//===- MemorySSA.h - Build Memory SSA ---------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// This file exposes an interface to building/using memory SSA to /// walk memory instructions using a use/def graph. /// /// Memory SSA class builds an SSA form that links together memory access /// instructions such as loads, stores, atomics, and calls. Additionally, it /// does a trivial form of "heap versioning" Every time the memory state changes /// in the program, we generate a new heap version. It generates /// MemoryDef/Uses/Phis that are overlayed on top of the existing instructions. /// /// As a trivial example, /// define i32 @main() #0 { /// entry: /// %call = call noalias i8* @_Znwm(i64 4) #2 /// %0 = bitcast i8* %call to i32* /// %call1 = call noalias i8* @_Znwm(i64 4) #2 /// %1 = bitcast i8* %call1 to i32* /// store i32 5, i32* %0, align 4 /// store i32 7, i32* %1, align 4 /// %2 = load i32* %0, align 4 /// %3 = load i32* %1, align 4 /// %add = add nsw i32 %2, %3 /// ret i32 %add /// } /// /// Will become /// define i32 @main() #0 { /// entry: /// ; 1 = MemoryDef(0) /// %call = call noalias i8* @_Znwm(i64 4) #3 /// %2 = bitcast i8* %call to i32* /// ; 2 = MemoryDef(1) /// %call1 = call noalias i8* @_Znwm(i64 4) #3 /// %4 = bitcast i8* %call1 to i32* /// ; 3 = MemoryDef(2) /// store i32 5, i32* %2, align 4 /// ; 4 = MemoryDef(3) /// store i32 7, i32* %4, align 4 /// ; MemoryUse(3) /// %7 = load i32* %2, align 4 /// ; MemoryUse(4) /// %8 = load i32* %4, align 4 /// %add = add nsw i32 %7, %8 /// ret i32 %add /// } /// /// Given this form, all the stores that could ever effect the load at %8 can be /// gotten by using the MemoryUse associated with it, and walking from use to /// def until you hit the top of the function. /// /// Each def also has a list of users associated with it, so you can walk from /// both def to users, and users to defs. Note that we disambiguate MemoryUses, /// but not the RHS of MemoryDefs. You can see this above at %7, which would /// otherwise be a MemoryUse(4). Being disambiguated means that for a given /// store, all the MemoryUses on its use lists are may-aliases of that store /// (but the MemoryDefs on its use list may not be). /// /// MemoryDefs are not disambiguated because it would require multiple reaching /// definitions, which would require multiple phis, and multiple memoryaccesses /// per instruction. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_MEMORYSSA_H #define LLVM_ANALYSIS_MEMORYSSA_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/ilist.h" #include "llvm/ADT/ilist_node.h" #include "llvm/ADT/iterator.h" #include "llvm/ADT/iterator_range.h" #include "llvm/ADT/simple_ilist.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/MemoryLocation.h" #include "llvm/Analysis/PHITransAddr.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/DerivedUser.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/IR/Use.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/IR/ValueHandle.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include <algorithm> #include <cassert> #include <cstddef> #include <iterator> #include <memory> #include <utility> namespace llvm { class Function; class Instruction; class MemoryAccess; class MemorySSAWalker; class LLVMContext; class raw_ostream; namespace MSSAHelpers { struct AllAccessTag {}; struct DefsOnlyTag {}; } // end namespace MSSAHelpers enum : unsigned { // Used to signify what the default invalid ID is for MemoryAccess's // getID() INVALID_MEMORYACCESS_ID = -1U }; template <class T> class memoryaccess_def_iterator_base; using memoryaccess_def_iterator = memoryaccess_def_iterator_base<MemoryAccess>; using const_memoryaccess_def_iterator = memoryaccess_def_iterator_base<const MemoryAccess>; // The base for all memory accesses. All memory accesses in a block are // linked together using an intrusive list. class MemoryAccess : public DerivedUser, public ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>, public ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>> { public: using AllAccessType = ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>; using DefsOnlyType = ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>>; MemoryAccess(const MemoryAccess &) = delete; MemoryAccess &operator=(const MemoryAccess &) = delete; void *operator new(size_t) = delete; // Methods for support type inquiry through isa, cast, and // dyn_cast static bool classof(const Value *V) { unsigned ID = V->getValueID(); return ID == MemoryUseVal || ID == MemoryPhiVal || ID == MemoryDefVal; } BasicBlock *getBlock() const { return Block; } void print(raw_ostream &OS) const; void dump() const; /// The user iterators for a memory access using iterator = user_iterator; using const_iterator = const_user_iterator; /// This iterator walks over all of the defs in a given /// MemoryAccess. For MemoryPhi nodes, this walks arguments. For /// MemoryUse/MemoryDef, this walks the defining access. memoryaccess_def_iterator defs_begin(); const_memoryaccess_def_iterator defs_begin() const; memoryaccess_def_iterator defs_end(); const_memoryaccess_def_iterator defs_end() const; /// Get the iterators for the all access list and the defs only list /// We default to the all access list. AllAccessType::self_iterator getIterator() { return this->AllAccessType::getIterator(); } AllAccessType::const_self_iterator getIterator() const { return this->AllAccessType::getIterator(); } AllAccessType::reverse_self_iterator getReverseIterator() { return this->AllAccessType::getReverseIterator(); } AllAccessType::const_reverse_self_iterator getReverseIterator() const { return this->AllAccessType::getReverseIterator(); } DefsOnlyType::self_iterator getDefsIterator() { return this->DefsOnlyType::getIterator(); } DefsOnlyType::const_self_iterator getDefsIterator() const { return this->DefsOnlyType::getIterator(); } DefsOnlyType::reverse_self_iterator getReverseDefsIterator() { return this->DefsOnlyType::getReverseIterator(); } DefsOnlyType::const_reverse_self_iterator getReverseDefsIterator() const { return this->DefsOnlyType::getReverseIterator(); } protected: friend class MemoryDef; friend class MemoryPhi; friend class MemorySSA; friend class MemoryUse; friend class MemoryUseOrDef; /// Used by MemorySSA to change the block of a MemoryAccess when it is /// moved. void setBlock(BasicBlock *BB) { Block = BB; } /// Used for debugging and tracking things about MemoryAccesses. /// Guaranteed unique among MemoryAccesses, no guarantees otherwise. inline unsigned getID() const; MemoryAccess(LLVMContext &C, unsigned Vty, DeleteValueTy DeleteValue, BasicBlock *BB, unsigned NumOperands) : DerivedUser(Type::getVoidTy(C), Vty, nullptr, NumOperands, DeleteValue), Block(BB) {} // Use deleteValue() to delete a generic MemoryAccess. ~MemoryAccess() = default; private: BasicBlock *Block; }; template <> struct ilist_alloc_traits<MemoryAccess> { static void deleteNode(MemoryAccess *MA) { MA->deleteValue(); } }; inline raw_ostream &operator<<(raw_ostream &OS, const MemoryAccess &MA) { MA.print(OS); return OS; } /// Class that has the common methods + fields of memory uses/defs. It's /// a little awkward to have, but there are many cases where we want either a /// use or def, and there are many cases where uses are needed (defs aren't /// acceptable), and vice-versa. /// /// This class should never be instantiated directly; make a MemoryUse or /// MemoryDef instead. class MemoryUseOrDef : public MemoryAccess { public: void *operator new(size_t) = delete; DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess); /// Get the instruction that this MemoryUse represents. Instruction *getMemoryInst() const { return MemoryInstruction; } /// Get the access that produces the memory state used by this Use. MemoryAccess *getDefiningAccess() const { return getOperand(0); } static bool classof(const Value *MA) { return MA->getValueID() == MemoryUseVal || MA->getValueID() == MemoryDefVal; } // Sadly, these have to be public because they are needed in some of the // iterators. inline bool isOptimized() const; inline MemoryAccess *getOptimized() const; inline void setOptimized(MemoryAccess *); // Retrieve AliasResult type of the optimized access. Ideally this would be // returned by the caching walker and may go away in the future. Optional<AliasResult> getOptimizedAccessType() const { return OptimizedAccessAlias; } /// Reset the ID of what this MemoryUse was optimized to, causing it to /// be rewalked by the walker if necessary. /// This really should only be called by tests. inline void resetOptimized(); protected: friend class MemorySSA; friend class MemorySSAUpdater; MemoryUseOrDef(LLVMContext &C, MemoryAccess *DMA, unsigned Vty, DeleteValueTy DeleteValue, Instruction *MI, BasicBlock *BB) : MemoryAccess(C, Vty, DeleteValue, BB, 1), MemoryInstruction(MI), OptimizedAccessAlias(MayAlias) { setDefiningAccess(DMA); } // Use deleteValue() to delete a generic MemoryUseOrDef. ~MemoryUseOrDef() = default; void setOptimizedAccessType(Optional<AliasResult> AR) { OptimizedAccessAlias = AR; } void setDefiningAccess(MemoryAccess *DMA, bool Optimized = false, Optional<AliasResult> AR = MayAlias) { if (!Optimized) { setOperand(0, DMA); return; } setOptimized(DMA); setOptimizedAccessType(AR); } private: Instruction *MemoryInstruction; Optional<AliasResult> OptimizedAccessAlias; }; template <> struct OperandTraits<MemoryUseOrDef> : public FixedNumOperandTraits<MemoryUseOrDef, 1> {}; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUseOrDef, MemoryAccess) /// Represents read-only accesses to memory /// /// In particular, the set of Instructions that will be represented by /// MemoryUse's is exactly the set of Instructions for which /// AliasAnalysis::getModRefInfo returns "Ref". class MemoryUse final : public MemoryUseOrDef { public: DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess); MemoryUse(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB) : MemoryUseOrDef(C, DMA, MemoryUseVal, deleteMe, MI, BB) {} // allocate space for exactly one operand void *operator new(size_t s) { return User::operator new(s, 1); } static bool classof(const Value *MA) { return MA->getValueID() == MemoryUseVal; } void print(raw_ostream &OS) const; void setOptimized(MemoryAccess *DMA) { OptimizedID = DMA->getID(); setOperand(0, DMA); } bool isOptimized() const { return getDefiningAccess() && OptimizedID == getDefiningAccess()->getID(); } MemoryAccess *getOptimized() const { return getDefiningAccess(); } void resetOptimized() { OptimizedID = INVALID_MEMORYACCESS_ID; } protected: friend class MemorySSA; private: static void deleteMe(DerivedUser *Self); unsigned OptimizedID = INVALID_MEMORYACCESS_ID; }; template <> struct OperandTraits<MemoryUse> : public FixedNumOperandTraits<MemoryUse, 1> {}; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUse, MemoryAccess) /// Represents a read-write access to memory, whether it is a must-alias, /// or a may-alias. /// /// In particular, the set of Instructions that will be represented by /// MemoryDef's is exactly the set of Instructions for which /// AliasAnalysis::getModRefInfo returns "Mod" or "ModRef". /// Note that, in order to provide def-def chains, all defs also have a use /// associated with them. This use points to the nearest reaching /// MemoryDef/MemoryPhi. class MemoryDef final : public MemoryUseOrDef { public: friend class MemorySSA; DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess); MemoryDef(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB, unsigned Ver) : MemoryUseOrDef(C, DMA, MemoryDefVal, deleteMe, MI, BB), ID(Ver) {} // allocate space for exactly one operand void *operator new(size_t s) { return User::operator new(s, 1); } static bool classof(const Value *MA) { return MA->getValueID() == MemoryDefVal; } void setOptimized(MemoryAccess *MA) { Optimized = MA; OptimizedID = getDefiningAccess()->getID(); } MemoryAccess *getOptimized() const { return cast_or_null<MemoryAccess>(Optimized); } bool isOptimized() const { return getOptimized() && getDefiningAccess() && OptimizedID == getDefiningAccess()->getID(); } void resetOptimized() { OptimizedID = INVALID_MEMORYACCESS_ID; } void print(raw_ostream &OS) const; unsigned getID() const { return ID; } private: static void deleteMe(DerivedUser *Self); const unsigned ID; unsigned OptimizedID = INVALID_MEMORYACCESS_ID; WeakVH Optimized; }; template <> struct OperandTraits<MemoryDef> : public FixedNumOperandTraits<MemoryDef, 1> {}; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryDef, MemoryAccess) /// Represents phi nodes for memory accesses. /// /// These have the same semantic as regular phi nodes, with the exception that /// only one phi will ever exist in a given basic block. /// Guaranteeing one phi per block means guaranteeing there is only ever one /// valid reaching MemoryDef/MemoryPHI along each path to the phi node. /// This is ensured by not allowing disambiguation of the RHS of a MemoryDef or /// a MemoryPhi's operands. /// That is, given /// if (a) { /// store %a /// store %b /// } /// it *must* be transformed into /// if (a) { /// 1 = MemoryDef(liveOnEntry) /// store %a /// 2 = MemoryDef(1) /// store %b /// } /// and *not* /// if (a) { /// 1 = MemoryDef(liveOnEntry) /// store %a /// 2 = MemoryDef(liveOnEntry) /// store %b /// } /// even if the two stores do not conflict. Otherwise, both 1 and 2 reach the /// end of the branch, and if there are not two phi nodes, one will be /// disconnected completely from the SSA graph below that point. /// Because MemoryUse's do not generate new definitions, they do not have this /// issue. class MemoryPhi final : public MemoryAccess { // allocate space for exactly zero operands void *operator new(size_t s) { return User::operator new(s); } public: /// Provide fast operand accessors DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess); MemoryPhi(LLVMContext &C, BasicBlock *BB, unsigned Ver, unsigned NumPreds = 0) : MemoryAccess(C, MemoryPhiVal, deleteMe, BB, 0), ID(Ver), ReservedSpace(NumPreds) { allocHungoffUses(ReservedSpace); } // Block iterator interface. This provides access to the list of incoming // basic blocks, which parallels the list of incoming values. using block_iterator = BasicBlock **; using const_block_iterator = BasicBlock *const *; block_iterator block_begin() { auto *Ref = reinterpret_cast<Use::UserRef *>(op_begin() + ReservedSpace); return reinterpret_cast<block_iterator>(Ref + 1); } const_block_iterator block_begin() const { const auto *Ref = reinterpret_cast<const Use::UserRef *>(op_begin() + ReservedSpace); return reinterpret_cast<const_block_iterator>(Ref + 1); } block_iterator block_end() { return block_begin() + getNumOperands(); } const_block_iterator block_end() const { return block_begin() + getNumOperands(); } iterator_range<block_iterator> blocks() { return make_range(block_begin(), block_end()); } iterator_range<const_block_iterator> blocks() const { return make_range(block_begin(), block_end()); } op_range incoming_values() { return operands(); } const_op_range incoming_values() const { return operands(); } /// Return the number of incoming edges unsigned getNumIncomingValues() const { return getNumOperands(); } /// Return incoming value number x MemoryAccess *getIncomingValue(unsigned I) const { return getOperand(I); } void setIncomingValue(unsigned I, MemoryAccess *V) { assert(V && "PHI node got a null value!"); setOperand(I, V); } static unsigned getOperandNumForIncomingValue(unsigned I) { return I; } static unsigned getIncomingValueNumForOperand(unsigned I) { return I; } /// Return incoming basic block number @p i. BasicBlock *getIncomingBlock(unsigned I) const { return block_begin()[I]; } /// Return incoming basic block corresponding /// to an operand of the PHI. BasicBlock *getIncomingBlock(const Use &U) const { assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?"); return getIncomingBlock(unsigned(&U - op_begin())); } /// Return incoming basic block corresponding /// to value use iterator. BasicBlock *getIncomingBlock(MemoryAccess::const_user_iterator I) const { return getIncomingBlock(I.getUse()); } void setIncomingBlock(unsigned I, BasicBlock *BB) { assert(BB && "PHI node got a null basic block!"); block_begin()[I] = BB; } /// Add an incoming value to the end of the PHI list void addIncoming(MemoryAccess *V, BasicBlock *BB) { if (getNumOperands() == ReservedSpace) growOperands(); // Get more space! // Initialize some new operands. setNumHungOffUseOperands(getNumOperands() + 1); setIncomingValue(getNumOperands() - 1, V); setIncomingBlock(getNumOperands() - 1, BB); } /// Return the first index of the specified basic /// block in the value list for this PHI. Returns -1 if no instance. int getBasicBlockIndex(const BasicBlock *BB) const { for (unsigned I = 0, E = getNumOperands(); I != E; ++I) if (block_begin()[I] == BB) return I; return -1; } MemoryAccess *getIncomingValueForBlock(const BasicBlock *BB) const { int Idx = getBasicBlockIndex(BB); assert(Idx >= 0 && "Invalid basic block argument!"); return getIncomingValue(Idx); } // After deleting incoming position I, the order of incoming may be changed. void unorderedDeleteIncoming(unsigned I) { unsigned E = getNumOperands(); assert(I < E && "Cannot remove out of bounds Phi entry."); // MemoryPhi must have at least two incoming values, otherwise the MemoryPhi // itself should be deleted. assert(E >= 2 && "Cannot only remove incoming values in MemoryPhis with " "at least 2 values."); setIncomingValue(I, getIncomingValue(E - 1)); setIncomingBlock(I, block_begin()[E - 1]); setOperand(E - 1, nullptr); block_begin()[E - 1] = nullptr; setNumHungOffUseOperands(getNumOperands() - 1); } // After deleting entries that satisfy Pred, remaining entries may have // changed order. template <typename Fn> void unorderedDeleteIncomingIf(Fn &&Pred) { for (unsigned I = 0, E = getNumOperands(); I != E; ++I) if (Pred(getIncomingValue(I), getIncomingBlock(I))) { unorderedDeleteIncoming(I); E = getNumOperands(); --I; } assert(getNumOperands() >= 1 && "Cannot remove all incoming blocks in a MemoryPhi."); } // After deleting incoming block BB, the incoming blocks order may be changed. void unorderedDeleteIncomingBlock(const BasicBlock *BB) { unorderedDeleteIncomingIf( [&](const MemoryAccess *, const BasicBlock *B) { return BB == B; }); } // After deleting incoming memory access MA, the incoming accesses order may // be changed. void unorderedDeleteIncomingValue(const MemoryAccess *MA) { unorderedDeleteIncomingIf( [&](const MemoryAccess *M, const BasicBlock *) { return MA == M; }); } static bool classof(const Value *V) { return V->getValueID() == MemoryPhiVal; } void print(raw_ostream &OS) const; unsigned getID() const { return ID; } protected: friend class MemorySSA; /// this is more complicated than the generic /// User::allocHungoffUses, because we have to allocate Uses for the incoming /// values and pointers to the incoming blocks, all in one allocation. void allocHungoffUses(unsigned N) { User::allocHungoffUses(N, /* IsPhi */ true); } private: // For debugging only const unsigned ID; unsigned ReservedSpace; /// This grows the operand list in response to a push_back style of /// operation. This grows the number of ops by 1.5 times. void growOperands() { unsigned E = getNumOperands(); // 2 op PHI nodes are VERY common, so reserve at least enough for that. ReservedSpace = std::max(E + E / 2, 2u); growHungoffUses(ReservedSpace, /* IsPhi */ true); } static void deleteMe(DerivedUser *Self); }; inline unsigned MemoryAccess::getID() const { assert((isa<MemoryDef>(this) || isa<MemoryPhi>(this)) && "only memory defs and phis have ids"); if (const auto *MD = dyn_cast<MemoryDef>(this)) return MD->getID(); return cast<MemoryPhi>(this)->getID(); } inline bool MemoryUseOrDef::isOptimized() const { if (const auto *MD = dyn_cast<MemoryDef>(this)) return MD->isOptimized(); return cast<MemoryUse>(this)->isOptimized(); } inline MemoryAccess *MemoryUseOrDef::getOptimized() const { if (const auto *MD = dyn_cast<MemoryDef>(this)) return MD->getOptimized(); return cast<MemoryUse>(this)->getOptimized(); } inline void MemoryUseOrDef::setOptimized(MemoryAccess *MA) { if (auto *MD = dyn_cast<MemoryDef>(this)) MD->setOptimized(MA); else cast<MemoryUse>(this)->setOptimized(MA); } inline void MemoryUseOrDef::resetOptimized() { if (auto *MD = dyn_cast<MemoryDef>(this)) MD->resetOptimized(); else cast<MemoryUse>(this)->resetOptimized(); } template <> struct OperandTraits<MemoryPhi> : public HungoffOperandTraits<2> {}; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryPhi, MemoryAccess) /// Encapsulates MemorySSA, including all data associated with memory /// accesses. class MemorySSA { public: MemorySSA(Function &, AliasAnalysis *, DominatorTree *); ~MemorySSA(); MemorySSAWalker *getWalker(); /// Given a memory Mod/Ref'ing instruction, get the MemorySSA /// access associated with it. If passed a basic block gets the memory phi /// node that exists for that block, if there is one. Otherwise, this will get /// a MemoryUseOrDef. MemoryUseOrDef *getMemoryAccess(const Instruction *) const; MemoryPhi *getMemoryAccess(const BasicBlock *BB) const; void dump() const; void print(raw_ostream &) const; /// Return true if \p MA represents the live on entry value /// /// Loads and stores from pointer arguments and other global values may be /// defined by memory operations that do not occur in the current function, so /// they may be live on entry to the function. MemorySSA represents such /// memory state by the live on entry definition, which is guaranteed to occur /// before any other memory access in the function. inline bool isLiveOnEntryDef(const MemoryAccess *MA) const { return MA == LiveOnEntryDef.get(); } inline MemoryAccess *getLiveOnEntryDef() const { return LiveOnEntryDef.get(); } // Sadly, iplists, by default, owns and deletes pointers added to the // list. It's not currently possible to have two iplists for the same type, // where one owns the pointers, and one does not. This is because the traits // are per-type, not per-tag. If this ever changes, we should make the // DefList an iplist. using AccessList = iplist<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>; using DefsList = simple_ilist<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>>; /// Return the list of MemoryAccess's for a given basic block. /// /// This list is not modifiable by the user. const AccessList *getBlockAccesses(const BasicBlock *BB) const { return getWritableBlockAccesses(BB); } /// Return the list of MemoryDef's and MemoryPhi's for a given basic /// block. /// /// This list is not modifiable by the user. const DefsList *getBlockDefs(const BasicBlock *BB) const { return getWritableBlockDefs(BB); } /// Given two memory accesses in the same basic block, determine /// whether MemoryAccess \p A dominates MemoryAccess \p B. bool locallyDominates(const MemoryAccess *A, const MemoryAccess *B) const; /// Given two memory accesses in potentially different blocks, /// determine whether MemoryAccess \p A dominates MemoryAccess \p B. bool dominates(const MemoryAccess *A, const MemoryAccess *B) const; /// Given a MemoryAccess and a Use, determine whether MemoryAccess \p A /// dominates Use \p B. bool dominates(const MemoryAccess *A, const Use &B) const; /// Verify that MemorySSA is self consistent (IE definitions dominate /// all uses, uses appear in the right places). This is used by unit tests. void verifyMemorySSA() const; /// Used in various insertion functions to specify whether we are talking /// about the beginning or end of a block. enum InsertionPlace { Beginning, End }; protected: // Used by Memory SSA annotater, dumpers, and wrapper pass friend class MemorySSAAnnotatedWriter; friend class MemorySSAPrinterLegacyPass; friend class MemorySSAUpdater; void verifyDefUses(Function &F) const; void verifyDomination(Function &F) const; void verifyOrdering(Function &F) const; void verifyDominationNumbers(const Function &F) const; // This is used by the use optimizer and updater. AccessList *getWritableBlockAccesses(const BasicBlock *BB) const { auto It = PerBlockAccesses.find(BB); return It == PerBlockAccesses.end() ? nullptr : It->second.get(); } // This is used by the use optimizer and updater. DefsList *getWritableBlockDefs(const BasicBlock *BB) const { auto It = PerBlockDefs.find(BB); return It == PerBlockDefs.end() ? nullptr : It->second.get(); } // These is used by the updater to perform various internal MemorySSA // machinsations. They do not always leave the IR in a correct state, and // relies on the updater to fixup what it breaks, so it is not public. void moveTo(MemoryUseOrDef *What, BasicBlock *BB, AccessList::iterator Where); void moveTo(MemoryAccess *What, BasicBlock *BB, InsertionPlace Point); // Rename the dominator tree branch rooted at BB. void renamePass(BasicBlock *BB, MemoryAccess *IncomingVal, SmallPtrSetImpl<BasicBlock *> &Visited) { renamePass(DT->getNode(BB), IncomingVal, Visited, true, true); } void removeFromLookups(MemoryAccess *); void removeFromLists(MemoryAccess *, bool ShouldDelete = true); void insertIntoListsForBlock(MemoryAccess *, const BasicBlock *, InsertionPlace); void insertIntoListsBefore(MemoryAccess *, const BasicBlock *, AccessList::iterator); MemoryUseOrDef *createDefinedAccess(Instruction *, MemoryAccess *); private: class CachingWalker; class OptimizeUses; CachingWalker *getWalkerImpl(); void buildMemorySSA(); void optimizeUses(); void verifyUseInDefs(MemoryAccess *, MemoryAccess *) const; using AccessMap = DenseMap<const BasicBlock *, std::unique_ptr<AccessList>>; using DefsMap = DenseMap<const BasicBlock *, std::unique_ptr<DefsList>>; void determineInsertionPoint(const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks); void markUnreachableAsLiveOnEntry(BasicBlock *BB); bool dominatesUse(const MemoryAccess *, const MemoryAccess *) const; MemoryPhi *createMemoryPhi(BasicBlock *BB); MemoryUseOrDef *createNewAccess(Instruction *); MemoryAccess *findDominatingDef(BasicBlock *, enum InsertionPlace); void placePHINodes(const SmallPtrSetImpl<BasicBlock *> &); MemoryAccess *renameBlock(BasicBlock *, MemoryAccess *, bool); void renameSuccessorPhis(BasicBlock *, MemoryAccess *, bool); void renamePass(DomTreeNode *, MemoryAccess *IncomingVal, SmallPtrSetImpl<BasicBlock *> &Visited, bool SkipVisited = false, bool RenameAllUses = false); AccessList *getOrCreateAccessList(const BasicBlock *); DefsList *getOrCreateDefsList(const BasicBlock *); void renumberBlock(const BasicBlock *) const; AliasAnalysis *AA; DominatorTree *DT; Function &F; // Memory SSA mappings DenseMap<const Value *, MemoryAccess *> ValueToMemoryAccess; // These two mappings contain the main block to access/def mappings for // MemorySSA. The list contained in PerBlockAccesses really owns all the // MemoryAccesses. // Both maps maintain the invariant that if a block is found in them, the // corresponding list is not empty, and if a block is not found in them, the // corresponding list is empty. AccessMap PerBlockAccesses; DefsMap PerBlockDefs; std::unique_ptr<MemoryAccess, ValueDeleter> LiveOnEntryDef; // Domination mappings // Note that the numbering is local to a block, even though the map is // global. mutable SmallPtrSet<const BasicBlock *, 16> BlockNumberingValid; mutable DenseMap<const MemoryAccess *, unsigned long> BlockNumbering; // Memory SSA building info std::unique_ptr<CachingWalker> Walker; unsigned NextID; }; // Internal MemorySSA utils, for use by MemorySSA classes and walkers class MemorySSAUtil { protected: friend class GVNHoist; friend class MemorySSAWalker; // This function should not be used by new passes. static bool defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, AliasAnalysis &AA); }; // This pass does eager building and then printing of MemorySSA. It is used by // the tests to be able to build, dump, and verify Memory SSA. class MemorySSAPrinterLegacyPass : public FunctionPass { public: MemorySSAPrinterLegacyPass(); bool runOnFunction(Function &) override; void getAnalysisUsage(AnalysisUsage &AU) const override; static char ID; }; /// An analysis that produces \c MemorySSA for a function. /// class MemorySSAAnalysis : public AnalysisInfoMixin<MemorySSAAnalysis> { friend AnalysisInfoMixin<MemorySSAAnalysis>; static AnalysisKey Key; public: // Wrap MemorySSA result to ensure address stability of internal MemorySSA // pointers after construction. Use a wrapper class instead of plain // unique_ptr<MemorySSA> to avoid build breakage on MSVC. struct Result { Result(std::unique_ptr<MemorySSA> &&MSSA) : MSSA(std::move(MSSA)) {} MemorySSA &getMSSA() { return *MSSA.get(); } std::unique_ptr<MemorySSA> MSSA; }; Result run(Function &F, FunctionAnalysisManager &AM); }; /// Printer pass for \c MemorySSA. class MemorySSAPrinterPass : public PassInfoMixin<MemorySSAPrinterPass> { raw_ostream &OS; public: explicit MemorySSAPrinterPass(raw_ostream &OS) : OS(OS) {} PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); }; /// Verifier pass for \c MemorySSA. struct MemorySSAVerifierPass : PassInfoMixin<MemorySSAVerifierPass> { PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); }; /// Legacy analysis pass which computes \c MemorySSA. class MemorySSAWrapperPass : public FunctionPass { public: MemorySSAWrapperPass(); static char ID; bool runOnFunction(Function &) override; void releaseMemory() override; MemorySSA &getMSSA() { return *MSSA; } const MemorySSA &getMSSA() const { return *MSSA; } void getAnalysisUsage(AnalysisUsage &AU) const override; void verifyAnalysis() const override; void print(raw_ostream &OS, const Module *M = nullptr) const override; private: std::unique_ptr<MemorySSA> MSSA; }; /// This is the generic walker interface for walkers of MemorySSA. /// Walkers are used to be able to further disambiguate the def-use chains /// MemorySSA gives you, or otherwise produce better info than MemorySSA gives /// you. /// In particular, while the def-use chains provide basic information, and are /// guaranteed to give, for example, the nearest may-aliasing MemoryDef for a /// MemoryUse as AliasAnalysis considers it, a user mant want better or other /// information. In particular, they may want to use SCEV info to further /// disambiguate memory accesses, or they may want the nearest dominating /// may-aliasing MemoryDef for a call or a store. This API enables a /// standardized interface to getting and using that info. class MemorySSAWalker { public: MemorySSAWalker(MemorySSA *); virtual ~MemorySSAWalker() = default; using MemoryAccessSet = SmallVector<MemoryAccess *, 8>; /// Given a memory Mod/Ref/ModRef'ing instruction, calling this /// will give you the nearest dominating MemoryAccess that Mod's the location /// the instruction accesses (by skipping any def which AA can prove does not /// alias the location(s) accessed by the instruction given). /// /// Note that this will return a single access, and it must dominate the /// Instruction, so if an operand of a MemoryPhi node Mod's the instruction, /// this will return the MemoryPhi, not the operand. This means that /// given: /// if (a) { /// 1 = MemoryDef(liveOnEntry) /// store %a /// } else { /// 2 = MemoryDef(liveOnEntry) /// store %b /// } /// 3 = MemoryPhi(2, 1) /// MemoryUse(3) /// load %a /// /// calling this API on load(%a) will return the MemoryPhi, not the MemoryDef /// in the if (a) branch. MemoryAccess *getClobberingMemoryAccess(const Instruction *I) { MemoryAccess *MA = MSSA->getMemoryAccess(I); assert(MA && "Handed an instruction that MemorySSA doesn't recognize?"); return getClobberingMemoryAccess(MA); } /// Does the same thing as getClobberingMemoryAccess(const Instruction *I), /// but takes a MemoryAccess instead of an Instruction. virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) = 0; /// Given a potentially clobbering memory access and a new location, /// calling this will give you the nearest dominating clobbering MemoryAccess /// (by skipping non-aliasing def links). /// /// This version of the function is mainly used to disambiguate phi translated /// pointers, where the value of a pointer may have changed from the initial /// memory access. Note that this expects to be handed either a MemoryUse, /// or an already potentially clobbering access. Unlike the above API, if /// given a MemoryDef that clobbers the pointer as the starting access, it /// will return that MemoryDef, whereas the above would return the clobber /// starting from the use side of the memory def. virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, const MemoryLocation &) = 0; /// Given a memory access, invalidate anything this walker knows about /// that access. /// This API is used by walkers that store information to perform basic cache /// invalidation. This will be called by MemorySSA at appropriate times for /// the walker it uses or returns. virtual void invalidateInfo(MemoryAccess *) {} virtual void verify(const MemorySSA *MSSA) { assert(MSSA == this->MSSA); } protected: friend class MemorySSA; // For updating MSSA pointer in MemorySSA move // constructor. MemorySSA *MSSA; }; /// A MemorySSAWalker that does no alias queries, or anything else. It /// simply returns the links as they were constructed by the builder. class DoNothingMemorySSAWalker final : public MemorySSAWalker { public: // Keep the overrides below from hiding the Instruction overload of // getClobberingMemoryAccess. using MemorySSAWalker::getClobberingMemoryAccess; MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override; MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, const MemoryLocation &) override; }; using MemoryAccessPair = std::pair<MemoryAccess *, MemoryLocation>; using ConstMemoryAccessPair = std::pair<const MemoryAccess *, MemoryLocation>; /// Iterator base class used to implement const and non-const iterators /// over the defining accesses of a MemoryAccess. template <class T> class memoryaccess_def_iterator_base : public iterator_facade_base<memoryaccess_def_iterator_base<T>, std::forward_iterator_tag, T, ptrdiff_t, T *, T *> { using BaseT = typename memoryaccess_def_iterator_base::iterator_facade_base; public: memoryaccess_def_iterator_base(T *Start) : Access(Start) {} memoryaccess_def_iterator_base() = default; bool operator==(const memoryaccess_def_iterator_base &Other) const { return Access == Other.Access && (!Access || ArgNo == Other.ArgNo); } // This is a bit ugly, but for MemoryPHI's, unlike PHINodes, you can't get the // block from the operand in constant time (In a PHINode, the uselist has // both, so it's just subtraction). We provide it as part of the // iterator to avoid callers having to linear walk to get the block. // If the operation becomes constant time on MemoryPHI's, this bit of // abstraction breaking should be removed. BasicBlock *getPhiArgBlock() const { MemoryPhi *MP = dyn_cast<MemoryPhi>(Access); assert(MP && "Tried to get phi arg block when not iterating over a PHI"); return MP->getIncomingBlock(ArgNo); } typename BaseT::iterator::pointer operator*() const { assert(Access && "Tried to access past the end of our iterator"); // Go to the first argument for phis, and the defining access for everything // else. if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Access)) return MP->getIncomingValue(ArgNo); return cast<MemoryUseOrDef>(Access)->getDefiningAccess(); } using BaseT::operator++; memoryaccess_def_iterator &operator++() { assert(Access && "Hit end of iterator"); if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Access)) { if (++ArgNo >= MP->getNumIncomingValues()) { ArgNo = 0; Access = nullptr; } } else { Access = nullptr; } return *this; } private: T *Access = nullptr; unsigned ArgNo = 0; }; inline memoryaccess_def_iterator MemoryAccess::defs_begin() { return memoryaccess_def_iterator(this); } inline const_memoryaccess_def_iterator MemoryAccess::defs_begin() const { return const_memoryaccess_def_iterator(this); } inline memoryaccess_def_iterator MemoryAccess::defs_end() { return memoryaccess_def_iterator(); } inline const_memoryaccess_def_iterator MemoryAccess::defs_end() const { return const_memoryaccess_def_iterator(); } /// GraphTraits for a MemoryAccess, which walks defs in the normal case, /// and uses in the inverse case. template <> struct GraphTraits<MemoryAccess *> { using NodeRef = MemoryAccess *; using ChildIteratorType = memoryaccess_def_iterator; static NodeRef getEntryNode(NodeRef N) { return N; } static ChildIteratorType child_begin(NodeRef N) { return N->defs_begin(); } static ChildIteratorType child_end(NodeRef N) { return N->defs_end(); } }; template <> struct GraphTraits<Inverse<MemoryAccess *>> { using NodeRef = MemoryAccess *; using ChildIteratorType = MemoryAccess::iterator; static NodeRef getEntryNode(NodeRef N) { return N; } static ChildIteratorType child_begin(NodeRef N) { return N->user_begin(); } static ChildIteratorType child_end(NodeRef N) { return N->user_end(); } }; /// Provide an iterator that walks defs, giving both the memory access, /// and the current pointer location, updating the pointer location as it /// changes due to phi node translation. /// /// This iterator, while somewhat specialized, is what most clients actually /// want when walking upwards through MemorySSA def chains. It takes a pair of /// <MemoryAccess,MemoryLocation>, and walks defs, properly translating the /// memory location through phi nodes for the user. class upward_defs_iterator : public iterator_facade_base<upward_defs_iterator, std::forward_iterator_tag, const MemoryAccessPair> { using BaseT = upward_defs_iterator::iterator_facade_base; public: upward_defs_iterator(const MemoryAccessPair &Info) : DefIterator(Info.first), Location(Info.second), OriginalAccess(Info.first) { CurrentPair.first = nullptr; WalkingPhi = Info.first && isa<MemoryPhi>(Info.first); fillInCurrentPair(); } upward_defs_iterator() { CurrentPair.first = nullptr; } bool operator==(const upward_defs_iterator &Other) const { return DefIterator == Other.DefIterator; } BaseT::iterator::reference operator*() const { assert(DefIterator != OriginalAccess->defs_end() && "Tried to access past the end of our iterator"); return CurrentPair; } using BaseT::operator++; upward_defs_iterator &operator++() { assert(DefIterator != OriginalAccess->defs_end() && "Tried to access past the end of the iterator"); ++DefIterator; if (DefIterator != OriginalAccess->defs_end()) fillInCurrentPair(); return *this; } BasicBlock *getPhiArgBlock() const { return DefIterator.getPhiArgBlock(); } private: void fillInCurrentPair() { CurrentPair.first = *DefIterator; if (WalkingPhi && Location.Ptr) { PHITransAddr Translator( const_cast<Value *>(Location.Ptr), OriginalAccess->getBlock()->getModule()->getDataLayout(), nullptr); if (!Translator.PHITranslateValue(OriginalAccess->getBlock(), DefIterator.getPhiArgBlock(), nullptr, false)) if (Translator.getAddr() != Location.Ptr) { CurrentPair.second = Location.getWithNewPtr(Translator.getAddr()); return; } } CurrentPair.second = Location; } MemoryAccessPair CurrentPair; memoryaccess_def_iterator DefIterator; MemoryLocation Location; MemoryAccess *OriginalAccess = nullptr; bool WalkingPhi = false; }; inline upward_defs_iterator upward_defs_begin(const MemoryAccessPair &Pair) { return upward_defs_iterator(Pair); } inline upward_defs_iterator upward_defs_end() { return upward_defs_iterator(); } inline iterator_range<upward_defs_iterator> upward_defs(const MemoryAccessPair &Pair) { return make_range(upward_defs_begin(Pair), upward_defs_end()); } /// Walks the defining accesses of MemoryDefs. Stops after we hit something that /// has no defining use (e.g. a MemoryPhi or liveOnEntry). Note that, when /// comparing against a null def_chain_iterator, this will compare equal only /// after walking said Phi/liveOnEntry. /// /// The UseOptimizedChain flag specifies whether to walk the clobbering /// access chain, or all the accesses. /// /// Normally, MemoryDef are all just def/use linked together, so a def_chain on /// a MemoryDef will walk all MemoryDefs above it in the program until it hits /// a phi node. The optimized chain walks the clobbering access of a store. /// So if you are just trying to find, given a store, what the next /// thing that would clobber the same memory is, you want the optimized chain. template <class T, bool UseOptimizedChain = false> struct def_chain_iterator : public iterator_facade_base<def_chain_iterator<T, UseOptimizedChain>, std::forward_iterator_tag, MemoryAccess *> { def_chain_iterator() : MA(nullptr) {} def_chain_iterator(T MA) : MA(MA) {} T operator*() const { return MA; } def_chain_iterator &operator++() { // N.B. liveOnEntry has a null defining access. if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) { if (UseOptimizedChain && MUD->isOptimized()) MA = MUD->getOptimized(); else MA = MUD->getDefiningAccess(); } else { MA = nullptr; } return *this; } bool operator==(const def_chain_iterator &O) const { return MA == O.MA; } private: T MA; }; template <class T> inline iterator_range<def_chain_iterator<T>> def_chain(T MA, MemoryAccess *UpTo = nullptr) { #ifdef EXPENSIVE_CHECKS assert((!UpTo || find(def_chain(MA), UpTo) != def_chain_iterator<T>()) && "UpTo isn't in the def chain!"); #endif return make_range(def_chain_iterator<T>(MA), def_chain_iterator<T>(UpTo)); } template <class T> inline iterator_range<def_chain_iterator<T, true>> optimized_def_chain(T MA) { return make_range(def_chain_iterator<T, true>(MA), def_chain_iterator<T, true>(nullptr)); } } // end namespace llvm #endif // LLVM_ANALYSIS_MEMORYSSA_H