//===- TargetTransformInfoImpl.h --------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// This file provides helpers for the implementation of /// a TargetTransformInfo-conforming class. /// //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H #define LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/VectorUtils.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Function.h" #include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/Operator.h" #include "llvm/IR/Type.h" namespace llvm { /// Base class for use as a mix-in that aids implementing /// a TargetTransformInfo-compatible class. class TargetTransformInfoImplBase { protected: typedef TargetTransformInfo TTI; const DataLayout &DL; explicit TargetTransformInfoImplBase(const DataLayout &DL) : DL(DL) {} public: // Provide value semantics. MSVC requires that we spell all of these out. TargetTransformInfoImplBase(const TargetTransformInfoImplBase &Arg) : DL(Arg.DL) {} TargetTransformInfoImplBase(TargetTransformInfoImplBase &&Arg) : DL(Arg.DL) {} const DataLayout &getDataLayout() const { return DL; } unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) { switch (Opcode) { default: // By default, just classify everything as 'basic'. return TTI::TCC_Basic; case Instruction::GetElementPtr: llvm_unreachable("Use getGEPCost for GEP operations!"); case Instruction::BitCast: assert(OpTy && "Cast instructions must provide the operand type"); if (Ty == OpTy || (Ty->isPointerTy() && OpTy->isPointerTy())) // Identity and pointer-to-pointer casts are free. return TTI::TCC_Free; // Otherwise, the default basic cost is used. return TTI::TCC_Basic; case Instruction::FDiv: case Instruction::FRem: case Instruction::SDiv: case Instruction::SRem: case Instruction::UDiv: case Instruction::URem: return TTI::TCC_Expensive; case Instruction::IntToPtr: { // An inttoptr cast is free so long as the input is a legal integer type // which doesn't contain values outside the range of a pointer. unsigned OpSize = OpTy->getScalarSizeInBits(); if (DL.isLegalInteger(OpSize) && OpSize <= DL.getPointerTypeSizeInBits(Ty)) return TTI::TCC_Free; // Otherwise it's not a no-op. return TTI::TCC_Basic; } case Instruction::PtrToInt: { // A ptrtoint cast is free so long as the result is large enough to store // the pointer, and a legal integer type. unsigned DestSize = Ty->getScalarSizeInBits(); if (DL.isLegalInteger(DestSize) && DestSize >= DL.getPointerTypeSizeInBits(OpTy)) return TTI::TCC_Free; // Otherwise it's not a no-op. return TTI::TCC_Basic; } case Instruction::Trunc: // trunc to a native type is free (assuming the target has compare and // shift-right of the same width). if (DL.isLegalInteger(DL.getTypeSizeInBits(Ty))) return TTI::TCC_Free; return TTI::TCC_Basic; } } int getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef<const Value *> Operands) { // In the basic model, we just assume that all-constant GEPs will be folded // into their uses via addressing modes. for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx) if (!isa<Constant>(Operands[Idx])) return TTI::TCC_Basic; return TTI::TCC_Free; } unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize) { JTSize = 0; return SI.getNumCases(); } int getExtCost(const Instruction *I, const Value *Src) { return TTI::TCC_Basic; } unsigned getCallCost(FunctionType *FTy, int NumArgs) { assert(FTy && "FunctionType must be provided to this routine."); // The target-independent implementation just measures the size of the // function by approximating that each argument will take on average one // instruction to prepare. if (NumArgs < 0) // Set the argument number to the number of explicit arguments in the // function. NumArgs = FTy->getNumParams(); return TTI::TCC_Basic * (NumArgs + 1); } unsigned getInliningThresholdMultiplier() { return 1; } unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, ArrayRef<Type *> ParamTys) { switch (IID) { default: // Intrinsics rarely (if ever) have normal argument setup constraints. // Model them as having a basic instruction cost. // FIXME: This is wrong for libc intrinsics. return TTI::TCC_Basic; case Intrinsic::annotation: case Intrinsic::assume: case Intrinsic::sideeffect: case Intrinsic::dbg_declare: case Intrinsic::dbg_value: case Intrinsic::dbg_label: case Intrinsic::invariant_start: case Intrinsic::invariant_end: case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: case Intrinsic::objectsize: case Intrinsic::ptr_annotation: case Intrinsic::var_annotation: case Intrinsic::experimental_gc_result: case Intrinsic::experimental_gc_relocate: case Intrinsic::coro_alloc: case Intrinsic::coro_begin: case Intrinsic::coro_free: case Intrinsic::coro_end: case Intrinsic::coro_frame: case Intrinsic::coro_size: case Intrinsic::coro_suspend: case Intrinsic::coro_param: case Intrinsic::coro_subfn_addr: // These intrinsics don't actually represent code after lowering. return TTI::TCC_Free; } } bool hasBranchDivergence() { return false; } bool isSourceOfDivergence(const Value *V) { return false; } bool isAlwaysUniform(const Value *V) { return false; } unsigned getFlatAddressSpace () { return -1; } bool isLoweredToCall(const Function *F) { assert(F && "A concrete function must be provided to this routine."); // FIXME: These should almost certainly not be handled here, and instead // handled with the help of TLI or the target itself. This was largely // ported from existing analysis heuristics here so that such refactorings // can take place in the future. if (F->isIntrinsic()) return false; if (F->hasLocalLinkage() || !F->hasName()) return true; StringRef Name = F->getName(); // These will all likely lower to a single selection DAG node. if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" || Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" || Name == "fmin" || Name == "fminf" || Name == "fminl" || Name == "fmax" || Name == "fmaxf" || Name == "fmaxl" || Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" || Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") return false; // These are all likely to be optimized into something smaller. if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" || Name == "exp2l" || Name == "exp2f" || Name == "floor" || Name == "floorf" || Name == "ceil" || Name == "round" || Name == "ffs" || Name == "ffsl" || Name == "abs" || Name == "labs" || Name == "llabs") return false; return true; } void getUnrollingPreferences(Loop *, ScalarEvolution &, TTI::UnrollingPreferences &) {} bool isLegalAddImmediate(int64_t Imm) { return false; } bool isLegalICmpImmediate(int64_t Imm) { return false; } bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace, Instruction *I = nullptr) { // Guess that only reg and reg+reg addressing is allowed. This heuristic is // taken from the implementation of LSR. return !BaseGV && BaseOffset == 0 && (Scale == 0 || Scale == 1); } bool isLSRCostLess(TTI::LSRCost &C1, TTI::LSRCost &C2) { return std::tie(C1.NumRegs, C1.AddRecCost, C1.NumIVMuls, C1.NumBaseAdds, C1.ScaleCost, C1.ImmCost, C1.SetupCost) < std::tie(C2.NumRegs, C2.AddRecCost, C2.NumIVMuls, C2.NumBaseAdds, C2.ScaleCost, C2.ImmCost, C2.SetupCost); } bool canMacroFuseCmp() { return false; } bool shouldFavorPostInc() const { return false; } bool isLegalMaskedStore(Type *DataType) { return false; } bool isLegalMaskedLoad(Type *DataType) { return false; } bool isLegalMaskedScatter(Type *DataType) { return false; } bool isLegalMaskedGather(Type *DataType) { return false; } bool hasDivRemOp(Type *DataType, bool IsSigned) { return false; } bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) { return false; } bool prefersVectorizedAddressing() { return true; } int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace) { // Guess that all legal addressing mode are free. if (isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale, AddrSpace)) return 0; return -1; } bool LSRWithInstrQueries() { return false; } bool isTruncateFree(Type *Ty1, Type *Ty2) { return false; } bool isProfitableToHoist(Instruction *I) { return true; } bool useAA() { return false; } bool isTypeLegal(Type *Ty) { return false; } unsigned getJumpBufAlignment() { return 0; } unsigned getJumpBufSize() { return 0; } bool shouldBuildLookupTables() { return true; } bool shouldBuildLookupTablesForConstant(Constant *C) { return true; } bool useColdCCForColdCall(Function &F) { return false; } unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) { return 0; } unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, unsigned VF) { return 0; } bool supportsEfficientVectorElementLoadStore() { return false; } bool enableAggressiveInterleaving(bool LoopHasReductions) { return false; } const TTI::MemCmpExpansionOptions *enableMemCmpExpansion( bool IsZeroCmp) const { return nullptr; } bool enableInterleavedAccessVectorization() { return false; } bool isFPVectorizationPotentiallyUnsafe() { return false; } bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth, unsigned AddressSpace, unsigned Alignment, bool *Fast) { return false; } TTI::PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) { return TTI::PSK_Software; } bool haveFastSqrt(Type *Ty) { return false; } bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) { return true; } unsigned getFPOpCost(Type *Ty) { return TargetTransformInfo::TCC_Basic; } int getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty) { return 0; } unsigned getIntImmCost(const APInt &Imm, Type *Ty) { return TTI::TCC_Basic; } unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty) { return TTI::TCC_Free; } unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty) { return TTI::TCC_Free; } unsigned getNumberOfRegisters(bool Vector) { return 8; } unsigned getRegisterBitWidth(bool Vector) const { return 32; } unsigned getMinVectorRegisterBitWidth() { return 128; } bool shouldMaximizeVectorBandwidth(bool OptSize) const { return false; } unsigned getMinimumVF(unsigned ElemWidth) const { return 0; } bool shouldConsiderAddressTypePromotion(const Instruction &I, bool &AllowPromotionWithoutCommonHeader) { AllowPromotionWithoutCommonHeader = false; return false; } unsigned getCacheLineSize() { return 0; } llvm::Optional<unsigned> getCacheSize(TargetTransformInfo::CacheLevel Level) { switch (Level) { case TargetTransformInfo::CacheLevel::L1D: LLVM_FALLTHROUGH; case TargetTransformInfo::CacheLevel::L2D: return llvm::Optional<unsigned>(); } llvm_unreachable("Unknown TargetTransformInfo::CacheLevel"); } llvm::Optional<unsigned> getCacheAssociativity( TargetTransformInfo::CacheLevel Level) { switch (Level) { case TargetTransformInfo::CacheLevel::L1D: LLVM_FALLTHROUGH; case TargetTransformInfo::CacheLevel::L2D: return llvm::Optional<unsigned>(); } llvm_unreachable("Unknown TargetTransformInfo::CacheLevel"); } unsigned getPrefetchDistance() { return 0; } unsigned getMinPrefetchStride() { return 1; } unsigned getMaxPrefetchIterationsAhead() { return UINT_MAX; } unsigned getMaxInterleaveFactor(unsigned VF) { return 1; } unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo, TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args) { return 1; } unsigned getShuffleCost(TTI::ShuffleKind Kind, Type *Ty, int Index, Type *SubTp) { return 1; } unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, const Instruction *I) { return 1; } unsigned getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index) { return 1; } unsigned getCFInstrCost(unsigned Opcode) { return 1; } unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, const Instruction *I) { return 1; } unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { return 1; } unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, unsigned AddressSpace, const Instruction *I) { return 1; } unsigned getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, unsigned AddressSpace) { return 1; } unsigned getGatherScatterOpCost(unsigned Opcode, Type *DataTy, Value *Ptr, bool VariableMask, unsigned Alignment) { return 1; } unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, unsigned Alignment, unsigned AddressSpace) { return 1; } unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, ArrayRef<Type *> Tys, FastMathFlags FMF, unsigned ScalarizationCostPassed) { return 1; } unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) { return 1; } unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) { return 1; } unsigned getNumberOfParts(Type *Tp) { return 0; } unsigned getAddressComputationCost(Type *Tp, ScalarEvolution *, const SCEV *) { return 0; } unsigned getArithmeticReductionCost(unsigned, Type *, bool) { return 1; } unsigned getMinMaxReductionCost(Type *, Type *, bool, bool) { return 1; } unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) { return 0; } bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) { return false; } unsigned getAtomicMemIntrinsicMaxElementSize() const { // Note for overrides: You must ensure for all element unordered-atomic // memory intrinsics that all power-of-2 element sizes up to, and // including, the return value of this method have a corresponding // runtime lib call. These runtime lib call definitions can be found // in RuntimeLibcalls.h return 0; } Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, Type *ExpectedType) { return nullptr; } Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, unsigned SrcAlign, unsigned DestAlign) const { return Type::getInt8Ty(Context); } void getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const { for (unsigned i = 0; i != RemainingBytes; ++i) OpsOut.push_back(Type::getInt8Ty(Context)); } bool areInlineCompatible(const Function *Caller, const Function *Callee) const { return (Caller->getFnAttribute("target-cpu") == Callee->getFnAttribute("target-cpu")) && (Caller->getFnAttribute("target-features") == Callee->getFnAttribute("target-features")); } bool isIndexedLoadLegal(TTI::MemIndexedMode Mode, Type *Ty, const DataLayout &DL) const { return false; } bool isIndexedStoreLegal(TTI::MemIndexedMode Mode, Type *Ty, const DataLayout &DL) const { return false; } unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { return 128; } bool isLegalToVectorizeLoad(LoadInst *LI) const { return true; } bool isLegalToVectorizeStore(StoreInst *SI) const { return true; } bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { return true; } bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { return true; } unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, unsigned ChainSizeInBytes, VectorType *VecTy) const { return VF; } unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, unsigned ChainSizeInBytes, VectorType *VecTy) const { return VF; } bool useReductionIntrinsic(unsigned Opcode, Type *Ty, TTI::ReductionFlags Flags) const { return false; } bool shouldExpandReduction(const IntrinsicInst *II) const { return true; } protected: // Obtain the minimum required size to hold the value (without the sign) // In case of a vector it returns the min required size for one element. unsigned minRequiredElementSize(const Value* Val, bool &isSigned) { if (isa<ConstantDataVector>(Val) || isa<ConstantVector>(Val)) { const auto* VectorValue = cast<Constant>(Val); // In case of a vector need to pick the max between the min // required size for each element auto *VT = cast<VectorType>(Val->getType()); // Assume unsigned elements isSigned = false; // The max required size is the total vector width divided by num // of elements in the vector unsigned MaxRequiredSize = VT->getBitWidth() / VT->getNumElements(); unsigned MinRequiredSize = 0; for(unsigned i = 0, e = VT->getNumElements(); i < e; ++i) { if (auto* IntElement = dyn_cast<ConstantInt>(VectorValue->getAggregateElement(i))) { bool signedElement = IntElement->getValue().isNegative(); // Get the element min required size. unsigned ElementMinRequiredSize = IntElement->getValue().getMinSignedBits() - 1; // In case one element is signed then all the vector is signed. isSigned |= signedElement; // Save the max required bit size between all the elements. MinRequiredSize = std::max(MinRequiredSize, ElementMinRequiredSize); } else { // not an int constant element return MaxRequiredSize; } } return MinRequiredSize; } if (const auto* CI = dyn_cast<ConstantInt>(Val)) { isSigned = CI->getValue().isNegative(); return CI->getValue().getMinSignedBits() - 1; } if (const auto* Cast = dyn_cast<SExtInst>(Val)) { isSigned = true; return Cast->getSrcTy()->getScalarSizeInBits() - 1; } if (const auto* Cast = dyn_cast<ZExtInst>(Val)) { isSigned = false; return Cast->getSrcTy()->getScalarSizeInBits(); } isSigned = false; return Val->getType()->getScalarSizeInBits(); } bool isStridedAccess(const SCEV *Ptr) { return Ptr && isa<SCEVAddRecExpr>(Ptr); } const SCEVConstant *getConstantStrideStep(ScalarEvolution *SE, const SCEV *Ptr) { if (!isStridedAccess(Ptr)) return nullptr; const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ptr); return dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*SE)); } bool isConstantStridedAccessLessThan(ScalarEvolution *SE, const SCEV *Ptr, int64_t MergeDistance) { const SCEVConstant *Step = getConstantStrideStep(SE, Ptr); if (!Step) return false; APInt StrideVal = Step->getAPInt(); if (StrideVal.getBitWidth() > 64) return false; // FIXME: Need to take absolute value for negative stride case. return StrideVal.getSExtValue() < MergeDistance; } }; /// CRTP base class for use as a mix-in that aids implementing /// a TargetTransformInfo-compatible class. template <typename T> class TargetTransformInfoImplCRTPBase : public TargetTransformInfoImplBase { private: typedef TargetTransformInfoImplBase BaseT; protected: explicit TargetTransformInfoImplCRTPBase(const DataLayout &DL) : BaseT(DL) {} public: using BaseT::getCallCost; unsigned getCallCost(const Function *F, int NumArgs) { assert(F && "A concrete function must be provided to this routine."); if (NumArgs < 0) // Set the argument number to the number of explicit arguments in the // function. NumArgs = F->arg_size(); if (Intrinsic::ID IID = F->getIntrinsicID()) { FunctionType *FTy = F->getFunctionType(); SmallVector<Type *, 8> ParamTys(FTy->param_begin(), FTy->param_end()); return static_cast<T *>(this) ->getIntrinsicCost(IID, FTy->getReturnType(), ParamTys); } if (!static_cast<T *>(this)->isLoweredToCall(F)) return TTI::TCC_Basic; // Give a basic cost if it will be lowered // directly. return static_cast<T *>(this)->getCallCost(F->getFunctionType(), NumArgs); } unsigned getCallCost(const Function *F, ArrayRef<const Value *> Arguments) { // Simply delegate to generic handling of the call. // FIXME: We should use instsimplify or something else to catch calls which // will constant fold with these arguments. return static_cast<T *>(this)->getCallCost(F, Arguments.size()); } using BaseT::getGEPCost; int getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef<const Value *> Operands) { const GlobalValue *BaseGV = nullptr; if (Ptr != nullptr) { // TODO: will remove this when pointers have an opaque type. assert(Ptr->getType()->getScalarType()->getPointerElementType() == PointeeType && "explicit pointee type doesn't match operand's pointee type"); BaseGV = dyn_cast<GlobalValue>(Ptr->stripPointerCasts()); } bool HasBaseReg = (BaseGV == nullptr); auto PtrSizeBits = DL.getPointerTypeSizeInBits(Ptr->getType()); APInt BaseOffset(PtrSizeBits, 0); int64_t Scale = 0; auto GTI = gep_type_begin(PointeeType, Operands); Type *TargetType = nullptr; // Handle the case where the GEP instruction has a single operand, // the basis, therefore TargetType is a nullptr. if (Operands.empty()) return !BaseGV ? TTI::TCC_Free : TTI::TCC_Basic; for (auto I = Operands.begin(); I != Operands.end(); ++I, ++GTI) { TargetType = GTI.getIndexedType(); // We assume that the cost of Scalar GEP with constant index and the // cost of Vector GEP with splat constant index are the same. const ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I); if (!ConstIdx) if (auto Splat = getSplatValue(*I)) ConstIdx = dyn_cast<ConstantInt>(Splat); if (StructType *STy = GTI.getStructTypeOrNull()) { // For structures the index is always splat or scalar constant assert(ConstIdx && "Unexpected GEP index"); uint64_t Field = ConstIdx->getZExtValue(); BaseOffset += DL.getStructLayout(STy)->getElementOffset(Field); } else { int64_t ElementSize = DL.getTypeAllocSize(GTI.getIndexedType()); if (ConstIdx) { BaseOffset += ConstIdx->getValue().sextOrTrunc(PtrSizeBits) * ElementSize; } else { // Needs scale register. if (Scale != 0) // No addressing mode takes two scale registers. return TTI::TCC_Basic; Scale = ElementSize; } } } // Assumes the address space is 0 when Ptr is nullptr. unsigned AS = (Ptr == nullptr ? 0 : Ptr->getType()->getPointerAddressSpace()); if (static_cast<T *>(this)->isLegalAddressingMode( TargetType, const_cast<GlobalValue *>(BaseGV), BaseOffset.sextOrTrunc(64).getSExtValue(), HasBaseReg, Scale, AS)) return TTI::TCC_Free; return TTI::TCC_Basic; } using BaseT::getIntrinsicCost; unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments) { // Delegate to the generic intrinsic handling code. This mostly provides an // opportunity for targets to (for example) special case the cost of // certain intrinsics based on constants used as arguments. SmallVector<Type *, 8> ParamTys; ParamTys.reserve(Arguments.size()); for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx) ParamTys.push_back(Arguments[Idx]->getType()); return static_cast<T *>(this)->getIntrinsicCost(IID, RetTy, ParamTys); } unsigned getUserCost(const User *U, ArrayRef<const Value *> Operands) { if (isa<PHINode>(U)) return TTI::TCC_Free; // Model all PHI nodes as free. // Static alloca doesn't generate target instructions. if (auto *A = dyn_cast<AllocaInst>(U)) if (A->isStaticAlloca()) return TTI::TCC_Free; if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) { return static_cast<T *>(this)->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(), Operands.drop_front()); } if (auto CS = ImmutableCallSite(U)) { const Function *F = CS.getCalledFunction(); if (!F) { // Just use the called value type. Type *FTy = CS.getCalledValue()->getType()->getPointerElementType(); return static_cast<T *>(this) ->getCallCost(cast<FunctionType>(FTy), CS.arg_size()); } SmallVector<const Value *, 8> Arguments(CS.arg_begin(), CS.arg_end()); return static_cast<T *>(this)->getCallCost(F, Arguments); } if (const CastInst *CI = dyn_cast<CastInst>(U)) { // Result of a cmp instruction is often extended (to be used by other // cmp instructions, logical or return instructions). These are usually // nop on most sane targets. if (isa<CmpInst>(CI->getOperand(0))) return TTI::TCC_Free; if (isa<SExtInst>(CI) || isa<ZExtInst>(CI) || isa<FPExtInst>(CI)) return static_cast<T *>(this)->getExtCost(CI, Operands.back()); } return static_cast<T *>(this)->getOperationCost( Operator::getOpcode(U), U->getType(), U->getNumOperands() == 1 ? U->getOperand(0)->getType() : nullptr); } int getInstructionLatency(const Instruction *I) { SmallVector<const Value *, 4> Operands(I->value_op_begin(), I->value_op_end()); if (getUserCost(I, Operands) == TTI::TCC_Free) return 0; if (isa<LoadInst>(I)) return 4; Type *DstTy = I->getType(); // Usually an intrinsic is a simple instruction. // A real function call is much slower. if (auto *CI = dyn_cast<CallInst>(I)) { const Function *F = CI->getCalledFunction(); if (!F || static_cast<T *>(this)->isLoweredToCall(F)) return 40; // Some intrinsics return a value and a flag, we use the value type // to decide its latency. if (StructType* StructTy = dyn_cast<StructType>(DstTy)) DstTy = StructTy->getElementType(0); // Fall through to simple instructions. } if (VectorType *VectorTy = dyn_cast<VectorType>(DstTy)) DstTy = VectorTy->getElementType(); if (DstTy->isFloatingPointTy()) return 3; return 1; } }; } #endif