//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains some templates that are useful if you are working with the // STL at all. // // No library is required when using these functions. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_STLEXTRAS_H #define LLVM_ADT_STLEXTRAS_H #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/iterator.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Config/abi-breaking.h" #include "llvm/Support/ErrorHandling.h" #include <algorithm> #include <cassert> #include <cstddef> #include <cstdint> #include <cstdlib> #include <functional> #include <initializer_list> #include <iterator> #include <limits> #include <memory> #include <tuple> #include <type_traits> #include <utility> #ifdef EXPENSIVE_CHECKS #include <random> // for std::mt19937 #endif namespace llvm { // Only used by compiler if both template types are the same. Useful when // using SFINAE to test for the existence of member functions. template <typename T, T> struct SameType; namespace detail { template <typename RangeT> using IterOfRange = decltype(std::begin(std::declval<RangeT &>())); template <typename RangeT> using ValueOfRange = typename std::remove_reference<decltype( *std::begin(std::declval<RangeT &>()))>::type; } // end namespace detail //===----------------------------------------------------------------------===// // Extra additions to <type_traits> //===----------------------------------------------------------------------===// template <typename T> struct negation : std::integral_constant<bool, !bool(T::value)> {}; template <typename...> struct conjunction : std::true_type {}; template <typename B1> struct conjunction<B1> : B1 {}; template <typename B1, typename... Bn> struct conjunction<B1, Bn...> : std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {}; //===----------------------------------------------------------------------===// // Extra additions to <functional> //===----------------------------------------------------------------------===// template <class Ty> struct identity { using argument_type = Ty; Ty &operator()(Ty &self) const { return self; } const Ty &operator()(const Ty &self) const { return self; } }; template <class Ty> struct less_ptr { bool operator()(const Ty* left, const Ty* right) const { return *left < *right; } }; template <class Ty> struct greater_ptr { bool operator()(const Ty* left, const Ty* right) const { return *right < *left; } }; /// An efficient, type-erasing, non-owning reference to a callable. This is /// intended for use as the type of a function parameter that is not used /// after the function in question returns. /// /// This class does not own the callable, so it is not in general safe to store /// a function_ref. template<typename Fn> class function_ref; template<typename Ret, typename ...Params> class function_ref<Ret(Params...)> { Ret (*callback)(intptr_t callable, Params ...params) = nullptr; intptr_t callable; template<typename Callable> static Ret callback_fn(intptr_t callable, Params ...params) { return (*reinterpret_cast<Callable*>(callable))( std::forward<Params>(params)...); } public: function_ref() = default; function_ref(std::nullptr_t) {} template <typename Callable> function_ref(Callable &&callable, typename std::enable_if< !std::is_same<typename std::remove_reference<Callable>::type, function_ref>::value>::type * = nullptr) : callback(callback_fn<typename std::remove_reference<Callable>::type>), callable(reinterpret_cast<intptr_t>(&callable)) {} Ret operator()(Params ...params) const { return callback(callable, std::forward<Params>(params)...); } operator bool() const { return callback; } }; // deleter - Very very very simple method that is used to invoke operator // delete on something. It is used like this: // // for_each(V.begin(), B.end(), deleter<Interval>); template <class T> inline void deleter(T *Ptr) { delete Ptr; } //===----------------------------------------------------------------------===// // Extra additions to <iterator> //===----------------------------------------------------------------------===// namespace adl_detail { using std::begin; template <typename ContainerTy> auto adl_begin(ContainerTy &&container) -> decltype(begin(std::forward<ContainerTy>(container))) { return begin(std::forward<ContainerTy>(container)); } using std::end; template <typename ContainerTy> auto adl_end(ContainerTy &&container) -> decltype(end(std::forward<ContainerTy>(container))) { return end(std::forward<ContainerTy>(container)); } using std::swap; template <typename T> void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(), std::declval<T>()))) { swap(std::forward<T>(lhs), std::forward<T>(rhs)); } } // end namespace adl_detail template <typename ContainerTy> auto adl_begin(ContainerTy &&container) -> decltype(adl_detail::adl_begin(std::forward<ContainerTy>(container))) { return adl_detail::adl_begin(std::forward<ContainerTy>(container)); } template <typename ContainerTy> auto adl_end(ContainerTy &&container) -> decltype(adl_detail::adl_end(std::forward<ContainerTy>(container))) { return adl_detail::adl_end(std::forward<ContainerTy>(container)); } template <typename T> void adl_swap(T &&lhs, T &&rhs) noexcept( noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) { adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs)); } // mapped_iterator - This is a simple iterator adapter that causes a function to // be applied whenever operator* is invoked on the iterator. template <typename ItTy, typename FuncTy, typename FuncReturnTy = decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))> class mapped_iterator : public iterator_adaptor_base< mapped_iterator<ItTy, FuncTy>, ItTy, typename std::iterator_traits<ItTy>::iterator_category, typename std::remove_reference<FuncReturnTy>::type> { public: mapped_iterator(ItTy U, FuncTy F) : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {} ItTy getCurrent() { return this->I; } FuncReturnTy operator*() { return F(*this->I); } private: FuncTy F; }; // map_iterator - Provide a convenient way to create mapped_iterators, just like // make_pair is useful for creating pairs... template <class ItTy, class FuncTy> inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) { return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F)); } /// Helper to determine if type T has a member called rbegin(). template <typename Ty> class has_rbegin_impl { using yes = char[1]; using no = char[2]; template <typename Inner> static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr); template <typename> static no& test(...); public: static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes); }; /// Metafunction to determine if T& or T has a member called rbegin(). template <typename Ty> struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> { }; // Returns an iterator_range over the given container which iterates in reverse. // Note that the container must have rbegin()/rend() methods for this to work. template <typename ContainerTy> auto reverse(ContainerTy &&C, typename std::enable_if<has_rbegin<ContainerTy>::value>::type * = nullptr) -> decltype(make_range(C.rbegin(), C.rend())) { return make_range(C.rbegin(), C.rend()); } // Returns a std::reverse_iterator wrapped around the given iterator. template <typename IteratorTy> std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) { return std::reverse_iterator<IteratorTy>(It); } // Returns an iterator_range over the given container which iterates in reverse. // Note that the container must have begin()/end() methods which return // bidirectional iterators for this to work. template <typename ContainerTy> auto reverse( ContainerTy &&C, typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr) -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)), llvm::make_reverse_iterator(std::begin(C)))) { return make_range(llvm::make_reverse_iterator(std::end(C)), llvm::make_reverse_iterator(std::begin(C))); } /// An iterator adaptor that filters the elements of given inner iterators. /// /// The predicate parameter should be a callable object that accepts the wrapped /// iterator's reference type and returns a bool. When incrementing or /// decrementing the iterator, it will call the predicate on each element and /// skip any where it returns false. /// /// \code /// int A[] = { 1, 2, 3, 4 }; /// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; }); /// // R contains { 1, 3 }. /// \endcode /// /// Note: filter_iterator_base implements support for forward iteration. /// filter_iterator_impl exists to provide support for bidirectional iteration, /// conditional on whether the wrapped iterator supports it. template <typename WrappedIteratorT, typename PredicateT, typename IterTag> class filter_iterator_base : public iterator_adaptor_base< filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>, WrappedIteratorT, typename std::common_type< IterTag, typename std::iterator_traits< WrappedIteratorT>::iterator_category>::type> { using BaseT = iterator_adaptor_base< filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>, WrappedIteratorT, typename std::common_type< IterTag, typename std::iterator_traits< WrappedIteratorT>::iterator_category>::type>; protected: WrappedIteratorT End; PredicateT Pred; void findNextValid() { while (this->I != End && !Pred(*this->I)) BaseT::operator++(); } // Construct the iterator. The begin iterator needs to know where the end // is, so that it can properly stop when it gets there. The end iterator only // needs the predicate to support bidirectional iteration. filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End, PredicateT Pred) : BaseT(Begin), End(End), Pred(Pred) { findNextValid(); } public: using BaseT::operator++; filter_iterator_base &operator++() { BaseT::operator++(); findNextValid(); return *this; } }; /// Specialization of filter_iterator_base for forward iteration only. template <typename WrappedIteratorT, typename PredicateT, typename IterTag = std::forward_iterator_tag> class filter_iterator_impl : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> { using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>; public: filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End, PredicateT Pred) : BaseT(Begin, End, Pred) {} }; /// Specialization of filter_iterator_base for bidirectional iteration. template <typename WrappedIteratorT, typename PredicateT> class filter_iterator_impl<WrappedIteratorT, PredicateT, std::bidirectional_iterator_tag> : public filter_iterator_base<WrappedIteratorT, PredicateT, std::bidirectional_iterator_tag> { using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, std::bidirectional_iterator_tag>; void findPrevValid() { while (!this->Pred(*this->I)) BaseT::operator--(); } public: using BaseT::operator--; filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End, PredicateT Pred) : BaseT(Begin, End, Pred) {} filter_iterator_impl &operator--() { BaseT::operator--(); findPrevValid(); return *this; } }; namespace detail { template <bool is_bidirectional> struct fwd_or_bidi_tag_impl { using type = std::forward_iterator_tag; }; template <> struct fwd_or_bidi_tag_impl<true> { using type = std::bidirectional_iterator_tag; }; /// Helper which sets its type member to forward_iterator_tag if the category /// of \p IterT does not derive from bidirectional_iterator_tag, and to /// bidirectional_iterator_tag otherwise. template <typename IterT> struct fwd_or_bidi_tag { using type = typename fwd_or_bidi_tag_impl<std::is_base_of< std::bidirectional_iterator_tag, typename std::iterator_traits<IterT>::iterator_category>::value>::type; }; } // namespace detail /// Defines filter_iterator to a suitable specialization of /// filter_iterator_impl, based on the underlying iterator's category. template <typename WrappedIteratorT, typename PredicateT> using filter_iterator = filter_iterator_impl< WrappedIteratorT, PredicateT, typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>; /// Convenience function that takes a range of elements and a predicate, /// and return a new filter_iterator range. /// /// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the /// lifetime of that temporary is not kept by the returned range object, and the /// temporary is going to be dropped on the floor after the make_iterator_range /// full expression that contains this function call. template <typename RangeT, typename PredicateT> iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>> make_filter_range(RangeT &&Range, PredicateT Pred) { using FilterIteratorT = filter_iterator<detail::IterOfRange<RangeT>, PredicateT>; return make_range( FilterIteratorT(std::begin(std::forward<RangeT>(Range)), std::end(std::forward<RangeT>(Range)), Pred), FilterIteratorT(std::end(std::forward<RangeT>(Range)), std::end(std::forward<RangeT>(Range)), Pred)); } /// A pseudo-iterator adaptor that is designed to implement "early increment" /// style loops. /// /// This is *not a normal iterator* and should almost never be used directly. It /// is intended primarily to be used with range based for loops and some range /// algorithms. /// /// The iterator isn't quite an `OutputIterator` or an `InputIterator` but /// somewhere between them. The constraints of these iterators are: /// /// - On construction or after being incremented, it is comparable and /// dereferencable. It is *not* incrementable. /// - After being dereferenced, it is neither comparable nor dereferencable, it /// is only incrementable. /// /// This means you can only dereference the iterator once, and you can only /// increment it once between dereferences. template <typename WrappedIteratorT> class early_inc_iterator_impl : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>, WrappedIteratorT, std::input_iterator_tag> { using BaseT = iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>, WrappedIteratorT, std::input_iterator_tag>; using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer; protected: #if LLVM_ENABLE_ABI_BREAKING_CHECKS bool IsEarlyIncremented = false; #endif public: early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {} using BaseT::operator*; typename BaseT::reference operator*() { #if LLVM_ENABLE_ABI_BREAKING_CHECKS assert(!IsEarlyIncremented && "Cannot dereference twice!"); IsEarlyIncremented = true; #endif return *(this->I)++; } using BaseT::operator++; early_inc_iterator_impl &operator++() { #if LLVM_ENABLE_ABI_BREAKING_CHECKS assert(IsEarlyIncremented && "Cannot increment before dereferencing!"); IsEarlyIncremented = false; #endif return *this; } using BaseT::operator==; bool operator==(const early_inc_iterator_impl &RHS) const { #if LLVM_ENABLE_ABI_BREAKING_CHECKS assert(!IsEarlyIncremented && "Cannot compare after dereferencing!"); #endif return BaseT::operator==(RHS); } }; /// Make a range that does early increment to allow mutation of the underlying /// range without disrupting iteration. /// /// The underlying iterator will be incremented immediately after it is /// dereferenced, allowing deletion of the current node or insertion of nodes to /// not disrupt iteration provided they do not invalidate the *next* iterator -- /// the current iterator can be invalidated. /// /// This requires a very exact pattern of use that is only really suitable to /// range based for loops and other range algorithms that explicitly guarantee /// to dereference exactly once each element, and to increment exactly once each /// element. template <typename RangeT> iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>> make_early_inc_range(RangeT &&Range) { using EarlyIncIteratorT = early_inc_iterator_impl<detail::IterOfRange<RangeT>>; return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))), EarlyIncIteratorT(std::end(std::forward<RangeT>(Range)))); } // forward declarations required by zip_shortest/zip_first template <typename R, typename UnaryPredicate> bool all_of(R &&range, UnaryPredicate P); template <size_t... I> struct index_sequence; template <class... Ts> struct index_sequence_for; namespace detail { using std::declval; // We have to alias this since inlining the actual type at the usage site // in the parameter list of iterator_facade_base<> below ICEs MSVC 2017. template<typename... Iters> struct ZipTupleType { using type = std::tuple<decltype(*declval<Iters>())...>; }; template <typename ZipType, typename... Iters> using zip_traits = iterator_facade_base< ZipType, typename std::common_type<std::bidirectional_iterator_tag, typename std::iterator_traits< Iters>::iterator_category...>::type, // ^ TODO: Implement random access methods. typename ZipTupleType<Iters...>::type, typename std::iterator_traits<typename std::tuple_element< 0, std::tuple<Iters...>>::type>::difference_type, // ^ FIXME: This follows boost::make_zip_iterator's assumption that all // inner iterators have the same difference_type. It would fail if, for // instance, the second field's difference_type were non-numeric while the // first is. typename ZipTupleType<Iters...>::type *, typename ZipTupleType<Iters...>::type>; template <typename ZipType, typename... Iters> struct zip_common : public zip_traits<ZipType, Iters...> { using Base = zip_traits<ZipType, Iters...>; using value_type = typename Base::value_type; std::tuple<Iters...> iterators; protected: template <size_t... Ns> value_type deref(index_sequence<Ns...>) const { return value_type(*std::get<Ns>(iterators)...); } template <size_t... Ns> decltype(iterators) tup_inc(index_sequence<Ns...>) const { return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...); } template <size_t... Ns> decltype(iterators) tup_dec(index_sequence<Ns...>) const { return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...); } public: zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {} value_type operator*() { return deref(index_sequence_for<Iters...>{}); } const value_type operator*() const { return deref(index_sequence_for<Iters...>{}); } ZipType &operator++() { iterators = tup_inc(index_sequence_for<Iters...>{}); return *reinterpret_cast<ZipType *>(this); } ZipType &operator--() { static_assert(Base::IsBidirectional, "All inner iterators must be at least bidirectional."); iterators = tup_dec(index_sequence_for<Iters...>{}); return *reinterpret_cast<ZipType *>(this); } }; template <typename... Iters> struct zip_first : public zip_common<zip_first<Iters...>, Iters...> { using Base = zip_common<zip_first<Iters...>, Iters...>; bool operator==(const zip_first<Iters...> &other) const { return std::get<0>(this->iterators) == std::get<0>(other.iterators); } zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {} }; template <typename... Iters> class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> { template <size_t... Ns> bool test(const zip_shortest<Iters...> &other, index_sequence<Ns...>) const { return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) != std::get<Ns>(other.iterators)...}, identity<bool>{}); } public: using Base = zip_common<zip_shortest<Iters...>, Iters...>; zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {} bool operator==(const zip_shortest<Iters...> &other) const { return !test(other, index_sequence_for<Iters...>{}); } }; template <template <typename...> class ItType, typename... Args> class zippy { public: using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>; using iterator_category = typename iterator::iterator_category; using value_type = typename iterator::value_type; using difference_type = typename iterator::difference_type; using pointer = typename iterator::pointer; using reference = typename iterator::reference; private: std::tuple<Args...> ts; template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const { return iterator(std::begin(std::get<Ns>(ts))...); } template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const { return iterator(std::end(std::get<Ns>(ts))...); } public: zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {} iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); } iterator end() const { return end_impl(index_sequence_for<Args...>{}); } }; } // end namespace detail /// zip iterator for two or more iteratable types. template <typename T, typename U, typename... Args> detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u, Args &&... args) { return detail::zippy<detail::zip_shortest, T, U, Args...>( std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); } /// zip iterator that, for the sake of efficiency, assumes the first iteratee to /// be the shortest. template <typename T, typename U, typename... Args> detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u, Args &&... args) { return detail::zippy<detail::zip_first, T, U, Args...>( std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); } /// Iterator wrapper that concatenates sequences together. /// /// This can concatenate different iterators, even with different types, into /// a single iterator provided the value types of all the concatenated /// iterators expose `reference` and `pointer` types that can be converted to /// `ValueT &` and `ValueT *` respectively. It doesn't support more /// interesting/customized pointer or reference types. /// /// Currently this only supports forward or higher iterator categories as /// inputs and always exposes a forward iterator interface. template <typename ValueT, typename... IterTs> class concat_iterator : public iterator_facade_base<concat_iterator<ValueT, IterTs...>, std::forward_iterator_tag, ValueT> { using BaseT = typename concat_iterator::iterator_facade_base; /// We store both the current and end iterators for each concatenated /// sequence in a tuple of pairs. /// /// Note that something like iterator_range seems nice at first here, but the /// range properties are of little benefit and end up getting in the way /// because we need to do mutation on the current iterators. std::tuple<std::pair<IterTs, IterTs>...> IterPairs; /// Attempts to increment a specific iterator. /// /// Returns true if it was able to increment the iterator. Returns false if /// the iterator is already at the end iterator. template <size_t Index> bool incrementHelper() { auto &IterPair = std::get<Index>(IterPairs); if (IterPair.first == IterPair.second) return false; ++IterPair.first; return true; } /// Increments the first non-end iterator. /// /// It is an error to call this with all iterators at the end. template <size_t... Ns> void increment(index_sequence<Ns...>) { // Build a sequence of functions to increment each iterator if possible. bool (concat_iterator::*IncrementHelperFns[])() = { &concat_iterator::incrementHelper<Ns>...}; // Loop over them, and stop as soon as we succeed at incrementing one. for (auto &IncrementHelperFn : IncrementHelperFns) if ((this->*IncrementHelperFn)()) return; llvm_unreachable("Attempted to increment an end concat iterator!"); } /// Returns null if the specified iterator is at the end. Otherwise, /// dereferences the iterator and returns the address of the resulting /// reference. template <size_t Index> ValueT *getHelper() const { auto &IterPair = std::get<Index>(IterPairs); if (IterPair.first == IterPair.second) return nullptr; return &*IterPair.first; } /// Finds the first non-end iterator, dereferences, and returns the resulting /// reference. /// /// It is an error to call this with all iterators at the end. template <size_t... Ns> ValueT &get(index_sequence<Ns...>) const { // Build a sequence of functions to get from iterator if possible. ValueT *(concat_iterator::*GetHelperFns[])() const = { &concat_iterator::getHelper<Ns>...}; // Loop over them, and return the first result we find. for (auto &GetHelperFn : GetHelperFns) if (ValueT *P = (this->*GetHelperFn)()) return *P; llvm_unreachable("Attempted to get a pointer from an end concat iterator!"); } public: /// Constructs an iterator from a squence of ranges. /// /// We need the full range to know how to switch between each of the /// iterators. template <typename... RangeTs> explicit concat_iterator(RangeTs &&... Ranges) : IterPairs({std::begin(Ranges), std::end(Ranges)}...) {} using BaseT::operator++; concat_iterator &operator++() { increment(index_sequence_for<IterTs...>()); return *this; } ValueT &operator*() const { return get(index_sequence_for<IterTs...>()); } bool operator==(const concat_iterator &RHS) const { return IterPairs == RHS.IterPairs; } }; namespace detail { /// Helper to store a sequence of ranges being concatenated and access them. /// /// This is designed to facilitate providing actual storage when temporaries /// are passed into the constructor such that we can use it as part of range /// based for loops. template <typename ValueT, typename... RangeTs> class concat_range { public: using iterator = concat_iterator<ValueT, decltype(std::begin(std::declval<RangeTs &>()))...>; private: std::tuple<RangeTs...> Ranges; template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) { return iterator(std::get<Ns>(Ranges)...); } template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) { return iterator(make_range(std::end(std::get<Ns>(Ranges)), std::end(std::get<Ns>(Ranges)))...); } public: concat_range(RangeTs &&... Ranges) : Ranges(std::forward<RangeTs>(Ranges)...) {} iterator begin() { return begin_impl(index_sequence_for<RangeTs...>{}); } iterator end() { return end_impl(index_sequence_for<RangeTs...>{}); } }; } // end namespace detail /// Concatenated range across two or more ranges. /// /// The desired value type must be explicitly specified. template <typename ValueT, typename... RangeTs> detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) { static_assert(sizeof...(RangeTs) > 1, "Need more than one range to concatenate!"); return detail::concat_range<ValueT, RangeTs...>( std::forward<RangeTs>(Ranges)...); } //===----------------------------------------------------------------------===// // Extra additions to <utility> //===----------------------------------------------------------------------===// /// Function object to check whether the first component of a std::pair /// compares less than the first component of another std::pair. struct less_first { template <typename T> bool operator()(const T &lhs, const T &rhs) const { return lhs.first < rhs.first; } }; /// Function object to check whether the second component of a std::pair /// compares less than the second component of another std::pair. struct less_second { template <typename T> bool operator()(const T &lhs, const T &rhs) const { return lhs.second < rhs.second; } }; /// \brief Function object to apply a binary function to the first component of /// a std::pair. template<typename FuncTy> struct on_first { FuncTy func; template <typename T> auto operator()(const T &lhs, const T &rhs) const -> decltype(func(lhs.first, rhs.first)) { return func(lhs.first, rhs.first); } }; // A subset of N3658. More stuff can be added as-needed. /// Represents a compile-time sequence of integers. template <class T, T... I> struct integer_sequence { using value_type = T; static constexpr size_t size() { return sizeof...(I); } }; /// Alias for the common case of a sequence of size_ts. template <size_t... I> struct index_sequence : integer_sequence<std::size_t, I...> {}; template <std::size_t N, std::size_t... I> struct build_index_impl : build_index_impl<N - 1, N - 1, I...> {}; template <std::size_t... I> struct build_index_impl<0, I...> : index_sequence<I...> {}; /// Creates a compile-time integer sequence for a parameter pack. template <class... Ts> struct index_sequence_for : build_index_impl<sizeof...(Ts)> {}; /// Utility type to build an inheritance chain that makes it easy to rank /// overload candidates. template <int N> struct rank : rank<N - 1> {}; template <> struct rank<0> {}; /// traits class for checking whether type T is one of any of the given /// types in the variadic list. template <typename T, typename... Ts> struct is_one_of { static const bool value = false; }; template <typename T, typename U, typename... Ts> struct is_one_of<T, U, Ts...> { static const bool value = std::is_same<T, U>::value || is_one_of<T, Ts...>::value; }; /// traits class for checking whether type T is a base class for all /// the given types in the variadic list. template <typename T, typename... Ts> struct are_base_of { static const bool value = true; }; template <typename T, typename U, typename... Ts> struct are_base_of<T, U, Ts...> { static const bool value = std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value; }; //===----------------------------------------------------------------------===// // Extra additions for arrays //===----------------------------------------------------------------------===// /// Find the length of an array. template <class T, std::size_t N> constexpr inline size_t array_lengthof(T (&)[N]) { return N; } /// Adapt std::less<T> for array_pod_sort. template<typename T> inline int array_pod_sort_comparator(const void *P1, const void *P2) { if (std::less<T>()(*reinterpret_cast<const T*>(P1), *reinterpret_cast<const T*>(P2))) return -1; if (std::less<T>()(*reinterpret_cast<const T*>(P2), *reinterpret_cast<const T*>(P1))) return 1; return 0; } /// get_array_pod_sort_comparator - This is an internal helper function used to /// get type deduction of T right. template<typename T> inline int (*get_array_pod_sort_comparator(const T &)) (const void*, const void*) { return array_pod_sort_comparator<T>; } /// array_pod_sort - This sorts an array with the specified start and end /// extent. This is just like std::sort, except that it calls qsort instead of /// using an inlined template. qsort is slightly slower than std::sort, but /// most sorts are not performance critical in LLVM and std::sort has to be /// template instantiated for each type, leading to significant measured code /// bloat. This function should generally be used instead of std::sort where /// possible. /// /// This function assumes that you have simple POD-like types that can be /// compared with std::less and can be moved with memcpy. If this isn't true, /// you should use std::sort. /// /// NOTE: If qsort_r were portable, we could allow a custom comparator and /// default to std::less. template<class IteratorTy> inline void array_pod_sort(IteratorTy Start, IteratorTy End) { // Don't inefficiently call qsort with one element or trigger undefined // behavior with an empty sequence. auto NElts = End - Start; if (NElts <= 1) return; #ifdef EXPENSIVE_CHECKS std::mt19937 Generator(std::random_device{}()); std::shuffle(Start, End, Generator); #endif qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start)); } template <class IteratorTy> inline void array_pod_sort( IteratorTy Start, IteratorTy End, int (*Compare)( const typename std::iterator_traits<IteratorTy>::value_type *, const typename std::iterator_traits<IteratorTy>::value_type *)) { // Don't inefficiently call qsort with one element or trigger undefined // behavior with an empty sequence. auto NElts = End - Start; if (NElts <= 1) return; #ifdef EXPENSIVE_CHECKS std::mt19937 Generator(std::random_device{}()); std::shuffle(Start, End, Generator); #endif qsort(&*Start, NElts, sizeof(*Start), reinterpret_cast<int (*)(const void *, const void *)>(Compare)); } // Provide wrappers to std::sort which shuffle the elements before sorting // to help uncover non-deterministic behavior (PR35135). template <typename IteratorTy> inline void sort(IteratorTy Start, IteratorTy End) { #ifdef EXPENSIVE_CHECKS std::mt19937 Generator(std::random_device{}()); std::shuffle(Start, End, Generator); #endif std::sort(Start, End); } template <typename IteratorTy, typename Compare> inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) { #ifdef EXPENSIVE_CHECKS std::mt19937 Generator(std::random_device{}()); std::shuffle(Start, End, Generator); #endif std::sort(Start, End, Comp); } //===----------------------------------------------------------------------===// // Extra additions to <algorithm> //===----------------------------------------------------------------------===// /// For a container of pointers, deletes the pointers and then clears the /// container. template<typename Container> void DeleteContainerPointers(Container &C) { for (auto V : C) delete V; C.clear(); } /// In a container of pairs (usually a map) whose second element is a pointer, /// deletes the second elements and then clears the container. template<typename Container> void DeleteContainerSeconds(Container &C) { for (auto &V : C) delete V.second; C.clear(); } /// Provide wrappers to std::for_each which take ranges instead of having to /// pass begin/end explicitly. template <typename R, typename UnaryPredicate> UnaryPredicate for_each(R &&Range, UnaryPredicate P) { return std::for_each(adl_begin(Range), adl_end(Range), P); } /// Provide wrappers to std::all_of which take ranges instead of having to pass /// begin/end explicitly. template <typename R, typename UnaryPredicate> bool all_of(R &&Range, UnaryPredicate P) { return std::all_of(adl_begin(Range), adl_end(Range), P); } /// Provide wrappers to std::any_of which take ranges instead of having to pass /// begin/end explicitly. template <typename R, typename UnaryPredicate> bool any_of(R &&Range, UnaryPredicate P) { return std::any_of(adl_begin(Range), adl_end(Range), P); } /// Provide wrappers to std::none_of which take ranges instead of having to pass /// begin/end explicitly. template <typename R, typename UnaryPredicate> bool none_of(R &&Range, UnaryPredicate P) { return std::none_of(adl_begin(Range), adl_end(Range), P); } /// Provide wrappers to std::find which take ranges instead of having to pass /// begin/end explicitly. template <typename R, typename T> auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range)) { return std::find(adl_begin(Range), adl_end(Range), Val); } /// Provide wrappers to std::find_if which take ranges instead of having to pass /// begin/end explicitly. template <typename R, typename UnaryPredicate> auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) { return std::find_if(adl_begin(Range), adl_end(Range), P); } template <typename R, typename UnaryPredicate> auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) { return std::find_if_not(adl_begin(Range), adl_end(Range), P); } /// Provide wrappers to std::remove_if which take ranges instead of having to /// pass begin/end explicitly. template <typename R, typename UnaryPredicate> auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) { return std::remove_if(adl_begin(Range), adl_end(Range), P); } /// Provide wrappers to std::copy_if which take ranges instead of having to /// pass begin/end explicitly. template <typename R, typename OutputIt, typename UnaryPredicate> OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) { return std::copy_if(adl_begin(Range), adl_end(Range), Out, P); } template <typename R, typename OutputIt> OutputIt copy(R &&Range, OutputIt Out) { return std::copy(adl_begin(Range), adl_end(Range), Out); } /// Wrapper function around std::find to detect if an element exists /// in a container. template <typename R, typename E> bool is_contained(R &&Range, const E &Element) { return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range); } /// Wrapper function around std::count to count the number of times an element /// \p Element occurs in the given range \p Range. template <typename R, typename E> auto count(R &&Range, const E &Element) -> typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type { return std::count(adl_begin(Range), adl_end(Range), Element); } /// Wrapper function around std::count_if to count the number of times an /// element satisfying a given predicate occurs in a range. template <typename R, typename UnaryPredicate> auto count_if(R &&Range, UnaryPredicate P) -> typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type { return std::count_if(adl_begin(Range), adl_end(Range), P); } /// Wrapper function around std::transform to apply a function to a range and /// store the result elsewhere. template <typename R, typename OutputIt, typename UnaryPredicate> OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) { return std::transform(adl_begin(Range), adl_end(Range), d_first, P); } /// Provide wrappers to std::partition which take ranges instead of having to /// pass begin/end explicitly. template <typename R, typename UnaryPredicate> auto partition(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) { return std::partition(adl_begin(Range), adl_end(Range), P); } /// Provide wrappers to std::lower_bound which take ranges instead of having to /// pass begin/end explicitly. template <typename R, typename ForwardIt> auto lower_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range)) { return std::lower_bound(adl_begin(Range), adl_end(Range), I); } /// Given a range of type R, iterate the entire range and return a /// SmallVector with elements of the vector. This is useful, for example, /// when you want to iterate a range and then sort the results. template <unsigned Size, typename R> SmallVector<typename std::remove_const<detail::ValueOfRange<R>>::type, Size> to_vector(R &&Range) { return {adl_begin(Range), adl_end(Range)}; } /// Provide a container algorithm similar to C++ Library Fundamentals v2's /// `erase_if` which is equivalent to: /// /// C.erase(remove_if(C, pred), C.end()); /// /// This version works for any container with an erase method call accepting /// two iterators. template <typename Container, typename UnaryPredicate> void erase_if(Container &C, UnaryPredicate P) { C.erase(remove_if(C, P), C.end()); } /// Get the size of a range. This is a wrapper function around std::distance /// which is only enabled when the operation is O(1). template <typename R> auto size(R &&Range, typename std::enable_if< std::is_same<typename std::iterator_traits<decltype( Range.begin())>::iterator_category, std::random_access_iterator_tag>::value, void>::type * = nullptr) -> decltype(std::distance(Range.begin(), Range.end())) { return std::distance(Range.begin(), Range.end()); } //===----------------------------------------------------------------------===// // Extra additions to <memory> //===----------------------------------------------------------------------===// // Implement make_unique according to N3656. /// Constructs a `new T()` with the given args and returns a /// `unique_ptr<T>` which owns the object. /// /// Example: /// /// auto p = make_unique<int>(); /// auto p = make_unique<std::tuple<int, int>>(0, 1); template <class T, class... Args> typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type make_unique(Args &&... args) { return std::unique_ptr<T>(new T(std::forward<Args>(args)...)); } /// Constructs a `new T[n]` with the given args and returns a /// `unique_ptr<T[]>` which owns the object. /// /// \param n size of the new array. /// /// Example: /// /// auto p = make_unique<int[]>(2); // value-initializes the array with 0's. template <class T> typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0, std::unique_ptr<T>>::type make_unique(size_t n) { return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]()); } /// This function isn't used and is only here to provide better compile errors. template <class T, class... Args> typename std::enable_if<std::extent<T>::value != 0>::type make_unique(Args &&...) = delete; struct FreeDeleter { void operator()(void* v) { ::free(v); } }; template<typename First, typename Second> struct pair_hash { size_t operator()(const std::pair<First, Second> &P) const { return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second); } }; /// A functor like C++14's std::less<void> in its absence. struct less { template <typename A, typename B> bool operator()(A &&a, B &&b) const { return std::forward<A>(a) < std::forward<B>(b); } }; /// A functor like C++14's std::equal<void> in its absence. struct equal { template <typename A, typename B> bool operator()(A &&a, B &&b) const { return std::forward<A>(a) == std::forward<B>(b); } }; /// Binary functor that adapts to any other binary functor after dereferencing /// operands. template <typename T> struct deref { T func; // Could be further improved to cope with non-derivable functors and // non-binary functors (should be a variadic template member function // operator()). template <typename A, typename B> auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) { assert(lhs); assert(rhs); return func(*lhs, *rhs); } }; namespace detail { template <typename R> class enumerator_iter; template <typename R> struct result_pair { friend class enumerator_iter<R>; result_pair() = default; result_pair(std::size_t Index, IterOfRange<R> Iter) : Index(Index), Iter(Iter) {} result_pair<R> &operator=(const result_pair<R> &Other) { Index = Other.Index; Iter = Other.Iter; return *this; } std::size_t index() const { return Index; } const ValueOfRange<R> &value() const { return *Iter; } ValueOfRange<R> &value() { return *Iter; } private: std::size_t Index = std::numeric_limits<std::size_t>::max(); IterOfRange<R> Iter; }; template <typename R> class enumerator_iter : public iterator_facade_base< enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>, typename std::iterator_traits<IterOfRange<R>>::difference_type, typename std::iterator_traits<IterOfRange<R>>::pointer, typename std::iterator_traits<IterOfRange<R>>::reference> { using result_type = result_pair<R>; public: explicit enumerator_iter(IterOfRange<R> EndIter) : Result(std::numeric_limits<size_t>::max(), EndIter) {} enumerator_iter(std::size_t Index, IterOfRange<R> Iter) : Result(Index, Iter) {} result_type &operator*() { return Result; } const result_type &operator*() const { return Result; } enumerator_iter<R> &operator++() { assert(Result.Index != std::numeric_limits<size_t>::max()); ++Result.Iter; ++Result.Index; return *this; } bool operator==(const enumerator_iter<R> &RHS) const { // Don't compare indices here, only iterators. It's possible for an end // iterator to have different indices depending on whether it was created // by calling std::end() versus incrementing a valid iterator. return Result.Iter == RHS.Result.Iter; } enumerator_iter<R> &operator=(const enumerator_iter<R> &Other) { Result = Other.Result; return *this; } private: result_type Result; }; template <typename R> class enumerator { public: explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {} enumerator_iter<R> begin() { return enumerator_iter<R>(0, std::begin(TheRange)); } enumerator_iter<R> end() { return enumerator_iter<R>(std::end(TheRange)); } private: R TheRange; }; } // end namespace detail /// Given an input range, returns a new range whose values are are pair (A,B) /// such that A is the 0-based index of the item in the sequence, and B is /// the value from the original sequence. Example: /// /// std::vector<char> Items = {'A', 'B', 'C', 'D'}; /// for (auto X : enumerate(Items)) { /// printf("Item %d - %c\n", X.index(), X.value()); /// } /// /// Output: /// Item 0 - A /// Item 1 - B /// Item 2 - C /// Item 3 - D /// template <typename R> detail::enumerator<R> enumerate(R &&TheRange) { return detail::enumerator<R>(std::forward<R>(TheRange)); } namespace detail { template <typename F, typename Tuple, std::size_t... I> auto apply_tuple_impl(F &&f, Tuple &&t, index_sequence<I...>) -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) { return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...); } } // end namespace detail /// Given an input tuple (a1, a2, ..., an), pass the arguments of the /// tuple variadically to f as if by calling f(a1, a2, ..., an) and /// return the result. template <typename F, typename Tuple> auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl( std::forward<F>(f), std::forward<Tuple>(t), build_index_impl< std::tuple_size<typename std::decay<Tuple>::type>::value>{})) { using Indices = build_index_impl< std::tuple_size<typename std::decay<Tuple>::type>::value>; return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t), Indices{}); } } // end namespace llvm #endif // LLVM_ADT_STLEXTRAS_H