterator rend () const { return BasicBlocks.rend(); } unsigned size() const { return (unsigned)BasicBlocks.size();} bool empty() const { return BasicBlocks.empty(); } const MachineBasicBlock &front() const { return BasicBlocks.front(); } MachineBasicBlock &front() { return BasicBlocks.front(); } const MachineBasicBlock & back() const { return BasicBlocks.back(); } MachineBasicBlock & back() { return BasicBlocks.back(); } void push_back (MachineBasicBlock *MBB) { BasicBlocks.push_back (MBB); } void push_front(MachineBasicBlock *MBB) { BasicBlocks.push_front(MBB); } void insert(iterator MBBI, MachineBasicBlock *MBB) { BasicBlocks.insert(MBBI, MBB); } void splice(iterator InsertPt, iterator MBBI) { BasicBlocks.splice(InsertPt, BasicBlocks, MBBI); } void splice(iterator InsertPt, MachineBasicBlock *MBB) { BasicBlocks.splice(InsertPt, BasicBlocks, MBB); } void splice(iterator InsertPt, iterator MBBI, iterator MBBE) { BasicBlocks.splice(InsertPt, BasicBlocks, MBBI, MBBE); } void remove(iterator MBBI) { BasicBlocks.remove(MBBI); } void remove(MachineBasicBlock *MBBI) { BasicBlocks.remove(MBBI); } void erase(iterator MBBI) { BasicBlocks.erase(MBBI); } void erase(MachineBasicBlock *MBBI) { BasicBlocks.erase(MBBI); } template <typename Comp> void sort(Comp comp) { BasicBlocks.sort(comp); } //===--------------------------------------------------------------------===// // Internal functions used to automatically number MachineBasicBlocks /// \brief Adds the MBB to the internal numbering. Returns the unique number /// assigned to the MBB. unsigned addToMBBNumbering(MachineBasicBlock *MBB) { MBBNumbering.push_back(MBB); return (unsigned)MBBNumbering.size()-1; } /// removeFromMBBNumbering - Remove the specific machine basic block from our /// tracker, this is only really to be used by the MachineBasicBlock /// implementation. void removeFromMBBNumbering(unsigned N) { assert(N < MBBNumbering.size() && "Illegal basic block #"); MBBNumbering[N] = nullptr; } /// CreateMachineInstr - Allocate a new MachineInstr. Use this instead /// of `new MachineInstr'. MachineInstr *CreateMachineInstr(const MCInstrDesc &MCID, const DebugLoc &DL, bool NoImp = false); /// Create a new MachineInstr which is a copy of \p Orig, identical in all /// ways except the instruction has no parent, prev, or next. Bundling flags /// are reset. /// /// Note: Clones a single instruction, not whole instruction bundles. /// Does not perform target specific adjustments; consider using /// TargetInstrInfo::duplicate() instead. MachineInstr *CloneMachineInstr(const MachineInstr *Orig); /// Clones instruction or the whole instruction bundle \p Orig and insert /// into \p MBB before \p InsertBefore. /// /// Note: Does not perform target specific adjustments; consider using /// TargetInstrInfo::duplicate() intead. MachineInstr &CloneMachineInstrBundle(MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig); /// DeleteMachineInstr - Delete the given MachineInstr. void DeleteMachineInstr(MachineInstr *MI); /// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this /// instead of `new MachineBasicBlock'. MachineBasicBlock *CreateMachineBasicBlock(const BasicBlock *bb = nullptr); /// DeleteMachineBasicBlock - Delete the given MachineBasicBlock. void DeleteMachineBasicBlock(MachineBasicBlock *MBB); /// getMachineMemOperand - Allocate a new MachineMemOperand. /// MachineMemOperands are owned by the MachineFunction and need not be /// explicitly deallocated. MachineMemOperand *getMachineMemOperand( MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s, unsigned base_alignment, const AAMDNodes &AAInfo = AAMDNodes(), const MDNode *Ranges = nullptr, SyncScope::ID SSID = SyncScope::System, AtomicOrdering Ordering = AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic); /// getMachineMemOperand - Allocate a new MachineMemOperand by copying /// an existing one, adjusting by an offset and using the given size. /// MachineMemOperands are owned by the MachineFunction and need not be /// explicitly deallocated. MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO, int64_t Offset, uint64_t Size); /// Allocate a new MachineMemOperand by copying an existing one, /// replacing only AliasAnalysis information. MachineMemOperands are owned /// by the MachineFunction and need not be explicitly deallocated. MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO, const AAMDNodes &AAInfo); using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity; /// Allocate an array of MachineOperands. This is only intended for use by /// internal MachineInstr functions. MachineOperand *allocateOperandArray(OperandCapacity Cap) { return OperandRecycler.allocate(Cap, Allocator); } /// Dellocate an array of MachineOperands and recycle the memory. This is /// only intended for use by internal MachineInstr functions. /// Cap must be the same capacity that was used to allocate the array. void deallocateOperandArray(OperandCapacity Cap, MachineOperand *Array) { OperandRecycler.deallocate(Cap, Array); } /// \brief Allocate and initialize a register mask with @p NumRegister bits. uint32_t *allocateRegisterMask(unsigned NumRegister) { unsigned Size = (NumRegister + 31) / 32; uint32_t *Mask = Allocator.Allocate<uint32_t>(Size); for (unsigned i = 0; i != Size; ++i) Mask[i] = 0; return Mask; } /// allocateMemRefsArray - Allocate an array to hold MachineMemOperand /// pointers. This array is owned by the MachineFunction. MachineInstr::mmo_iterator allocateMemRefsArray(unsigned long Num); /// extractLoadMemRefs - Allocate an array and populate it with just the /// load information from the given MachineMemOperand sequence. std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> extractLoadMemRefs(MachineInstr::mmo_iterator Begin, MachineInstr::mmo_iterator End); /// extractStoreMemRefs - Allocate an array and populate it with just the /// store information from the given MachineMemOperand sequence. std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> extractStoreMemRefs(MachineInstr::mmo_iterator Begin, MachineInstr::mmo_iterator End); /// Allocate a string and populate it with the given external symbol name. const char *createExternalSymbolName(StringRef Name); //===--------------------------------------------------------------------===// // Label Manipulation. /// getJTISymbol - Return the MCSymbol for the specified non-empty jump table. /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a /// normal 'L' label is returned. MCSymbol *getJTISymbol(unsigned JTI, MCContext &Ctx, bool isLinkerPrivate = false) const; /// getPICBaseSymbol - Return a function-local symbol to represent the PIC /// base. MCSymbol *getPICBaseSymbol() const; /// Returns a reference to a list of cfi instructions in the function's /// prologue. Used to construct frame maps for debug and exception handling /// comsumers. const std::vector<MCCFIInstruction> &getFrameInstructions() const { return FrameInstructions; } LLVM_NODISCARD unsigned addFrameInst(const MCCFIInstruction &Inst) { FrameInstructions.push_back(Inst); return FrameInstructions.size() - 1; } /// \name Exception Handling /// \{ bool callsEHReturn() const { return CallsEHReturn; } void setCallsEHReturn(bool b) { CallsEHReturn = b; } bool callsUnwindInit() const { return CallsUnwindInit; } void setCallsUnwindInit(bool b) { CallsUnwindInit = b; } bool hasEHFunclets() const { return HasEHFunclets; } void setHasEHFunclets(bool V) { HasEHFunclets = V; } /// Find or create an LandingPadInfo for the specified MachineBasicBlock. LandingPadInfo &getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad); /// Remap landing pad labels and remove any deleted landing pads. void tidyLandingPads(DenseMap<MCSymbol*, uintptr_t> *LPMap = nullptr); /// Return a reference to the landing pad info for the current function. const std::vector<LandingPadInfo> &getLandingPads() const { return LandingPads; } /// Provide the begin and end labels of an invoke style call and associate it /// with a try landing pad block. void addInvoke(MachineBasicBlock *LandingPad, MCSymbol *BeginLabel, MCSymbol *EndLabel); /// Add a new panding pad. Returns the label ID for the landing pad entry. MCSymbol *addLandingPad(MachineBasicBlock *LandingPad); /// Provide the catch typeinfo for a landing pad. void addCatchTypeInfo(MachineBasicBlock *LandingPad, ArrayRef<const GlobalValue *> TyInfo); /// Provide the filter typeinfo for a landing pad. void addFilterTypeInfo(MachineBasicBlock *LandingPad, ArrayRef<const GlobalValue *> TyInfo); /// Add a cleanup action for a landing pad. void addCleanup(MachineBasicBlock *LandingPad); void addSEHCatchHandler(MachineBasicBlock *LandingPad, const Function *Filter, const BlockAddress *RecoverLabel); void addSEHCleanupHandler(MachineBasicBlock *LandingPad, const Function *Cleanup); /// Return the type id for the specified typeinfo. This is function wide. unsigned getTypeIDFor(const GlobalValue *TI); /// Return the id of the filter encoded by TyIds. This is function wide. int getFilterIDFor(std::vector<unsigned> &TyIds); /// Map the landing pad's EH symbol to the call site indexes. void setCallSiteLandingPad(MCSymbol *Sym, ArrayRef<unsigned> Sites); /// Get the call site indexes for a landing pad EH symbol. SmallVectorImpl<unsigned> &getCallSiteLandingPad(MCSymbol *Sym) { assert(hasCallSiteLandingPad(Sym) && "missing call site number for landing pad!"); return LPadToCallSiteMap[Sym]; } /// Return true if the landing pad Eh symbol has an associated call site. bool hasCallSiteLandingPad(MCSymbol *Sym) { return !LPadToCallSiteMap[Sym].empty(); } /// Map the begin label for a call site. void setCallSiteBeginLabel(MCSymbol *BeginLabel, unsigned Site) { CallSiteMap[BeginLabel] = Site; } /// Get the call site number for a begin label. unsigned getCallSiteBeginLabel(MCSymbol *BeginLabel) const { assert(hasCallSiteBeginLabel(BeginLabel) && "Missing call site number for EH_LABEL!"); return CallSiteMap.lookup(BeginLabel); } /// Return true if the begin label has a call site number associated with it. bool hasCallSiteBeginLabel(MCSymbol *BeginLabel) const { return CallSiteMap.count(BeginLabel); } /// Record annotations associated with a particular label. void addCodeViewAnnotation(MCSymbol *Label, MDNode *MD) { CodeViewAnnotations.push_back({Label, MD}); } ArrayRef<std::pair<MCSymbol *, MDNode *>> getCodeViewAnnotations() const { return CodeViewAnnotations; } /// Return a reference to the C++ typeinfo for the current function. const std::vector<const GlobalValue *> &getTypeInfos() const { return TypeInfos; } /// Return a reference to the typeids encoding filters used in the current /// function. const std::vector<unsigned> &getFilterIds() const { return FilterIds; } /// \} /// Collect information used to emit debugging information of a variable. void setVariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr, unsigned Slot, const DILocation *Loc) { VariableDbgInfos.emplace_back(Var, Expr, Slot, Loc); } VariableDbgInfoMapTy &getVariableDbgInfo() { return VariableDbgInfos; } const VariableDbgInfoMapTy &getVariableDbgInfo() const { return VariableDbgInfos; } }; /// \name Exception Handling /// \{ /// Extract the exception handling information from the landingpad instruction /// and add them to the specified machine module info. void addLandingPadInfo(const LandingPadInst &I, MachineBasicBlock &MBB); /// \} //===--------------------------------------------------------------------===// // GraphTraits specializations for function basic block graphs (CFGs) //===--------------------------------------------------------------------===// // Provide specializations of GraphTraits to be able to treat a // machine function as a graph of machine basic blocks... these are // the same as the machine basic block iterators, except that the root // node is implicitly the first node of the function. // template <> struct GraphTraits<MachineFunction*> : public GraphTraits<MachineBasicBlock*> { static NodeRef getEntryNode(MachineFunction *F) { return &F->front(); } // nodes_iterator/begin/end - Allow iteration over all nodes in the graph using nodes_iterator = pointer_iterator<MachineFunction::iterator>; static nodes_iterator nodes_begin(MachineFunction *F) { return nodes_iterator(F->begin()); } static nodes_iterator nodes_end(MachineFunction *F) { return nodes_iterator(F->end()); } static unsigned size (MachineFunction *F) { return F->size(); } }; template <> struct GraphTraits<const MachineFunction*> : public GraphTraits<const MachineBasicBlock*> { static NodeRef getEntryNode(const MachineFunction *F) { return &F->front(); } // nodes_iterator/begin/end - Allow iteration over all nodes in the graph using nodes_iterator = pointer_iterator<MachineFunction::const_iterator>; static nodes_iterator nodes_begin(const MachineFunction *F) { return nodes_iterator(F->begin()); } static nodes_iterator nodes_end (const MachineFunction *F) { return nodes_iterator(F->end()); } static unsigned size (const MachineFunction *F) { return F->size(); } }; // Provide specializations of GraphTraits to be able to treat a function as a // graph of basic blocks... and to walk it in inverse order. Inverse order for // a function is considered to be when traversing the predecessor edges of a BB // instead of the successor edges. // template <> struct GraphTraits<Inverse<MachineFunction*>> : public GraphTraits<Inverse<MachineBasicBlock*>> { static NodeRef getEntryNode(Inverse<MachineFunction *> G) { return &G.Graph->front(); } }; template <> struct GraphTraits<Inverse<const MachineFunction*>> : public GraphTraits<Inverse<const MachineBasicBlock*>> { static NodeRef getEntryNode(Inverse<const MachineFunction *> G) { return &G.Graph->front(); } }; } // end namespace llvm #endif // LLVM_CODEGEN_MACHINEFUNCTION_H