//===- MSFCommon.h - Common types and functions for MSF files ---*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef LLVM_DEBUGINFO_MSF_MSFCOMMON_H #define LLVM_DEBUGINFO_MSF_MSFCOMMON_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/BitVector.h" #include "llvm/Support/Endian.h" #include "llvm/Support/Error.h" #include "llvm/Support/MathExtras.h" #include <cstdint> #include <vector> namespace llvm { namespace msf { static const char Magic[] = {'M', 'i', 'c', 'r', 'o', 's', 'o', 'f', 't', ' ', 'C', '/', 'C', '+', '+', ' ', 'M', 'S', 'F', ' ', '7', '.', '0', '0', '\r', '\n', '\x1a', 'D', 'S', '\0', '\0', '\0'}; // The superblock is overlaid at the beginning of the file (offset 0). // It starts with a magic header and is followed by information which // describes the layout of the file system. struct SuperBlock { char MagicBytes[sizeof(Magic)]; // The file system is split into a variable number of fixed size elements. // These elements are referred to as blocks. The size of a block may vary // from system to system. support::ulittle32_t BlockSize; // The index of the free block map. support::ulittle32_t FreeBlockMapBlock; // This contains the number of blocks resident in the file system. In // practice, NumBlocks * BlockSize is equivalent to the size of the MSF // file. support::ulittle32_t NumBlocks; // This contains the number of bytes which make up the directory. support::ulittle32_t NumDirectoryBytes; // This field's purpose is not yet known. support::ulittle32_t Unknown1; // This contains the block # of the block map. support::ulittle32_t BlockMapAddr; }; struct MSFLayout { MSFLayout() = default; uint32_t mainFpmBlock() const { assert(SB->FreeBlockMapBlock == 1 || SB->FreeBlockMapBlock == 2); return SB->FreeBlockMapBlock; } uint32_t alternateFpmBlock() const { // If mainFpmBlock is 1, this is 2. If mainFpmBlock is 2, this is 1. return 3U - mainFpmBlock(); } const SuperBlock *SB = nullptr; BitVector FreePageMap; ArrayRef<support::ulittle32_t> DirectoryBlocks; ArrayRef<support::ulittle32_t> StreamSizes; std::vector<ArrayRef<support::ulittle32_t>> StreamMap; }; /// \brief Describes the layout of a stream in an MSF layout. A "stream" here /// is defined as any logical unit of data which may be arranged inside the MSF /// file as a sequence of (possibly discontiguous) blocks. When we want to read /// from a particular MSF Stream, we fill out a stream layout structure and the /// reader uses it to determine which blocks in the underlying MSF file contain /// the data, so that it can be pieced together in the right order. class MSFStreamLayout { public: uint32_t Length; std::vector<support::ulittle32_t> Blocks; }; /// \brief Determine the layout of the FPM stream, given the MSF layout. An FPM /// stream spans 1 or more blocks, each at equally spaced intervals throughout /// the file. MSFStreamLayout getFpmStreamLayout(const MSFLayout &Msf, bool IncludeUnusedFpmData = false, bool AltFpm = false); inline bool isValidBlockSize(uint32_t Size) { switch (Size) { case 512: case 1024: case 2048: case 4096: return true; } return false; } // Super Block, Fpm0, Fpm1, and Block Map inline uint32_t getMinimumBlockCount() { return 4; } // Super Block, Fpm0, and Fpm1 are reserved. The Block Map, although required // need not be at block 3. inline uint32_t getFirstUnreservedBlock() { return 3; } inline uint64_t bytesToBlocks(uint64_t NumBytes, uint64_t BlockSize) { return divideCeil(NumBytes, BlockSize); } inline uint64_t blockToOffset(uint64_t BlockNumber, uint64_t BlockSize) { return BlockNumber * BlockSize; } inline uint32_t getFpmIntervalLength(const MSFLayout &L) { return L.SB->BlockSize; } /// Given an MSF with the specified block size and number of blocks, determine /// how many pieces the specified Fpm is split into. /// \p BlockSize - the block size of the MSF /// \p NumBlocks - the total number of blocks in the MSF /// \p IncludeUnusedFpmData - When true, this will count every block that is /// both in the file and matches the form of an FPM block, even if some of /// those FPM blocks are unused (a single FPM block can describe the /// allocation status of up to 32,767 blocks, although one appears only /// every 4,096 blocks). So there are 8x as many blocks that match the /// form as there are blocks that are necessary to describe the allocation /// status of the file. When this parameter is false, these extraneous /// trailing blocks are not counted. inline uint32_t getNumFpmIntervals(uint32_t BlockSize, uint32_t NumBlocks, bool IncludeUnusedFpmData, int FpmNumber) { assert(FpmNumber == 1 || FpmNumber == 2); if (IncludeUnusedFpmData) { // This calculation determines how many times a number of the form // BlockSize * k + N appears in the range [0, NumBlocks). We only need to // do this when unused data is included, since the number of blocks dwarfs // the number of fpm blocks. return divideCeil(NumBlocks - FpmNumber, BlockSize); } // We want the minimum number of intervals required, where each interval can // represent BlockSize * 8 blocks. return divideCeil(NumBlocks, 8 * BlockSize); } inline uint32_t getNumFpmIntervals(const MSFLayout &L, bool IncludeUnusedFpmData = false, bool AltFpm = false) { return getNumFpmIntervals(L.SB->BlockSize, L.SB->NumBlocks, IncludeUnusedFpmData, AltFpm ? L.alternateFpmBlock() : L.mainFpmBlock()); } Error validateSuperBlock(const SuperBlock &SB); } // end namespace msf } // end namespace llvm #endif // LLVM_DEBUGINFO_MSF_MSFCOMMON_H